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to be a Borsuk‐Ulam group

Toshio Sumi

Faculty of Arts and Science, Kyushu University

1 Introduction

In this paper, we always assume that a group means a finite group. A G‐map  f:Xarrow Y
is said to be a  G‐isovariant map if  G_{x}=G_{f(x)} for any  x\in X , where  G_{x} is the isotropy
subgroup, that is,  G_{x}=\{g\in G|g\cdot x=x\} . We call a group  G is a BUG (Borsuk‐Ulam
group) [5] if

 \dim V-\dim V^{G}\leq\dim W-\dim W^{G}

for any isovariant  G‐map  f:Varrow W between  G‐representation spaces  V and  W.

Let  C_{2} be a cyclic group of order 2 and let  f:Varrow W be an isovariant  C_{2}|‐map between
 C_{2}|‐representation spaces  V and  W . Fixing a  G‐invariant inner product,  f induces a free
 C_{2}‐map  S(f|_{V-V^{C_{2}}}):S(V-V^{C_{2}})arrow S(W-W^{C_{2}}) between  C_{2}‐representation spheres,
where  V-V^{C_{2}} is an orthogonal vector subspace of  V^{C_{2}} in  V . By Borsuk‐Ulam the‐
orem, this map gives  \dim S(V-V^{C_{2}})\leq\dim S(W-W^{c_{2}}) . Since  \dim S(V-V^{C_{2}})=
 \dim V-\dim V^{c^{2}}-1,  C_{2} is a BUG. For a cyclic group  C_{p} of prime order  p , Kobayashi
[2] showed that  \dim S(V)\leq\dim S(W) for a free  C_{p}‐map  S(f'):S(V)arrow S(W) between
representation spheres and thus  C_{p} is a BUG.

Let  G be a group extension of  K by  H:1arrow Harrow Garrow Karrow 1 and  f:Varrow W be an
isovariant  G‐map. Since the equality

 \dim W-\dim W^{G}-(\dim V-\dim V^{G})

 =(\dim W-\dim W^{H}-(\dim V-\dim V^{H}))

 +(\dim W^{H}-\dim W^{G}-(\dim V^{H}-\dim V^{G}))

holds, if  K and  H are BUGs then  G is a BUG [5]. Therefore any solvable group is a
BUG. Then it is natural to ask whether a group is a BUG or not.

Wasserman [5] proposed a prime condition which implies a sufficient condition for a
group to be a BUG. A positive integer  n satisfies the prime condition if

 p_{1}^{-1}+p_{2}^{-1}+ +P_{r}^{-1}<1,

where  p_{1},  p_{r} are primes and  e_{1},  e_{r} are positive integers such that  n=p_{1}^{e_{1}}p_{2}^{e_{2}}\cdots p_{r}^{e_{r}}.
A group  G satisfies the prime condition if the order of any cyclic subgroup of  G satisfies
the prime condition.
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Theorem 1 ([5]) If a group  G satisfies the prime condition, then  G is a BUG.

Let Cyc1(G) be the set of all cyclic subgroups of  G . Nagasaki and Ushitaki [3] proposed
a Möbius condition: A group  G satisfies the Möbius condition if

 D \in Cyc{\imath}(G)\sum_{C\leq D}\mu(\frac{|D|}{|C|})\geq 0
for any cyclic subgroup  C of  G , where  \mu:\mathbb{N}arrow\{0, \pm 1\} is the Möbius function, that is,

 \mu(n)=\{\begin{array}{ll}
1   n=1
0   if p^{2}|n for some prime p
(-1)^{r}   n=p_{1}p_{2}\cdots p_{r} for distinct primes p_{1},p_{2}, p_{r}.
\end{array}
Theorem 2 ([3]) If a group  G satisfies the Möbius condition, then  G is a BUG.

Since if  K and  H are BUGs then a group extension of  H by  K is a BUG, if we obtain
that every simple group is a BUG, then any group is a BUG. By the above theorem,
Nagasaki and Ushitaki showed that projective linear groups  PSL(2, q) are BUGs. In this
paper, we give a sufficient condition for a group to be a BUG and apply projective linear
groups  PSL(3, q) and alternating groups  A_{n}.

2 A sufficient condition

Let  V and  W be  G‐representation spaces and let  f:Varrow W be an isovariant  G‐map. For
a subgroup  H of  G , let

 g_{f}(H)=(\dim W-\dim W^{H})-(\dim V-\dim V^{H}) .

Note that If  G is a cyclic group then  g_{f}(G)\geq 0.

Proposition 3 Let  H_{1} and  H_{2} be a subgroups of  G with  H_{1}\triangleleft H_{2} and  f an isovariant
 G ‐map between representation spaces.

 g_{f}(H_{2})-g_{f}(H_{1})=g_{f^{H_{1}}}(H_{2}/H_{1})

holds. In particular, if  H_{2}/H_{1} is  a BUG,  g_{f}(H_{2})\geq g_{f}(H_{1}) holds.

Let  S(G) denote the set of all subgroups of  G . It is made into a poset by defining
 H\leq K in  S(G) if  H is a subgroup of  K . Let Cyc1 (G) be the full subposet of  S(G) which
contains all cyclic subgroups of  G.

We put

 \mu(C, D)=\{\begin{array}{ll}
\mu(\frac{|D|}{|C|}) ,   C\leq D
0,   otherwise.
\end{array}
Nagasaki and Ushitaki [3] showed that  PSL(2, q) satisfies the Möbius condition by using
the following equation.
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Theorem 4 ([3]) Let  f:Varrow W be a  G ‐map between representation spaces.

 |G|g_{f}(G)= \sum_{C\in Cyc1(G)}(\sum_{D\in Cyc{\imath}(G)}\mu(C, D))|C|g_{f}
(C)
holds. If  G satisfies the Möbius condition then  G is  a BUG.

Let RCyc1(G) be the set of representatives of conjugacy classes of all cyclic subgroups
of  G and let  RCyc1_{1}(G) be the set of representatives of conjugacy classes of all nontrivial
cyclic subgroups of  G . Recall that  g_{f}(\{e\})=0.

Let

 \tilde{\mu}(C, D)=\{\begin{array}{ll}
\mu(\frac{|D|}{|C|}) ,   (C)\leq(D)
0,   otherwise.
\end{array}
where (C) denotes the conjugacy class of  C.

Lemma 5 For  C \in RCyc1(G),\sum_{D\in Cyc{\imath}(G)}\mu(C, D)=\sum_{D\in RCyc1(G)}
\frac{|N_{G}(C)|}{|N_{G}(D)|}\tilde{\mu}(C, D) .

Proof Let  C<D\in Cyc1(C_{G}(C)),  S=\{E\in Cyc1(G)|(D)=(E), E\geq C\} and let

 f:N_{G}(C)arrow S be a map which sends  g to  g^{-1}Dg . Let  E\in S . Then  E=g^{-1}Dg for some
 g\in G.  C and  g^{-1}Cg is a subgroup of  E with same index. Since for any  k>0 dividing

thus g  \in N_{G}(C)andf(g)=ETherefore, themap|D|,
 as

ubgroup o
 fo

rder kof t .hecycl\dot{{\imath}}cgroup D
 is

ufniısquseu’rjwecetisveee. that C  =g^{-1}dThus,  \# S=\frac{Cgan|N_{G}(C)|}{|N_{G}(D)|}.
If  D_{1} and  D_{2} are conjugate, then  \tilde{\mu}(C, D_{1})=\tilde{\mu}(C, D_{2}) . Therefore we see that

  \sum \mu(C, D)= \sum \sum \mu(C, E)
 D\in Cyc1(G)  D\in RCyc1(G) E  \in Cycı(G)

 (E)=(D)

  \sum \sum\mu(C, D)
 D\in RCyc1(G)E\in S

 =  \sum \frac{|N_{G}(C)|}{|N_{G}(D)|}\tilde{\mu}(C, D) .

D  \in RCycı(G)

I

Let

  \beta_{G}(C, D)=\frac{|C|\tilde{\mu}(C,D)}{|N_{G}(D)|}
and

  \beta_{G}(C)=\sum_{D\in RCyc1(G)}\beta_{G}(C, D) .

We abbreviate to write  g_{f}(G) as  g(G) if  f is clear.

Proposition 6

 g(G)= \sum_{C\in RCyc{\imath}(G)}\beta_{G}(C)g(C) . (1)
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Proof By Theorem 4 and Lemma 5, we see that

 g(G)= \frac{1}{|G|}\sum_{C\in Cyc{\imath}(G)}(\sum_{D\in Cyc1(G)}\mu(C, D))|C|g
(C)
 = \frac{1}{|G|}\sum_{C\in RCyc{\imath}(G)}\sum_{c'\in c_{yc{\imath}(G)}}
(\sum_{D\in Cyc1(G)}\mu(C', D))|C'|g(C')

 (c)=(c')

 = \sum_{C\in RCyc1(G)}\frac{|C|}{|N_{G}(C)|} \sum_{D\in Cyc{\imath}(G)}\mu(C, 
D))g(C)
 = \sum_{C\in RCyc{\imath}(G)}\frac{|C|}{|N_{G}(C)|} \sum_{D\in RCyc{\imath}(G)}
\frac{|N_{G}(C)|}{|N_{G}(D)|}\tilde{\mu}(C, D))g(C)
 = \sum_{C\in RCyc1(G)}(\sum_{D\in RCyc1(G)}\frac{|C|}{|N_{G}(D)|}\tilde{\mu}(C,
D))g(C) .

1

We write  \beta(C)=\beta_{G}(C) for simple. If  G is a cyclic group, then

  \beta(C)=\sum_{D\in RCyc{\imath}(G)}\frac{|C|}{|G|}\tilde{\mu}(C, D)=
\{\begin{array}{l}
0, C\neq G
1, C=G.
\end{array} (2)

Lemma 7   \sum_{C\in RCyc1(G)}\frac{1}{|N_{G}(C)|}\leq 1.
Proof By the class equation for  G , we see that

 1= \sum_{(x)}\frac{1}{|C_{G}(x)|}\geq\sum_{C\in RCyc1(G)}\frac{1}{|C_{G}(C)|}
\geq\sum_{C\in RCyc1(G)}\frac{1}{|N_{G}(C)|}.
1

Lemma 8  |G|= \sum_{C,D\in Cyc1(G)}\mu(C, D)|C| and   \sum_{C\in RCyc1(G)}\beta(C)=1 . If  G is nontrivial then

  \sum_{C\in RCyc1_{1}(G)}\beta(C)>0.
Proof Let  u:Cyc1(G)arrow \mathbb{Q} be a map defined as

 u(C)=\{\begin{array}{ll}
|genC|   C\neq\{e\}
1   C=\{e\}
\end{array}
and put  v(G)= \sum_{D\in Cyc1(G)}u(D) . Then  v(G)=|G| . By the Möbuis inversion formula, we

see

 u(D)= \sum_{C\leq D\in Cyc{\imath}(G)}\mu(|D|/|C|)v(C)=\sum_{C\in Cyc{\imath}
(G)}\mu(C, D)v(C)
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and then

 |G|=v(G)= \sum_{C,D\in Cyc1(G)}\mu(C, D)|C|.
Therefore, we see

 1= \frac{1}{|G|}\sum_{C\in Cyc1(G)}|C|(\sum_{D\in Cyc1(G)}\mu(C, D))
 = \frac{1}{|G|}\sum\sum_{(c)=(c')}|C'|C\in RCyc{\imath}(G)c'\in c_{yc{\imath}
(G)}(\sum_{D\in Cyc{\imath}(G)}\mu(C', D))
 = \sum_{C\in RCyc1(G)}\frac{|C|}{|N_{G}(C)|}\sum_{D\in Cyc{\imath}(G)}\mu(C, D)
 = \sum_{C\in RCyc{\imath}(G)}\sum_{D\in RCyc{\imath}(G)}|N_{G}(C)
||C|\frac{|N_{G}(C)|}{|N_{G}(D)|}\tilde{\mu}(C, D)
 = \sum_{C\in RCyc1(G)}\sum_{D\in RCyc1(G)}\beta(C, D)
 = \sum_{C\in RCyc1(G)}\beta(C) .

If  G is nontrivial then, by Lemma 7, we see

  \beta(\{e\})=\sum_{D\in RCyc{\imath}(G)}\frac{\mu(|D|)}{|N_{G}(D)|}<\sum_{D\in
RCyc{\imath}(G)}\frac{1}{|N_{G}(D)|}\leq 1
and thus   \sum_{C\in RCyc{\imath}_{1}(G)}\beta(C)>0.1

Now we consider   \sum_{C\in RCyc{\imath}_{1}(G)}\beta_{G}(C)\gamma(C) for a map  \gamma:RCyc1_{1}(G)arrow \mathbb{Q}\geq 0 . We note that

 G satisfies the Möbius condition if and only if   \sum_{C\in RCyc{\imath}_{1}(G)}\beta_{G}(C)\gamma(C)\geq 0 for an arbitrary

map  \gamma:RCyc1_{1}(G)arrow \mathbb{Q}\geq 0 . By (2), we see

Proposition 9 A cyclic group satisfies the Möbius condition.

We recall Proposition 3. For an isovariant  G‐map  f and subgroups  C\triangleleft D of  G such
that  D/C is a BUG,  g_{f}(C)\leq g_{f}(D) . We say  G is a CCG (cyclic condition group),
if for an arbitrary map  \gamma:RCyc1_{1}(G)arrow \mathbb{Q}\geq 0 such that  \gamma(C)\leq\gamma(D) if (C)  \leq(D) ,

  \sum_{C\in RCyc1_{1}(G)}\beta_{G}(C)\gamma(C)\geq 0 . A CCG is a BUG.

Proposition 10 A group satisfying the prime condition is  a CCG.

Proof Let  \gamma:RCyc1_{1}(G)arrow \mathbb{Q}\geq 0 be a map such that  \gamma(C)\leq\gamma(D) if  (C)\leq(D) . Since

  \sum_{C\in RCyc1_{1}}\beta(C)\gamma(C)=\sum_{D(\in RCyc{\imath}_{1}} C  \in RCycıl (G)
  \sum \beta(C, D)\gamma(C) ,
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we show that   \sum_{C\in RCyc1_{1}(G)}\beta(C, D)\gamma(C)\geq 0 for each  D\in RCyc1_{1}(G) . For an positive

integer  n , let  \pi(n) be the set of all primes dividing  n . Put  r=\#\pi(|D|) , the number of
elements of  \pi(|D|) , and let  D_{0} be the subgroup of  D with index   \prod_{p\in\pi(|D|)}p . Since

 (\begin{array}{l}
r
2s
\end{array})  (r-2s)=(\begin{array}{ll}
   r
2s   +1
\end{array})  (2s+1) ,

we see that

  \sum_{C\in RCyc1_{1}(G)}\beta(C, D)\gamma(C)

 =(D_{0}) \leq(C)\leq(D)\sum_{C\in RCyc1_{1}(G)}\beta(C, D)\gamma(C)

  \geq\sum_{s=0}^{\lfloor(r-1)/2\rfloor}  (\begin{array}{llll}
\Sigma   \beta(E,D)\gamma(E)+   \Sigma   \beta(F,D)\gamma(F)
|\pi(|D|/|E|)|=2s(D_{0})<(E)\leq(D)E\in RCyc{\imath}_{1}(G)      |\pi(|D|/|F|)|=
2s+1(D_{0})\leq(F)<(D)F\in RCyc{\imath}_{1}(G)   
\end{array})
 = \sum_{s=0}^{\lfloor(r-1)/2\rfloor}|\pi(|D|/|E|)|=2s(D_{0})<(E)\leq(D)
\sum_{E\in RCyc{\imath}_{1}(G)}(\beta(E, D)\gamma(E)+\frac{1}{2s+1}|\pi(|D|/|F|)
|=2s+1(D_{0})\leq(F)<(E)\sum_{F\in RCyc{\imath}_{1}(G)}\beta(F, D)\gamma(F))
 = \sum_{s=0}^{\lfloor(r-1)/2\rfloor}|\pi(|D|/|E|)|=2s(D_{0})<(E)\leq(D)
\sum_{E\in RCyc1_{1}(G)}(\frac{|E|}{|N_{G}(D)|}\gamma(E)-\frac{1}{2s+1}
|\pi(|D|/|F|)|=2s+1(D_{0})\leq(F)<(E)\sum_{F\in RCyc{\imath}_{1}(G)}\frac{|F|}
{|N_{G}(D)|}\gamma(F))
  \geq\sum_{s=0}^{\lfloor(r-1)/2\rfloor}|\pi(|D|/|E|)|=2s(D_{0})<(E)\leq(D)\sum_
{EERCyc1_{1}(G)}(\frac{|E|}{|N_{G}(D)|}\gamma(E)-\frac{1}{2s+1}|\pi(|D|/|F|)|=2s
+1(D_{0})\leq(F)<(E)\sum_{F\in RCyc{\imath}_{1}(G)}\frac{|F|}{|N_{G}(D)|}
\gamma(E))
  \geq\sum_{s=0}^{\lfloor(r-1)/2\rfloor}|\pi(|D|/|E|)|=2s(D_{0})<(E)\leq(D)\sum_
{E\in RCyc1_{1}(G)}(1-\frac{1}{2s+1}|\pi(|E|/|F|)|=1F\in RCyc{\imath}_{1}(G)
\sum_{(F)<(E)}\frac{|F|}{|E|})\frac{|E|}{|N_{G}(D)|}\gamma(E)
  \geq\sum_{s=0}^{\lfloor(r-1)/2\rfloor}|\pi(|D|/|E|)|=2s(D_{0})<(E)\leq(D)\sum_
{EERCyc{\imath}_{1}(G)}(1-\sum_{p\in\pi(|E|)}\frac{1}{p})\frac{|E|}{|N_{G}(D)|}
\gamma(E)
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and thus if  G satisfies the prime condition, then it is nonnegative.  I

3 Through linear programming

Let  RCyc1_{1}^{+}(G) and  RCyc1_{1}^{-}(G) be the subsets of  RCyc1_{1}(G) consisting of  C with  \beta_{G}(C)>
 0 and  \beta_{G}(C)<0 , respectively. We consider a map

 \psi:RCyc1_{1}^{-}(G)\cross RCyc1_{1}^{+}(G)arrow \mathbb{Q}\leq 0

such that   \beta_{G}(C)=D\in RCyc1_{1}^{+}\sum_{(G)}\psi(C, D) for  C\in RCyc1_{1}^{-}(G) and if  C is not subconjugate

to  D then  \psi(C, D)=0 . Then

 g(G) =  \sum_{C\in RCyc1_{1}(G)}\beta_{G}(C)g(C)

 =  \sum_{C\in RCyc1_{1}^{+}(G)}\beta_{G}(C)g(C)+ \sum \beta_{G}(C)g(C) C\in RCyc1_{1}^{-}(G)

 =

  \sum_{D\in RCyc{\imath}_{1}^{+}(G)}\beta_{G}(D)g(D)+C\in RCyc{\imath}_{1}^{-}
(G)  (\begin{array}{lll}
\Sigma   \psi(C   D)
D\in RCyc{\imath}_{1}^{+}(G)      
\end{array})  g(C)  \sum

  \geq \sum_{D\in RCyc{\imath}_{1}^{+}(G)} (\beta_{G}(D)+ \sum \psi(C, D))g(D) .

 C\in RCyc1_{1}^{-}(G)

By Lemma 8,  c \in RCyc{\imath}_{1}^{+}\sum_{(G)}\beta_{G}(C)+\sum_{C\in RCycl_{1}i}
\beta_{G}(C)>0 . Thus we may expect the exis‐

tence of  \psi . We determine whether there exist  \psi such that

  \beta(D)+\sum_{C\in RCyc1_{1}^{-}(G)}\psi(C, D)\geq 0
for  D\in RCyc1_{1}^{+}(G) by linear programming.

 \{\begin{array}{l}
\psi(C, D)\leq 0
\psi(C, D)=0 if (C)\not\leq(D)
D\in RCyc{\imath}_{1}^{+}\sum_{(G)}\psi(C, D)\leq\beta_{G}(C) for C\in RCyc1_{1}
^{-}(G)
\sum_{C\in RCyc{\imath}_{1}^{-}(G)}\psi(C, D)\geq-\beta_{G}(D) for D\in 
RCyc1_{1}^{+}(G)
\end{array}
We can check the existence of  \psi for the following groups by using the software GAP

[1]:

Theorem 11 (1) Alternating groups  A_{n},  5\leq n\leq 11 satisfy the prime condition.

(2)  A_{n},  12\leq n\leq 21 are CCGs.

(3) Symmetric groups  S_{n},  5\leq n\leq 9 satisfy the prime condition.
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(4)  S_{n},  10\leq n\leq 22 are CCGs.

(5) All sporadic groups are CCGs.

(6) Automorphism groups of all sporadic groups are CCGs.

4 Projective special linear group

If any simple groups are BUGs, then every group is a BUG. It is important to study
simple groups. Projective special linear groups  PSL(3, q) are simple groups.

Lemma 12 Let  C be a cyclic subgroup of a group G. Suppose that there is a unique
maximal cyclic subgroup  D of  G with  C<D. Then  N_{G}(C)=N_{G}(D),  \beta_{G}(C)=0 and

  \beta_{G}(D)=\frac{|D|}{|N_{G}(D)|}>0.
Proof Since  C<D , for  g\in N_{G}(D),  9^{-1}Cg is a subgroup of the cyclic group  D with
index  |D/C| and thus  g^{-1}Cg=C . Therefore,  N_{G}(D)\leq N_{G}(C) . If  g\in N_{G}(C)\backslash N_{G}(D)
exists, then  C<g^{-1}Dg\neq D . This is contradiction. Therefore the equality  N_{G}(C)=
 N_{G}(D) holds.

We see that

  \beta_{G}(C)=\sum_{E\in RCyc1(G)}\frac{|C|}{|N_{G}(E)|}\tilde{\mu}(C, E)=\frac
{|D|}{|N_{G}(D)|}\sum_{E\in RCyc{\imath}(D)}\frac{|C|}{|D|}\tilde{\mu}(C, E)
 = \frac{|D|}{|N_{G}(D)|}\beta_{D}(C)=0

by (2), and clearly   \beta_{G}(D)=\frac{|D|}{|N_{G}(D)|}.  I

Let  p be a prime and  q a power of  p . Let  C_{q-1},  C_{p} , and  C_{q+1} be cyclic subgroups of
 SL(2, q) of order  q-1,  p , and  q+1 respectively, and let  \pi:SL(2, q)arrow G be a natural
projection. Then  \pi(C_{q\pm 1}) has order  (q\pm 1)/gcd(q-1,2) .

Proposition 13  g( PSL(2, q))=\frac{1}{2}g(\pi(C_{q-1}))+\frac{1}{2}g(\pi(C_{q+1}))+\frac{p}
{|N_{PSL(2,q)}(C_{p})|}g(C_{p}) .

Proof We may put

 RCyc1_{1}(PSL(2, q))=\{H|\{1\}<H\leq C_{r}, r=p, q\pm 1\}.

The cyclic groups  \pi(C_{r}),  r=p,  q\pm 1 are maximal and the orders are  p,  (q\pm 1)/d , respec‐
tively, which are coprime each other. Therefore, any nontrivial cyclic subgroup of  G has
a unique maximal cyclic subgroup of  G . Thus by Lemma 12, we see

 g(G)= \sum_{r\in\{q\pm 1,p\}}\frac{|C_{r}|}{|N_{PSL(2,q)}(C_{r})|}g(C_{r}) .

I

Nonsolvable groups  PSL(2, q),  SL(2, q),  PGL(2, q) , and  GL(2, q) are all BUGs (see
[3]). Furthermore, a group which does not have a simple group except PSL(2, q) as a
subquotient group is a BUG.
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Example 14 The simple group  PSL(3,11) does not satisfy the prime condition, since
it has an element of order 120. We confuse order (with type) with the cyclic subgroup
generated by the corresponding element. For example,  PSL(3,11) has a unique cyclic
group of order 110 up to conjugate, and two cyclic subgroups of order 5 up to conjugate,
denoted by  5a and  5b , whose are not conjugate. We have

 RCyc1_{1}^{+}(PSL(3,11))=\{10b, 10c, 10d, 11a, 110,120,133\},

 RCyc1_{1}^{-}(PSL(3,11))=\{2,5a, 5b, 10a, 11b\}.

Since  \beta(133)+\beta(11b)=587/1815>0,  \beta(110)+\beta(5b)+\beta(10a)=0 , and  \beta(10b)+\beta(2)+
 \beta(5a)=0 , we see that

 g(PSL(3,11))\geq\beta(10c)\gamma(10c)+\beta(10d)\gamma(10d)+\beta(11a)
\gamma(11a)

 + \beta(120)\gamma(120)+\frac{587}{1815}\gamma(133)\geq 0.

The group  PSL(3,11) is a CCG. See the following table corresponds with  \beta_{PSL(3,11)}(-, -) .
The first columns and first rows are all cyclic subgroups  C and  D of  RCyc1_{1}(PSL(3,11))
respectively, and the last columns are the values  \beta_{PSL(3,11)}(-) .
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Table 1:  \beta_{PSL(3,11)}(-, -)

The group  SL(3, q) is of order  q^{3}(q-1)^{2}(q+1)(q^{2}+q+1) . Put  q=p^{u},  G=SL(3, q),  \delta=

 1,  d=gcd(3, q-\delta),  \rho^{r}=1,  r=q-\delta,  r'=r/d,  s=q+\delta,  s'=s/gcd(3, s),  t=q^{2}+\delta q+1,
 t'=t/d,  \sigma^{s}=\rho,  \tau^{t}=1,  \omega=\rho^{(q-1)/d} . A maximal cyclic subgroup of  SL(3, q) is conjugate

to one of the followings:  C_{pr}=  \langle  (\begin{array}{lll}
\rho   1   
   \rho   \rho^{-2}
\end{array})  \rangle,  C_{r}^{(a,b)}=  \langle  (\rho^{a}   \rho^{b}   \rho^{-a-b})  \rangle(0\leq a<r',

 a\leq b<r,  (r, a, b)=1),  C_{rs}=  \langle  (B   \rho^{-1})  \rangle,   C_{dp}^{(c)}=\langle\omega  (\begin{array}{lll}
1   \theta^{c}   
   1   \theta^{c}
      1
\end{array})\}(0\leq c\leq d-1) ,

 C_{t} , where  B is conjugate to  (\sigma^{\delta}   \sigma^{q}) in  GL(2, q^{2}) and  C_{t} is generated by an element

conjugate to  (\tau   \tau^{\delta q}   \tau^{q^{2}})
 q-1

in  GL(3, q^{3}) [ 4 , Table la]. Let  \psi:SL(3, q)arrow PSL(3, q)
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be a canonical projection and put  D_{pr'}=\psi(C_{pr}),  D_{r(a,b)}^{(a,b)}=\psi(C_{r}^{(a,b)}),  D_{r's}=\psi(C_{rs}) ,

 D_{p}^{(c)}=\psi(C_{dp}^{(c)}),  D_{t'}=\psi(C_{t}) , where  r(a, b)=r/d if  d=3 and  ra/d\equiv rb/d\equiv-r(a+b)/d
modulo  r , and  r(a, b)=r otherwise. We may assume that RCyc1(G) consists of subgroups
of the above cyclic subgroups.

Proposition 15 If  r satisfies the prime condition, then  PSL(3, q) is  a CCG.

Proof The order of a maximal cyclic subgroup is  r,  r',  p,  r's , pr’, or  t' . We see that
 (p, r's)= (pr’s,  t' )  =1 . For  C\in RCyc1_{1}(G) , if  D_{p}^{(0)}\leq C,  D_{r}^{(1,1)}<C or  C<D_{t'} , then a
maximal cyclic subgroup containing  C is unique. We see that

  \sum_{C\in RCyc1_{1}(G)}\beta_{G}(C)\gamma(C)
 =   \sum_{\Leftarrow 0}^{d-1}\beta_{G}(D_{p}^{(c)})\gamma(D_{p}^{(c)})+\beta_{G}
(D_{t'})\gamma(D_{t'})+\beta_{G}(D_{r's})\gamma(D_{r's})

 + \beta_{G}(D_{pr'})\gamma(D_{pr'})+\sum_{(a,b)_{C}}\sum_{\leq D_{r(a,b)}^{(ab)
}},\beta_{G}(C)\gamma(C)
.

Note that  \beta_{G}(D_{pr'})=1/r,  \beta_{G}(D_{sr'})=1/2,  \beta_{G}(D_{t'})=1/3 and  \beta_{G}(D_{p})=-s/p^{2}r , where
 D_{p} is a subgroup of  D_{pr'} of order  p . Then  \beta_{G}(D_{pr'})+\beta_{G}(D_{p})>0 and

  \sum_{C\in RCyc1_{1}(G)}\beta_{G}(C)\gamma(C)\geq\sum_{(a,b)_{C}}\sum_{\leq D_
{r(a,b)}^{(ab)}},\beta_{G}(C)\gamma(C)
.

By the proof of Proposition 10, if  r satisfies the prime condition, then for any   D\in

 RCyc1_{1}(G) of order  r, \sum_{C}\beta_{G}(C,D)\gamma(C)\geq 0 and thusoforder and thus

  \sum_{(a,b)}\sum_{C\leq D_{r(a,b)}^{(\alpha,b)}}6_{G}(C)\gamma(C)\geq 0.
 I

Example 16 The number 30 does not satisfy the prime condition. The following table
corresponds with  \beta_{PSL(3,31)}(C, D) such that  \beta_{PSL(3,31)}(C)\neq 0.
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Table 2:  \beta_{PSL(3,31)}(-, -)

Since  \beta(6)+\beta(30a)=0,  \beta(10b)+\beta(30d)>0,  \beta(15a)+\beta(30c)>0,  \beta(15b)+\beta(30b)>0,
 \beta(31a)+\beta(310)>0 , we get  g(PSL(3,31))\geq\beta(3)\gamma(3)+\beta(31b)\gamma(31b)+\beta(31c)\gamma(31c)+
 \beta(31d)\gamma(31d)+\beta(320)\gamma(320)+\beta(331)\gamma(331)\geq 0 . Thus  PSL(3,31) is a CCG.

5 Future work

It is not true that for an extension  1arrow Harrow Garrow Karrow 1 , if  H and  K are CCGs, then
 G is a CCG.

Proposition 17  A_{22} is not  a CCG.

Proof Let  x=(1,2,3,4,5,6,7)(8,9,10,11, 12) (13, 14, 15, 16)(17, 18, 19)  ( 20,  21)\in A_{22}
and  S=\{\{x^{3}\rangle, \langle x^{4}\rangle, \langle x^{5}\rangle, \langle x^{7}
\rangle\} . Let  \tilde{S} be the subset of  RCyc1_{1}(A_{22}) consisting of  C such
that some element of  S is subconjugate to  C . Then  \tilde{S}=S\cup\{\langle x\rangle, \langle x^{2}\rangle\}.

 \gamma(C)=0 otherwise. We see that  \beta_{G}(C)\gamma(C)=-61/1935360<0 . Therefore
Let  \gamma:RCyc1(G)arrow \mathbb{Q}\geq 0 by

 \gamma(C)_{\sum^{=1}}\dot{{\imath}}fC\in RCyc{\imath}_{1}(G)C
is conjugate to some element of  \tilde{S} and

 A_{22} is not a CCG. 1

Suppose that RCyc1  (A_{22})\supset\tilde{S} . There exists representation  A_{22}‐spaces  V and  W

such that  \dim V^{C}=\dim W^{C} for  C\in RCyc1(A_{22})\backslash \tilde{S} including  \dim V=\dim W , and
 \dim W^{C}-\dim V^{C} is constant positive number for  C\in\tilde{S} . By these condition, we have
 \dim W<\dim V (see (1)). Suppose that there is an isovariant map  f:Varrow W . Let  C

be a cyclic subgroup generated by  x , and  H a solvable subgroup of  N_{A_{22}}(C) of order 840
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generated by  x and (14, 16)(18, 19). Then  H normalizes  C and  g_{f}(C)=1 and  g_{f}(H)= \frac{1}{2},
which is a contradiction. Therefore, there is no isovariant map  Varrow W.

Thus we consider a new condition. For a map  \gamma:RCyc1_{1}(G)arrow \mathbb{Q}\geq 0 and a subgroup
 H of  G , we put

  \hat{\gamma}(H)=\sum_{C\in RCyc{\imath}_{1}(H)}\beta_{H}(C)\overline{\gamma}
(C) ,

where  \overline{\gamma}:Cyc1_{1}(G)arrow \mathbb{Q} is a class function which sends a cyclic subgroup  C of  G to  \gamma(C')
such that  C'\in RCyc1_{1}(G) is conjugate to  C in  G . If  H\in RCyc1_{1}(G) then  \hat{\gamma}(H)=\gamma(C) ,
and if  H_{1} and  H_{2} are conjugate in  G then  \hat{\gamma}(H_{1})=\hat{\gamma}(H_{2}) . Recall that  g_{f}(H_{2})-g_{f}(H_{1})=
 g_{f^{H_{1}}}(H_{2}/H_{1}) and if  H_{2}/H_{1} is a BUG then  g_{f^{H_{1}}}(H_{2}/H_{1})\geq 0 for an isovariant  G‐map
 f:Varrow W . A group  G is a SCG (subgroup condition group) if for an arbitrary map
 \gamma:RCyc1_{1}(G)arrow \mathbb{Q}\geq 0 such that  \hat{\gamma}(H_{1})\leq\hat{\gamma}(H_{2}) for subgroups  H_{1}\underline{\triangleleft}H_{2}\leq G with  H_{2}/H_{1}
a CCG,  \hat{\gamma}(G)\geq 0 . A SCG is a BUG.

Question 18 Is the group  A_{22}  a SCG
 l

?

A sufficient condition to be a BUG is that the minimizing value of the following linear
programming is zero.

Minimize   \sum_{V\in Irr_{1}(G)}x_{V}\dim V

subject to  \{\begin{array}{l}
-1\leq x_{V}\leq 1, V\in Irr_{1}(G)
\sum_{V\in Irr_{1}(G)}x_{V}(\dim V^{H_{1}}-\dim V^{H_{2}})\geq 0, H_{1}
\triangleleft H_{2}\leq G, H_{2}/H_{1} solvable
\end{array}
where  Irr_{1}(G) is the set of all irreducible nontrivial representation  G‐spaces.

Since there are many inequalities, we could not check whether the minimizing value is
zero or not for  A_{22} . We must reduce partial condition to compute.
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