Note on the spaces of real resultants with bounded multiplicity

山口耕平 (Kohhei Yamaguchi) 電気通信大学 情報理工学研究科 (University of Electro-Communications)

Abstract

For positive integers $d, m, n \geq 1$ with $(m, n) \neq (1, 1)$ and $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , let $Q_n^{d,m}(\mathbb{K})$ denote the space of m-tuples $(f_1(z), \cdots, f_m(z)) \in \mathbb{K}[z]^m$ of \mathbb{K} -coefficients monic polynomials of the same degree d such that polynomials $\{f_k(z)\}_{k=1}^m$ have no common real root of multiplicity $\geq n$ (but may have complex common root of any multiplicity). These spaces can be regarded as one of generalizations of the spaces defined and studied by Arnold and Vassiliev [16]. In this paper, we study the homotopy types of $Q_n^{d,m}(\mathbb{K})$ and announce the results obtained in [12].

1 Introduction

The basic notations. For connected spaces X and Y, let $\operatorname{Map}(X,Y)$ (resp. $\operatorname{Map}^*(X,Y)$) denote the space consisting of all continuous maps (resp. base point preserving continuous maps) from X to Y with the compact-open topology, and let $\mathbb{R}P^N$ (resp. $\mathbb{C}P^N$) denote the N-dimensional real projective (resp. complex projective) space. Note that $\operatorname{Map}(S^1,\mathbb{R}P^N)$ has two path-components $\operatorname{Map}_{\epsilon}(S^1,\mathbb{R}P^N)$ for $\epsilon \in \{0,1\}$ when $N \geq 2$. It is well-known that any map $f \in \operatorname{Map}_{\epsilon}(S^1,\mathbb{R}P^N)$ lifts to the map $F \in \operatorname{Map}(S^1,S^N)$ such that $F(-x) = (-1)^{\epsilon}F(x)$ for any $x \in S^1$. For each $\epsilon \in \{0,1\}$, let $\Omega_{\epsilon}\mathbb{R}P^N$ denote the path component given by $\Omega_{\epsilon}\mathbb{R}P^N = \operatorname{Map}_{\epsilon}(S^1,\mathbb{R}P^N) \cap \operatorname{Map}^*(S^1,\mathbb{R}P^N)$.

The motivation. The principal motivation of this research derived from the results obtained by Vassiliev [16]. For $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , let $\mathrm{P}_n^d(\mathbb{K})$ denote the space of all \mathbb{K} -coefficients monic polynomials $f(z) \in \mathbb{K}[z]$ of degree d which have no real root of multiplicity $\geq n$ (but may have complex ones of arbitrary multiplicity). By identifying $S^1 = \mathbb{R} \cup \{\infty\}$ and $\mathbb{C} = \mathbb{R}^2$, we have the jet map

$$j_{n,\mathbb{K}}^{d,1}: \mathcal{P}_n^d(\mathbb{K}) \to \Omega_{[d]_2} \mathbb{R} \mathcal{P}^{d(\mathbb{K})n-1} \simeq \Omega S^{d(\mathbb{K})n-1}$$

defined by

$$j_{n,\mathbb{K}}^{d,1}(f(z))(\alpha) = \begin{cases} [f(\alpha): f(\alpha) + f'(\alpha): \dots : f(\alpha) + f^{(n-1)}(\alpha)] & \text{if } \alpha \in \mathbb{R} \\ [1:1:1:\dots:1] & \text{if } \alpha = \infty \end{cases}$$

for $(f(z), \alpha) \in \mathbb{P}_n^d(\mathbb{K}) \times S^1$, where $[d]_2 \in \{0, 1\}$ and $d(\mathbb{K})$ denote the integers defined by

$$(1.2) \qquad [d]_2 = \begin{cases} 1 & \text{if } d \equiv 1 \pmod{2} \\ 0 & \text{if } d \equiv 0 \pmod{2} \end{cases} \quad \text{and} \quad d(\mathbb{K}) = \dim_{\mathbb{R}} \mathbb{K} = \begin{cases} 1 & \text{if } \mathbb{K} = \mathbb{R} \\ 2 & \text{if } \mathbb{K} = \mathbb{C} \end{cases}$$

For $\mathbb{K} = \mathbb{R}$, Vassiliev obtained the following result:

Theorem 1.1 ([16] (cf. [7], [9])). The jet map $j_{n,\mathbb{R}}^{d,1}: P_n^d(\mathbb{R}) \to \Omega_{[d]_2}\mathbb{R}P^{n-1} \simeq \Omega S^{n-1}$ is a homotopy equivalence through dimension $(\lfloor \frac{d}{n} \rfloor + 1)(n-2) - 1$ for $n \geq 4$ and a homology equivalence through dimension $\lfloor \frac{d}{3} \rfloor$ for n = 3, where $\lfloor x \rfloor$ denotes the integer part of a real number x.

Remark 1.2. Remark that a map $f: X \to Y$ is called a homotopy equivalence (resp. a homology equivalence) through dimension N if the induced homomorphism

$$f_*: \pi_k(X) \to \pi_k(Y)$$
 (resp. $f_*: H_k(X, \mathbb{Z}) \to H_k(Y, \mathbb{Z})$)

is an isomorphism for any integer $k \leq N$. Similarly, when G is a group and $f: X \to Y$ is a G-equivariant map between G-spaces X and Y, the map f is called a G-equivariant homotopy equivalence through dimension N (resp. a G-equivariant homology equivalence through dimension N) if the restriction map $f^H = f|X^H: X^H \to Y^H$ is a homotopy equivalence through dimension N (resp. a homology equivalence through dimension N) for any subgroup $H \subset G$, where W^H denote the H-fixed subspace of a G-space W given by $W^H = \{x \in W: h \cdot x = x \text{ for any } h \in H\}$.

The main purpose of this note is to generalize this result given in [9] for the space $Q_n^{d,m}(\mathbb{K})$.

Basic definitions. From now on, let $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , let $d, m, n \geq 1$ be positive integers such that $(m, n) \neq (1, 1)$, and we always assume that z is a variable.

Definition 1.3. (i) Let $Q_n^{d,m}(\mathbb{K})$ denote the space of m-tuples $(f_1(z), \dots, f_m(z)) \in P^d(\mathbb{K})^m$ of \mathbb{K} -coefficients monic polynomials of the same degree d such that $f_1(z), \dots, f_m(z)$ have no common real root of multiplicity $\geq n$ (but they may have a common complex root of any multiplicity).

(ii) Let $(f_1(z), \dots, f_m(z)) \in \mathbb{P}^d(\mathbb{K})^m$ be an m-tuple of monic polynomials of the same degree d. Then it is easy to see that $(f_1(z), \dots, f_m(z)) \in \mathbb{Q}_n^{d,m}(\mathbb{K})$ iff the derivative polynomials $\{f_j^{(k)}(z): 1 \leq j \leq m, \ 0 \leq k < n\}$ have no common real root. Thus, by identifying $S^1 = \mathbb{R} \cup \infty$, one can define define the jet map

$$j_{n,\mathbb{K}}^{d,m}: \mathcal{Q}_n^{d,m}(\mathbb{K}) \to \Omega_{[d]_2} \mathbb{R} \mathcal{P}^{d(\mathbb{K})mn-1} \simeq \Omega S^{d(\mathbb{K})mn-1} \quad \text{by}$$

(1.4)
$$j_{n,\mathbb{K}}^{d,m}(f_1(z),\cdots,f_m(z))(\alpha) = \begin{cases} [\mathbf{f}_1(\alpha):\cdots:\mathbf{f}_m(\alpha)] & \text{if } \alpha \in \mathbb{R} \\ [1:1:\cdots:1] & \text{if } \alpha = \infty \end{cases}$$

for $(f_1(z), \dots, f_m(z)) \in Q_n^{d,m}(\mathbb{K})$, where we identify $\mathbb{C} = \mathbb{R}^2$ in (1.4) if $\mathbb{K} = \mathbb{C}$, and $\mathbf{f}_k(z)$ $(k = 1, \dots, m)$ is the *n*-tuple of monic polynomials of the same degree d defined by

(1.5)
$$\mathbf{f}_k(z) = (f_k(z), f_k(z) + f'_k(z), f_k(z) + f''_k(z), \cdots, f_k(z) + f_k^{(n-1)}(z)).$$

Note that $P_n^d(\mathbb{K}) = Q_n^{d,1}(\mathbb{K})$, and that the map $j_{n,\mathbb{K}}^{d,m}$ coincides the map $j_{n,\mathbb{K}}^{d,1}$ given in (1.1) for m = 1. Similarly, one can define a natural map

$$i_{n,\mathbb{K}}^{d,m}: \mathcal{Q}_n^{d,m}(\mathbb{K}) \to \mathcal{Q}_1^{d,mn}(\mathbb{K}) \quad \text{by}$$

$$i_{n,\mathbb{K}}^{d,m}(f_1(z),\cdots,f_m(z)) = (\mathbf{f}_1(z),\cdots,\mathbf{f}_m(z)).$$

It is well-known that there is a homotopy equivalence

$$\Omega S^{N+1} \simeq S^N \cup e^{2N} \cup e^{3N} \cup \dots \cup e^{kN} \cup e^{(k+1)N} \cup \dots$$

We will denote the kN-skeleton of ΩS^{N+1} by $J_k(\Omega S^{N+1})$, i.e.

(1.9)
$$J_k(\Omega S^{N+1}) \simeq S^N \cup e^{2N} \cup e^{3N} \cup \dots \cup e^{(k-1)N} \cup e^{kN}.$$

This space is usually called the k-stage James filtration of ΩS^{N+1} .

Previous results. Let $D(d; m, n, \mathbb{K})$ denote the positive integer defined by

(1.10)
$$D(d; m, n, \mathbb{K}) = (d(\mathbb{K})mn - 2)(\left\lfloor \frac{d}{n} \right\rfloor + 1) - 1$$
$$= \begin{cases} (2mn - 2)(\left\lfloor \frac{d}{n} \right\rfloor + 1) - 1 & \text{if } \mathbb{K} = \mathbb{C}, \\ (mn - 2)(\left\lfloor \frac{d}{n} \right\rfloor + 1) - 1 & \text{if } \mathbb{K} = \mathbb{R}. \end{cases}$$

Recall the following known results for the case m = 1 or n = 1.

Theorem 1.4 ([9], [13], [16], [17]). (i) If $d(\mathbb{K})m \geq 4$ and n = 1, the jet map

$$j_{1,\mathbb{K}}^{d,m}: \mathcal{Q}_1^{d,m}(\mathbb{K}) \to \Omega_{[d]_2} \mathbb{R} \mathcal{P}^{d(\mathbb{K})m-1} \simeq \Omega S^{d(\mathbb{K})m-1}$$

is a homotopy equivalence through dimension $D(d; m, 1, \mathbb{K})$.

(ii) If $d(\mathbb{K})n \geq 4$ and m = 1, the jet map

$$j_{n,\mathbb{K}}^{d,1}: \mathcal{Q}_n^{d,1}(\mathbb{K}) = \mathcal{P}_n^d(\mathbb{K}) \to \Omega_{[d]_2} \mathbb{R} \mathcal{P}^{d(\mathbb{K})n-1} \simeq \Omega S^{d(\mathbb{K})n-1}$$

is a homotopy equivalence through dimension $D(d; 1, n, \mathbb{K})$.

(iii) If $d(\mathbb{K})m \geq 4$ and $d(\mathbb{K})n \geq 1$, there are homotopy equivalences

$$\mathbf{Q}_n^{d,1}(\mathbb{K}) = \mathbf{P}_n^d(\mathbb{K}) \simeq J_{\lfloor \frac{d}{n} \rfloor}(\Omega S^{d(\mathbb{K})n-1}) \quad and \quad \mathbf{Q}_1^{d,m}(\mathbb{K}) \simeq J_d(\Omega S^{d(\mathbb{K})m-1}).$$

Thus, there is a homotopy equivalence $Q_n^{d,1}(\mathbb{K}) = P_n^d(\mathbb{K}) \simeq Q_1^{\lfloor \frac{d}{n} \rfloor, n}(\mathbb{K})$.

(iv) In particular, if $(\mathbb{K}, m) = (\mathbb{R}, 3)$ and $d \geq 1$ is an odd integer, there is a homotopy equivalence $Q_1^{d,3}(\mathbb{R}) \simeq J_d(\Omega S^2)$.

Note that the conjugation on \mathbb{C} naturally induces a $\mathbb{Z}/2$ -action on the space $Q_n^{d,m}(\mathbb{C})$. From now on, we regard $\mathbb{R}P^N$ as the $\mathbb{Z}/2$ -space with trivial $\mathbb{Z}/2$ -action, and recall the following result given in [9].

Theorem 1.5 ([9]). (i) If $m \geq 4$, then the jet map

$$j_{1,\mathbb{C}}^{d,m}: \mathcal{Q}_1^{d,m}(\mathbb{C}) \to \Omega_{[d]_2} \mathbb{R} \mathcal{P}^{2m-1} \simeq \Omega S^{2m-1}$$

is a $\mathbb{Z}/2$ -equivariant homotopy equivalence through dimension $D(d; m, 1, \mathbb{R})$.

(ii) If $n \geq 4$, then the jet map

$$j_{n,\mathbb{C}}^{d,1}: \mathcal{Q}_n^{d,1}(\mathbb{C}) = \mathcal{P}_n^d(\mathbb{C}) \to \Omega_{[d]_2} \mathbb{R} \mathcal{P}^{2n-1} \simeq \Omega S^{2n-1}$$

is a $\mathbb{Z}/2$ -equivariant homotopy equivalence through dimension $D(d;1,n,\mathbb{R})$.

2 The main results

The main purpose of this paper is to study the homotopy type of the space $Q_n^{d,m}(\mathbb{K})$ and report about the generalizations of the above two theorems (Theorems 1.4 and 1.5) for the case $m \geq 2$ and the case $n \geq 2$. Note that the following results may be regarded as one of real analogues of the result obtained in [11] (cf. [5]). More precisely, the main results are stated as follows.

Theorem 2.1. If $d(\mathbb{K})mn \geq 4$, the jet map

$$j_{n,\mathbb{K}}^{d,m}: \mathbf{Q}_n^{d,m}(\mathbb{K}) \to \Omega_{[d]_2} \mathbb{R} \mathbf{P}^{d(\mathbb{K})mn-1} \simeq \Omega S^{d(\mathbb{K})mn-1}$$

is a homotopy equivalence through dimension $D(d; m, n, \mathbb{K})$.

Note that the conjugation on $\mathbb C$ naturally induces the $\mathbb Z/2$ -action on the space $Q_n^{d,m}(\mathbb C)$. Since the map $j_{n,\mathbb C}^{d,m}$ is a $\mathbb Z/2$ -equivariant map and $(j_{n,\mathbb C}^{d,m})^{\mathbb Z/2}=j_{n,\mathbb R}^{d,m}$, we also obtain the following result.

Corollary 2.2. If $mn \geq 4$, the jet map

$$j_{n,\mathbb{C}}^{d,m}: \mathcal{Q}_n^{d,m}(\mathbb{C}) \to \Omega_{[d]_2} \mathbb{R} \mathcal{P}^{2mn-1} \simeq \Omega S^{2mn-1}$$

is a $\mathbb{Z}/2$ -equivariant homotopy equivalence through dimension $D(d; m, n, \mathbb{R})$.

Corollary 2.3. If $d(\mathbb{K})mn \geq 4$, the jet embedding

$$i_{n,\mathbb{K}}^{d,m}: \mathcal{Q}_n^{d,m}(\mathbb{K}) \to \mathcal{Q}_1^{d,mn}(\mathbb{K})$$

is a homotopy equivalence through dimension $D(d; m, n, \mathbb{K})$.

Theorem 2.4. If $d(\mathbb{K})mn \geq 4$, there is a homotopy equivalence

$$Q_n^{d,m}(\mathbb{K}) \simeq J_{\lfloor \frac{d}{n} \rfloor}(\Omega S^{d(\mathbb{K})mn-1}).$$

Thus, there are homotopy equivalences $Q_n^{d,m}(\mathbb{K}) \simeq Q_{mn}^{d,1}(\mathbb{K}) \simeq Q_1^{\lfloor \frac{d}{n} \rfloor,mn}(\mathbb{K})$.

Remark 2.5. (i) The above results can be proved by using the Vassiliev spectral sequence ([1], [14], [16]) and the scanning maps ([6], [7], [8], [15]). The detail of their proofs are omitted and see [12] in detail.

- (ii) For positive integers $d, m, n \geq 1$ with $(m, n) \neq (1, 1)$ and a field \mathbb{F} with its algebraic closure $\overline{\mathbb{F}}$, let $\operatorname{Poly}_n^{d,m}(\mathbb{F})$ denote the space of all m-tuples $(f_1(z), \cdots, f_m(z)) \in \mathbb{F}[z]^m$ of monic \mathbb{F} -coefficients polynomials of the same degree d such that polynomials $\{f_k(z)\}_{k=1}^m$ have no common root in $\overline{\mathbb{F}}$ of multiplicity $\geq n$. The space $\operatorname{Poly}_n^{d,m}(\mathbb{F})$ is first defined and studied by B. Farb and J. Wolfson [5] for investigation the homological density of algebraic cycles in a closed manifold. By the classical theory of resultants, the space $\operatorname{Poly}_n^{d,m}(\mathbb{C})$ is an affine variety defined by systems of polynomial equations $\{F_k\}_{k=1}^N$ with integer coefficients. Thus both varieties given by this system of equations can be defined over \mathbb{Z} and (by extension of scalars or reduction modulo a prime number) over any field \mathbb{F} . So $\operatorname{Poly}_n^{d,m}(\mathbb{F})$ is an affine variety for any field \mathbb{F} .
- (iii) Since this system of equations can be obtained by using the generalized resultants, we shall call the space $\operatorname{Poly}_n^{d,m}(\mathbb{C})$ as the space of resultants with bounded multiplicity. Note that the space $\operatorname{Q}_n^{d,m}(\mathbb{K})$ can be regarded as one of generalizations of real analogues of the space $\operatorname{Poly}_n^{d,m}(\mathbb{C})$, Because of this reason, we shall call the space $\operatorname{Q}_n^{d,m}(\mathbb{K})$ as the space of real resultants of bounded multiplicity although it is not an affine variety.
- (iv) The homotopy type of the space $\operatorname{Poly}_n^{d,m}(\mathbb{C})$ was already well investigated in [11] (cf. [3], [4], [7], [15]).

Acknowledgements. The author was supported by JSPS KAKENHI Grant Number 26400083 and 18K03295. This work was also supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

References

- [1] M. Adamaszek, A. Kozlowski and K. Yamaguchi, Spaces of algebraic and continuous maps between real algebraic varieties, Quart. J. Math. **62** (2011), 771–790.
- [2] M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Commun. Math. Phys. **59** (1978), 97–118.
- [3] F. R. Cohen, R. L. Cohen, B. M. Mann and R. J. Milgram, The topology of rational functions and divisors of surfaces, Acta Math. 166 (1991), 163–221.
- [4] F. R. Cohen, R. L. Cohen, B. M. Mann and R. J. Milgram, The homotopy type of rational functions, Math. Z. **207** (1993), 37–47.

- [5] B. Farb and J. Wolfson, Topology and arithmetic of resultants, I: Spaces of rational maps, New York J. Math., **22**, (2016), 801-826.
- [6] M. A. Guest, Instantons, rational maps and harmonic maps, Methamatica Contemporanea 2 (1992), 113-155.
- [7] M. A. Guest, A. Kozlowski and K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity, Fund. Math. **116** (1999), 93–117.
- [8] S. Kallel, Spaces of particles of manifolds and generalized Poincaré dualities, Quart. J. Math. 52 (2001),45-70.
- [9] A. Kozlowski and K. Yamaguchi, Topology of complements of discriminants and resultants, J. Math. Soc. Japan **52** (2000), 949-959.
- [10] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of polynomials with bounded multiplicity, Publ. RIMS. Kyoto Univ., **52** (2016), 297-308.
- [11] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of resultants of bounded multiplicity, Topology Appl. **232** (2017), 112-139.
- [12] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of real resultants with bounded multiplicity, preprint (arXiv:1803.02154).
- [13] J. Mostovoy, Spaces of rational loops on a real projective space, Trans. Amer. Math. Soc., **353**, (2001), 1959–1970.
- [14] J. Mostovoy, Spaces of rational maps and the Stone-Weierstrass Theorem, Topology 45 (2006), 281–293.
- [15] G. B. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39–72.
- [16] V. A. Vassiliev, Complements of discriminants of smooth maps, Topology and Applications, Amer. Math. Soc., Translations of Math. Monographs 98, 1992 (revised edition 1994).
- [17] K. Yamaguchi, Complements of resultants and homotopy types, J. Math. Kyoto Univ. 39 (1999), 675-684.

Department of Mathematics, University of Electro-Communications 1-5-1 Chufugaoka, Chofu, Tokyo 182-8585, Japan

E-mail: kohhei@im.uec.ac.jp