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Abstract
For positive integers d,m,n > 1 with (m,n) # (1,1) and K = R or C, let Q4™ (K)
denote the space of m-tuples (fi(2), -+, fm(2)) € K[z]™ of K-coefficients monic

polynomials of the same degree d such that polynomials {fx(z)}7*, have no common
real root of multiplicity > n (but may have complex common root of any multiplicity).
These spaces can be regarded as one of generalizations of the spaces defined and
studied by Arnold and Vassiliev [16]. In this paper, we study the homotopy types of
Q4™ (K) and announce the results obtained in [12].

1 Introduction

The basic notations. For connected spaces X and Y, let Map(X,Y) (resp. Map*(X,Y))
denote the space consisting of all continuous maps (resp. base point preserving continu-
ous maps) from X to Y with the compact-open topology, and let RPY (resp. CPY)
denote the N-dimensional real projective (resp. complex projective) space. Note that
Map(S*, RP") has two path-components Map, (S*,RPY) for ¢ € {0,1} when N > 2. Tt
is well-known that any map f € Map_(S*, RPY) lifts to the map F € Map(S*, SV) such
that F(—z) = (—1)°F(x) for any 2 € S'. For each ¢ € {0,1}, let Q. RPY denote the path
component given by QRPY = Map,_(S*, RP") N Map*(S*, RP™Y).

The motivation. The principal motivation of this research derived from the results
obtained by Vassiliev [16]. For K = R or C, let P¢(K) denote the space of all K-coefficients
monic polynomials f(z) € K]z] of degree d which have no real root of multiplicity > n
(but may have complex ones of arbitrary multiplicity). By identifying S* = R U {oo} and
C = R?, we have the jet map

(1.1) j,‘f:]}( : PZ(K) — Q[d]2RPd(K)'H ~ QGlE)n—1
defined by

[F@) : f(0) + F(0) - fla) + f*V(a)] iToeR
[l:1:1:---:1] if @ =00

n(f(2)(a) = {



for (f(2), @) € P4(K) x S', where [d], € {0,1} and d(K) denote the integers defined by

1 ifK=R
2 fK=C

1 ifd=1 (mod 2)

d d(K)=dimpK =
0 if d=0 (mod 2) a (K) = dimg {

(1.2)  [d2= {

For K = R, Vassiliev obtained the following result:

Theorem 1.1 ([16] (cf. [7], [9])). The jet map jog : PLR) — Qg,RP" ™ ~ Q8" is a
homotopy equivalence through dimension (L%j +1)(n—2)—1 for n > 4 and a homology
equivalence through dimension || for n = 3, where |x] denotes the integer part of a real
number x. O

Remark 1.2. Remark that a map f : X — Y is called a homotopy equivalence (resp. a
homology equivalence) through dimension N if the induced homomorphism

foim(X) = m(Y)  (vesp. fi: H(X,Z) — H,(Y,Z))

is an isomorphism for any integer k¥ < N. Similarly, when G is a group and f: X — Y
is a G-equivariant map between G-spaces X and Y, the map f is called a G-equivariant
homotopy equivalence through dimension N (resp. a G-equivariant homology equivalence
through dimension N) if the restriction map f7 = f|X% : X# — Y is a homotopy
equivalence through dimension N (resp. a homology equivalence through dimension N)
for any subgroup H C G, where W denote the H-fixed subspace of a G-space W given
by W ={zeW :h-x=uxforany h € H}. O

The main purpose of this note is to generalize this result given in [9] for the space

Qv (K).

Basic definitions. From now on, let K = R or C, let d,m,n > 1 be positive integers
such that (m,n) # (1,1), and we always assume that z is a variable.

Definition 1.3. (i) Let Q¥ (K) denote the space of m-tuples (fi(2),- - , fm(2)) € P4K)™
of K-coefficients monic polynomials of the same degree d such that fi(2), -, fin(2) have
no common real root of multiplicity > n (but they may have a common complex root of
any multiplicity).

(ii) Let (fi(2), -, fm(2)) € P4K)™ be an m-tuple of monic polynomials of the same
degree d. Then it is easy to see that (fi(2),---, fn(2)) € Q™(K) iff the derivative
polynomials {f](k)(z) 1 <j<m, 0<k < n} have no common real root. Thus, by
identifying S! = R U 0o, one can define define the jet map

(1.3) Joi T QEM(K) — Qg RPUO™ 1~ gelmn=1 1y

file) - f.(a)] ifaeR
[1T:1:---:1] if « = oo

(1.4) e (1(2)s s fm(2)) (@) = {
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for (fi(2),--- , fm(2)) € QE™(K), where we identify C = R? in (1.4) if K = C, and f,(2)
(k=1,---,m) is the n-tuple of monic polynomials of the same degree d defined by
(15)  £il2) = (@), ful2) + filo) fule) + @), fulz) + (=),

Note that P4(K) = Q*'(K), and that the map jdm coincides the map jffﬁ( given in (1.1)
for m = 1. Similarly, one can define a natural map

(16) dm Qdm( ) N Qdmn( ) by

(1.7) i (f1(2), - fn(2) = (£i(2), -+ Ful2)-
It is well-known that there is a homotopy equivalence

(1.8) QSN L~ SN UM UM U UV U etIN Y

We will denote the kN-skeleton of QSN*! by J,(QSN+1), ie.
(1.9) Je(QSNTY = SN UM UV U U ek IN g ek,

This space is usually called the k-stage James filtration of QSN+, O

Previous results.  Let D(d;m,n,K) denote the positive integer defined by
(1.10) D(d;m,n, K) = (d(K)mn — z)q J Y1) -1

B {(an— (4] +1) -1 ifK=C,
| mn-2)(1¢]+1) -1 ifK=R
Recall the following known results for the case m =1 or n = 1.
Theorem 1.4 ([9], [13], [16], [17]). (i) If d(K)m >4 and n = 1, the jet map
s QY™ (K) — Qg RPUI™H ~ g gdtom =1

is a homotopy equivalence through dimension D(d;m,1,K).
(ii) If d(K)n > 4 and m = 1, the jet map

b QUY(K) = Pi(K) — Qg RPUEI ~ qgen=1

is a homotopy equivalence through dimension D(d;1,n,K).
(iii) If d(K)ym > 4 and d(K)n > 1, there are homotopy equivalences

QI (K) = Pi(K) = Jya (59" ) and Qf™(K) = J, (5™ ).
Thus, there is a homotopy equivalence Q4! (K) = P4(K) ~ QL”J " (K).

(iv) In particular, if (K,m) = (R,3) and d > 1 is an odd integer, there is a homotopy
equivalence QT3 (R) ~ J,(25?). O



101

Note that the conjugation on C naturally induces a Z/2-action on the space Qi’m((C).
From now on, we regard RPY as the Z/2-space with trivial Z/2-action, and recall the
following result given in [9].

Theorem 1.5 ([9]). (i) If m > 4, then the jet map
jil:(gL . cli,m((c) N Q[d]QRPmel ~ 952m—1

is a Z/2-equivariant homotopy equivalence through dimension D(d;m,1,R).
(i) If n > 4, then the jet map

jot 1 QUH(C) = PLC) — Qq,RP*" ! ~ Q52!

is a Z/2-equivariant homotopy equivalence through dimension D(d;1,n,R). O

2 The main results

The main purpose of this paper is to study the homotopy type of the space Q%™ (K) and
report about the generalizations of the above two theorems (Theorems 1.4 and 1.5) for the
case m > 2 and the case n > 2. Note that the following results may be regarded as one of
real analogues of the result obtained in [11] (cf. [5]). More precisely, the main results are
stated as follows.

Theorem 2.1. If d(K)mn > 4, the jet map
]Z:%l : Q(Til,m(K) N Q[d]QRPd(K)mn71 ~ Qsd(]K)mnfl
is a homotopy equivalence through dimension D(d;m,n,K). O

Note that the conjugation on C naturally induces the Z/2-action on the space Q“™(C).

Since the map jzg is a Z/2-equivariant map and (jz:g)z/z = jZ:g, we also obtain the

following result.
Corollary 2.2. If mn > 4, the jet map
ot s QU™ (C) — Qg RP>™ 1 ~ Qg
is a Z/2-equivariant homotopy equivalence through dimension D(d;m,n,R). O
Corollary 2.3. If d(K)mn > 4, the jet embedding
ik Qe (K) = QP (K)

is a homotopy equivalence through dimension D(d;m,n,K). O
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Theorem 2.4. If d(K)mn > 4, there is a homotopy equivalence
QEM(K) = J 4 (84,

4 mn
Thus, there are homotopy equivalences QF™(K) ~ Q%! (K) ~ Q%"J’ (K). O

mn

Remark 2.5. (i) The above results can be proved by using the Vassiliev spectral sequence
([1], [14], [16]) and the scanning maps ([6], [7], [8], [15]). The detail of their proofs are
omitted and see [12] in detail.

(ii) For positive integers d,m,n > 1 with (m,n) # (1,1) and a field F with its algebraic
closure T, let Poly®™(F) denote the space of all m-tuples (fi(2),--- , fm(2)) € F[z]™ of
monic F-coefficients polynomials of the same degree d such that polynomials {fi(z)}7,
have no common root in F of multiplicity > n. The space Poly®™(F) is first defined and
studied by B. Farb and J. Wolfson [5] for investigation the homological density of algebraic
cycles in a closed manifold. By the classical theory of resultants, the space Polyffjm(C) is an
affine variety defined by systems of polynomial equations { F; }5_, with integer coefficients.
Thus both varieties given by this system of equations can be defined over Z and (by
extension of scalars or reduction modulo a prime number) over any field F. So Poly“™(F)
is an affine variety for any field F.

(iii) Since this system of equations can be obtained by using the generalized resultants,
we shall call the space Poly®™(C) as the space of resultants with bounded multiplicity.
Note that the space Q™ (K) can be regarded as one of generalizations of real analogues of
the space Poly®™(C), Because of this reason, we shall call the space Q¥ (KK) as the space
of real resultants of bounded multiplicity although it is not an affine variety.

(iv) The homotopy type of the space Poly™(C) was already well investigated in [11]
(ct. [3], (4, [7), [15]). 0
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