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A sufficient condition for a finite group
to be a Borsuk-Ulam group

Toshio Sumi
Faculty of Arts and Science, Kyushu University

1 Introduction

In this paper, we always assume that a group means a finite group. A G-map f: X =Y
is said to be a G-isovariant map if G, = G, for any x € X, where G, is the isotropy
subgroup, that is, G, = {g € G | g-x = x}. We call a group G is a BUG (Borsuk-Ulam
group) [5] if

dimV — dim V¢ < dim W — dim W¢
for any isovariant G-map f: V — W between G-representation spaces V' and W.

Let C5 be a cyclic group of order 2 and let f: V' — W be an isovariant Co-map between
Cs-representation spaces V' and W. Fixing a G-invariant inner product, f induces a free
Co-map S(f|y_ye): S(V — V%) — S(W — W) between Co-representation spheres,
where V — V¢ is an orthogonal vector subspace of V2 in V. By Borsuk-Ulam the-
orem, this map gives dim S(V — V) < dim S(W — W). Since dim S(V — V%) =
dimV —dimV° — 1, Cy is a BUG. For a cyclic group C, of prime order p, Kobayashi
[2] showed that dim S(V) < dim S(W) for a free Cy-map S(f'): S(V) — S(W) between
representation spheres and thus C), is a BUG.

Let G be a group extension of K by H: 1 + H -G — K — 1l and f: V — W be an
isovariant G-map. Since the equality

dim W — dim W¢ —(dimV — dim V)
= (dim W — dim W# — (dim V — dim V7))
+ (dim W — dim W¢ — (dim V# — dim V%))
holds, if K and H are BUGs then G is a BUG [5]. Therefore any solvable group is a
BUG. Then it is natural to ask whether a group is a BUG or not.

Wasserman [5] proposed a prime condition which implies a sufficient condition for a
group to be a BUG. A positive integer n satisfies the prime condition if

pri ot <

where py, ..., p, are primes and ey, . .., e, are positive integers such that n = p{*p5? - - - per.
A group G satisfies the prime condition if the order of any cyclic subgroup of G satisfies
the prime condition.
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Theorem 1 ([5]) If a group G satisfies the prime condition, then G is a BUG.

Let Cycl(G) be the set of all cyclic subgroups of G. Nagasaki and Ushitaki [3] proposed
a Mobius condition: A group G satisfies the Mdbius condition if

> u(||g||)20

DeCycl(G)
c<D

for any cyclic subgroup C of G, where u: N — {0, £1} is the Mobius function, that is,

1 n=1
p(n) =40 if p?|n for some prime p
(—1)" n =pips---p, for distinct primes py, ps, ..., Dr-

Theorem 2 ([3]) If a group G satisfies the Mébius condition, then G is a BUG.

Since if K and H are BUGs then a group extension of H by K is a BUG, if we obtain
that every simple group is a BUG, then any group is a BUG. By the above theorem,
Nagasaki and Ushitaki showed that projective linear groups PSL(2, ¢) are BUGs. In this
paper, we give a sufficient condition for a group to be a BUG and apply projective linear
groups PSL(3, ¢) and alternating groups A,,.

2 A sufficient condition

Let V and W be G-representation spaces and let f: V' — W be an isovariant G-map. For
a subgroup H of G, let

gr(H) = (dim W — dim W) — (dim V — dim V).
Note that If G is a cyclic group then g;(G) > 0.

Proposition 3 Let H; and Hsy be a subgroups of G with Hy < Hy and f an isovariant
G-map between representation spaces.

97(Hz) — g¢(Hy) = gpm (H2/Hy)
holds. In particular, if Ho/Hy is a BUG, g¢(H2) > gs(Hy) holds.

Let S(G) denote the set of all subgroups of G. It is made into a poset by defining
H < K in §(G) if H is a subgroup of K. Let Cycl(G) be the full subposet of S(G) which
contains all cyclic subgroups of G.

We put
bh ¢c<D
u(c,p) = Hielh O =D
0, otherwise.

Nagasaki and Ushitaki [3] showed that PSL(2, ¢) satisfies the Mbius condition by using
the following equation.
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Theorem 4 ([3]) Let f: V — W be a G-map between representation spaces.

Glgr(G) = > > wC, D) | IClgr(C)

CeCycl(G) \ DeCycl(G)
holds. If G satisfies the Mdbius condition then G is a BUG.

Let RCycl(G) be the set of representatives of conjugacy classes of all cyclic subgroups
of G and let RCycl,(G) be the set of representatives of conjugacy classes of all nontrivial
cyclic subgroups of G. Recall that g;({e}) = 0.

Let

(12h, ()< (D
e = [ € =)
0, otherwise.
where (C') denotes the conjugacy class of C.
Lemma 5 For C € RCycl(G), Y. w(C,D)= 3, l‘xc((g;“ﬂ(c, D).
DeCyel(Q) DEeRCycl(@) ¢

Proof Let C < D € Cycl(Cg(C)), S ={F € Cycl(G) | (D) = (E),E > C} and let
f: Ne(C) — S be amap which sends g to g7'Dg. Let E € S. Then E = g~!Dg for some
g € G. C and g~'Cyg is a subgroup of E with same index. Since for any k > 0 dividing
|D|, a subgroup of order k of the cyclic group D is unique, we see that C' = g71Cyg and

thus g € Ng(C) and f(g) = E. Therefore, the map f is surjective. Thus, #S = [N (O)]

[Ne(D)|
If Dy and D, are conjugate, then fi(C, D) = fi(C, Dy). Therefore we see that
Y. weDy= > > uCE)
DeCydl(G) DERCyel(@) EcOxel(G)
= > Y wcD
DERCyel(G) E€S
|Ne(C)]
-y WOl
DERCycl(G) [Na(D)]
1
a Clj(C. D)
fi(C,
C,D)=———~—~
7D = TN )
and
Ba(C)= > Ba(C,D).
DERCycl(G)
We abbreviate to write g;(G) as ¢g(G) if f is clear.
Proposition 6
9@ =Y BaC)g(C). (1)

CeRCycl(G)



Proof By Theorem 4 and Lemma 5, we see that

9(G)

DeCycl(G)

%‘ = < > u(C, D)) IClg(C)
CeCycl(G)

S > 2 M(CCD)> 1C7lg(C")

CeRCycl(G) c’ecycl(@) \ DeCycl(G)
(©)=(c")

Y el X M(C:D)>9(C)

CeRCycl(G) DeCycl(G)

_ IC] ING(C)| ~

= > NG (O] > |N(G;(D)\N(C7 D)) 9(C)
CeRCycl(G) DeRCycl(G)

ol -~
( ‘N‘G(ll)“/l'(ca D)) g(C).
CERCycl(@) \ DERCycl(@)

1
We write 3(C) = Sg(C) for simple. If G is a cyclic group, then
C|. 0, C#£G
SO = Y G(eD) = ©)
DeRCycl(G) L, =G
Lemma 7 m <1.
CeRCycl(@) ¢

Proof By the class equation for G, we see that
1 1 1
D D UNE e
(@) |Ca(a)] CERCydl(@) Ce(C)] CERCyel(@) [Ne(O)|
1
Lemma 8 |G| = > w(C D)C] and >,  B(C)=1. If G is nontrivial then
€, DECyel(G) CERCycl(G)

B8(C) > 0.

CeRCycly (G)
Proof Let u: Cycl(G) — Q be a map defined as

_ JlgenCl C #{e}
wC) = {1 C ={e}

and put v(G) = > w(D). Then v(G) = |G|. By the M&buis inversion formula, we
DECycl(G)

u(D)= Y wlDl/ICe(C)= Y u(C Dyw(C)

C<DeCycl(G) CeCycl(GQ)

see
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and then

Gl =v(G)= Y wCD)IC]

C,DeCycl(G)

Therefore, we see

-
I
‘)—‘

Q

> ICI( > u(CvD))

CeCycl(G) DeCycl(G)

2. 2. IC’|< 2. u(CCD))

I
‘)—‘

Q

! CeRCycl(G) ¢’eCyel(G) DeCycl(G)
(©)=(c")

= X ey 2 MCD)

Na(C
CERCycl(G) DeCycl(G)

6] INe(©)]
Moo Ve AC: D)
CERCycl(G) DERCycl(G)

B(C, D)
CERCycl(G) DERCycl(G)

>, pO).

CERCycl(G)

If G is nontrivial then, by Lemma 7, we see

(D)) 1
B({e}) = Z W< Z Wﬁl

DeRCycl(G) DeRCycl(G)

and thus > B(C)>0.1
CERCycl, (G)

Now we consider > Be(C)y(C) for amap v: RCycl, (G) — Q>0. We note that
CeRCycl; (G)
G satisfies the Mobius condition if and only if >~ Bg(C)v(C) > 0 for an arbitrary
C€eRCycl, (G)
map 7v: RCycl;(G) — Qs¢. By (2), we see

Proposition 9 A cyclic group satisfies the Mdébius condition.

We recall Proposition 3. For an isovariant G-map f and subgroups C' < D of G such
that D/C is a BUG, ¢;(C) < gs(D). We say G is a CCG (cyclic condition group),
if for an arbitrary map ~v: RCycl,(G) — Qs¢ such that v(C) < ~(D) if (C) < (D),

3 Ba(C)y(C) = 0. A CCG is a BUG.
CERCydl, (G)
Proposition 10 A group satisfying the prime condition is a CCG.

Proof Let v: RCycl,(G) — Qs be a map such that v(C) < ~v(D) if (C) < (D). Since

doooBOowe) = > > BC D),

CeRCycl, (Q) DeRCycly (G) CeRCycly (G)



we show that > B(C,D)y(C) > 0 for each D € RCycly(G). For an positive

CeRCycly (G)
integer n, let 7(n) be the set of all primes dividing n. Put r = #n(|D|), the number of
elements of 7(|D|), and let Dy be the subgroup of D with index [ p. Since

ven(D)
(2:) (r—2s) = (251 1) (25 +1),

we see that

> B(C, D)

CeRCycl, (G)

= > pCDn)

CERCycly (G)
(Dg)<(C)<(D)

[(r=1)/2]
> | Y sEpnm+ Y BEDAE)
s=0 E€RCycly (G) FERCycly (G)
(Dg)<(E)<(D) (Dg)<(F)<(D)
|=(|D|/|E|)|=2s |=(|D|/|F|)|=2s+1
[(r=1)/2] 1
= E.D)v(E F.D)~(F
D LR R S (Al
s=0 E€RCycly (G) FERCycly (G)
(D)< (E)<(D) (D)< (F)<(E)
|7 (|D|/|E|)|=2s |7 (|D|/|F])|=2s+1
[(r=1)/2]
|E| 1 |F|
- 2L _(E) - ()
2o 2 AP w2 e
(Dg)<(E)<(D) (Dg)<(F)<(E)
|7(|D|/|E|)|=2s |w(ID|/|F|)|=2s+1
[(r=1)/2]
|E| 1 |F|
> ——7(E) — ————(F)
2 2 o n 2 N
(Dg)<(E)<(D) (D)< (F)<(E)
= (| DI/IB]) =25 (DI F =25 +1

[(r—1)/2]
1 |F| |E|
> 1-— = B
= > %5 + 1 > B \NG(D)|/( )
5=0 EE€RCycly (G) FERCycly (Q)
(Dg)<(E)<(D) (F)<(E)
|=(ID|/|E|)|=2s |[=(|Bl/|F])|=1
[(r—1)/2] 1 |E|
> - 3 2] < a(E)
z:: E RCZ; fel Z p ‘NG(D)|
s=0  BeRCyely(G) per(E])

(Do) <(E)<(D)
[=(|DI/1E])|=2s
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and thus if G satisfies the prime condition, then it is nonnegative. I

3 Through linear programming

Let RCycl{ (G) and RCycl; (@) be the subsets of RCycl, (G) consisting of C' with 8¢(C) >
0 and S5(C) < 0, respectively. We consider a map

such that fg(C) = > P(C, D) for C' € RCycl; (G) and if C is not subconjugate
DERCyclf (G)
to D then ¢(C, D) = 0. Then

9(G) = > BalC)g(0)
CeRCycl, (G)
= > Be(Cg(C)+ X Ba(C)g(C)
CERCyclf (Q) CERCycl] (G)
= > BeDgD)+ X ( > w(C,D)> 9(C)
DeRCyclf (G) CERCycl] (G) \DeRCycl (G)
> > (ﬂc(DH > w(C,D)> 9(D).
DeRCycl{ (G) CERCycl; (G)

By Lemma 8, > BelC) + > Ba(C) > 0. Thus we may expect the exis-
CERCyclf (G) CERCycl; (G)
tence of 1. We determine whether there exist ¢ such that 5(D)+ > »(C,D) >0
CEeRCycl; (G)
for D € RCycl{ (G) by linear programming.

»(C,D) <0
¥(C, D) = 0if (C) £ (D)
Y. (0, D) < Ba(C) for C € RCycl; (G)

DeRCyclf (G)
> %(C,D) > —fa(D) for D € RCyclf (G)
CEeRCycl] (G)

We can check the existence of i for the following groups by using the software GAP
[1]:
Theorem 11 (1) Alternating groups A,, 5 < n < 11 satisfy the prime condition.
(2) A,, 12 <n <21 are CCGs.

(3) Symmetric groups S,, 5 < n <9 satisfy the prime condition.



(4) S,, 10 <n <22 are CCGs.
(5) All sporadic groups are CCGs.
(6) Automorphism groups of all sporadic groups are CCGs.

4 Projective special linear group

If any simple groups are BUGs, then every group is a BUG. It is important to study
simple groups. Projective special linear groups PSL(3, ¢) are simple groups.

Lemma 12 Let C be a cyclic subgroup of a group G. Suppose that there is a unique
mazimal cyclic subgroup D of G with C < D. Then Ng(C) = Ng(D), Ba(C) = 0 and

B6(D) = ey > 0-

Proof Since C' < D, for g € Ng(D), g~'Cyg is a subgroup of the cyclic group D with
index |D/C| and thus g~'Cg = C. Therefore, Ng(D) < Ng(C). If g € Ng(C) \ Ng(D)
exists, then C' < g7'Dg # D. This is contradiction. Therefore the equality Ng(C) =
Ng(D> holds.

We see that
ﬁG(C) = Z \NLC(YBE)\/l(Ca E) = \NLD(L))\ Z %ﬂ(c7 E)
EE€RCycl(G) E€RCycl(D)
D
= ot (€)= 0

by (2), and clearly (D) = %. 1

Let p be a prime and ¢ a power of p. Let C,_1, C,, and C,1; be cyclic subgroups of
SL(2,q) of order ¢ — 1, p, and ¢ + 1 respectively, and let 7: SL(2,¢q) — G be a natural
projection. Then 7 (Cyy;) has order (¢ £ 1)/ ged(¢ — 1,2).

Proposition 13 ¢(PSL(2,q)) = 39((Cy-1)) + 39((Cyr1)) + mg(@)).
Proof We may put
RCycl, (PSL(2,¢)) ={H | {1} < H< C,,r =p,q £ 1}.

The cyclic groups n(C,.), 7 = p,q £ 1 are maximal and the orders are p, (¢ £ 1)/d, respec-
tively, which are coprime each other. Therefore, any nontrivial cyclic subgroup of G has
a unique maximal cyclic subgroup of G. Thus by Lemma 12, we see

J= 3 |'CT')|9<0T>.

refqtlp) NPSL(?,q) (C'r

Nomnsolvable groups PSL(2,q), SL(2,q), PGL(2,q), and GL(2,q) are all BUGs (see
[3]). Furthermore, a group which does not have a simple group except PSL(2,¢) as a
subquotient group is a BUG.
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Example 14 The simple group PSL(3,11) does not satisfy the prime condition, since
it has an element of order 120. We confuse order (with type) with the cyclic subgroup
generated by the corresponding element. For example, PSL(3,11) has a unique cyclic
group of order 110 up to conjugate, and two cyclic subgroups of order 5 up to conjugate,
denoted by 5a and 5b, whose are not conjugate. We have

RCyclf (PSL(3,11)) = {10, 10c, 10d, 11a, 110, 120, 133},

RCyel; (PSL(3,11)) = {2, 5a, 5, 10a, 11b}.
Since 5(133) + 8(11b) = 587/1815 > 0, 5(110) + B(5b) + 5(10a) = 0, and 3(10b) + 5(2) +
B(5a) = 0, we see that

g(PSL(3,11)) > B(10c)y(10c) + 8(10d)y(10d) + 5(11a)y(11a)
+6(120)7(120) + 2L~(133) > 0.

The group PSL(3,11) is a CCG. See the following table corresponds with Bps,3,11)(—, —)-
The first columns and first rows are all cyclic subgroups C' and D of RCycl, (PSL(3,11))
respectively, and the last columns are the values ﬂpSL(g’ll)(—).

C\D 1 2 3 4 5a 5b 6 7 8 10a
1 | 1/212427600 —1/13200 —1/240 0 —1/200 —1/13200 1/240 —1/399 0 1/13200
2 0 1/6600 0 —1/120 0 0 —1/120 0 0 —1/6600
3 0 0 1/80 0 0 0 —~1/80 0 0 0
4 0 0 0 1/60 0 0 0 0 —1/60 0
5a 0 0 0 0 1/40 0 0 0 0 0
5b 0 0 0 0 0 1/2640 0 0 0 —1/2640
6 0 0 0 0 0 0 1/40 0 0 0
7 0 0 0 0 0 0 0 1/57 0 0
8 0 0 0 0 0 0 0 0 1/30 0

10a 0 0 0 0 0 0 0 0 0 1/1320
10b 0 0 0 0 0 0 0 0 0 0

C\D | 10b 10¢ 10d 1la 116 12 15 19 20 22
1 1/100 1/100  1/200 —1/1210 —1/133100 0 1/240 —1/399 0 1/1100
2 | -1/50 —1/50 —1/100 0 0 1/120 0 0 1/120  —1/550
3 0 0 0 0 0 0 —~1/80 0 0 0
4 0 0 0 0 0 —-1/60 0 0 —1/60 0
5a | —1/20 0 —1/40 0 0 0 0 0 0 0
5b 0 —1/20 0 0 0 0 —1/48 0 0 0
6 0 0 0 0 0 —~1/40 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0

10a 0 0 0 0 0 0 0 0 —1/24 0

106 | 1/10 0 0 0 0 0 0 0 0 0

10¢ 0 1/10 0 0 0 0 0 0 0 0

10d 0 0 1/20 0 0 0 0 0 0 0

1la 0 0 0 1/110 0 0 0 0 0 0

11b 0 0 0 0 1/12100 0 0 0 0 —1/100
12 0 0 0 0 0 1/20 0 0 0 0
15 0 0 0 0 0 0 1/16 0 0 0
19 0 0 0 0 0 0 0 1/21 0 0
20 0 0 0 0 0 0 0 0 1/12 0
22 0 0 0 0 0 0 0 0 0 1/50
24 0 0 0 0 0 0 0 0 0 0




C\D | 24 30 40 55 60 110 120 133 B(C)
1 0 —1/240 0 1/1100 0 ~1/1100 0 1/399 | 127/7260
2 0 1/120 0 0 —1/120  1/550 0 0 —1/20
3 0 1/80 0 0 0 0 0 0 0
4 1/60 0 1/60 0 1/60 0 —~1/60 0 0
5a 0 0 0 0 0 0 0 0 —~1/20
5b 0 1/48 0 —1/220 0 1/220 0 0 —1/20
6 0 —1/40 0 0 1/40 0 0 0 0
7 0 0 0 0 0 0 0 —1/57 0
8 | —1/30 0 —1/30 0 0 0 1/30 0 0

10a 0 —1/24 0 0 1/24  —1/110 0 0 —~1/20

10 0 0 0 0 0 0 0 0 1/10

10c 0 0 0 0 0 0 0 0 1/10

10d 0 0 0 0 0 0 0 0 1/20

1la 0 0 0 0 0 0 0 0 1/110
11b 0 0 0 —~1/100 0 1/100 0 0 —6/605
12 | —1/20 0 0 0 —-1/20 0 1/20 0 0
15 0 —1/16 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 —1/21 0
20 0 0 —1/12 0 —1/12 0 1/12 0 0
22 0 0 0 0 0 —~1/50 0 0 0
24 1/10 0 0 0 0 0 —1/10 0 0
30 0 1/8 0 0 —1/8 0 0 0 0
40 0 0 1/6 0 0 0 ~1/6 0 0
55 0 0 0 1/20 0 —1/20 0 0 0
60 0 0 0 0 1/4 0 —1/4 0 0

110 0 0 0 0 0 1/10 0 0 1/10
120 0 0 0 0 0 0 1/2 0 1/2
133 0 0 0 0 0 0 0 1/3 1/3

Table 1: ﬂPSL(a’,ll)(_v _)

The group SL(3, q) is of order ¢*(¢g—1)*(¢+1)(q

1 d= gcd(3 q—

to one of the followings: C,, =

a<b<r (rab) =1), Csy

o
Cy, where B is conjugate to (

T

conjugate to 794

7a

q—1

(

{

p 1
p
B
o

>7 Cdp(C)

= (w

(ab) _ <

24+q+1). Put ¢ = p¥, G=S (
N, pr=1Lr=q—0,7"=r/d s=q+0,s =s/ged(3,
t'=t/d, 0° =p, ' =1, w = pla=V/4 A maximal cyclic subgroup of SL

p*

q), 0=
Jt=qg*+dq+1,
3,q) is conjugate

Y (0<a<v,

1

in GL(2,¢?) and C; is generated by an element

in GL(3,¢®) [4, Table 1a.

Let ¢: SL(3,q) — PSL(3,¢)
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be a canonical projection and put D, = ¥(Cp), Dit(labz) = w(Cr(a’b)), D,y = ¥(C,y),
DY) = w(Céz)), Dy = ¢(C;), where r(a,b) =r/d if d =3 and ra/d =rb/d = —r(a+b)/d
modulo r, and r(a,b) = r otherwise. We may assume that RCycl(G) consists of subgroups
of the above cyclic subgroups.

Proposition 15 If r satisfies the prime condition, then PSL(3,q) is a CCG.

Proof The order of a maximal cyclic subgroup is r, v/, p, r's, pr’, or t'. We see that

1's) = (pr's,t') = 1. For C' € RCycl,(G), if DY <C DY« 0 or € < Dy, then a
(p.1's) = (pr's, yel (G), if Dy , D, ,
maximal cyclic subgroup containing C' is unique. We see that

> Be(0) Zﬂe (DINY(DY) + Ba(De)¥(De) + Be(Dyrs)Y(Dyrs)

CeRCycl, (G)
+6G( pr + Z Z 5G

(@)
(@b) c<pir

Note that Sg(Dpw) = 1/7, Ba(Dsr) = 1/2, Ba(Dy) = 1/3 and Bg(D,) = —s/p*r, where
D, is a subgroup of D, of order p. Then Bg(Dy) + Ba(D,) > 0 and

2 D22 > fel)

CERCycll(G) (@h) c<p@?)

By the proof of Proposition 10, if r satisfies the prime condition, then for any D €
RCycl, (G) of order 7, 3~ fc(C, D)y(C) > 0 and thus > > Ba(C)y(C)>0.1
C

a,b (a,b)
(@b) c<pil

Example 16 The number 30 does not satisfy the prime condition. The following table
corresponds with Spgy,(s,31)(C. D) such that fpgr,s,31)(C) # 0.

c\D |1 2 3 4 5b 6 10a 100
3 |0 0 1/600 0 0 —1/200 0 0
6 [0 o 0 0 0 1/100 0 0
06 [0 0 0 0 0 0 0 1/29760
15a |0 0 0 0 0 0 0 0
C\D | 10c 10d  15a 15b 20 30a 300 30c 30d 3la 31b
3 0 0 —1/200 —1/200 0 1/200 1/100 1/100  1/200 0 0
6 0 0 0 0 0 —1/100 —1/50 —1/50 —1/100 0 0
106 | 0 0 0 0 —1/64 0 0 0 —1/60 0 0
15a | 0 0 1/40 0 0 —1/40 0 —1/20 0 0 0
156 | 0 0 0 1/40 0 0 ~1/20 0 —1/40 0 0
30a | 0 0 0 0 0 1/20 0 0 0 0 0
306 | 0 0 0 0 0 0 1/10 0 0 0 0
30c | 0 0 0 0 0 0 0 1/10 0 0 0
30d | 0 0 0 0 0 0 0 0 1/20 0 0
3la | 0 0 0 0 0 0 0 0 0 1/288300 0
31b | 0 0 0 0 0 0 0 0 0 0 1/930
3lc | 0 0 0 0 0 0 0 0 0 0 0




C\D | 3lc 31d 62 155 310 320 331 B(C)
3 0 0 0 0 0 0 0 1/60
6 0 0 0 0 0 0 0 —~1/20

10b 0 0 0 0 ~1/930 0 0 ~1/30
15a 0 0 0 0 0 0 0 —~1/20
15b 0 0 0 0 0 0 0 —1/20
30a 0 0 0 0 0 0 0 1/20
300 0 0 0 0 0 0 0 1/10
30c 0 0 0 0 0 0 0 1/10
30d 0 0 0 0 0 0 0 1/20
3la 0 0 ~1/300 —1/300 1/300 0O 0 | —16/4805
31b 0 0 0 0 0 0 0 1/930

3lc | 1/930 0 0 0 0 0 0 1/930

31d 0 1/930 0 0 0 0 0 1/930

310 0 0 0 0 1/30 0 0 1/30

320 0 0 0 0 0 /2 0 1/2

331 0 0 0 0 0 0o 1/3 1/3

Table 2: Bpsr,sn)(—, —)

Since 5(6)+ 5(30a) = 0, B(106)+A(30d) > 0, B(15a)+B(30¢) > 0, B(15b)+B(30b) > 0,
B(31a) + 5(310) > 0, we get g(PSL(3,31)) > B(3)7(3) + B(31b)v(31b) + 5(31c)y(31c) +
B(31d)7(31d) + 5(320)7(320) + B(331)7(331) > 0. Thus PSL(3,31) is a CCG.

5 Future work

It is not true that for an extension 1 - H - G — K — 1, if H and K are CCGs, then
G is a CCG.

Proposition 17 Ay is not a CCG.

Proof Let x = (1,2,3,4.5,6,7)(8,9,10,11,12)(13, 14, 15, 16)(17, 18,19)(20,21) € Ay
and S = {(2?), (z*), (2°), (z7)}. Let S be the subset of RCycl,(Az) consisting of C' such
that some element of S is subconjugate to C. Then S = SU {(z), (z*)}.

n 1 2 3 4 5 7 sum
8 (<I”>) 101\ _ 1 |\ __13 | __7 | _ 137 | __ 61
Az 9% 288 334 15120 3456 92160 1935360

Let v: RCycl(G) — Qsp by 7(C) = 1 if C is conjugate to some element of S and
~(C) = 0 otherwise. We see that S Ba(C)y(C) = —61/1935360 < 0. Therefore
CeRCycl, (G)
Ay is not a CCG. I

Suppose that RCycl(Ag) D S. There exists representation Agy-spaces V' and W
such that dim V¢ = dimW¢ for C' € RCycl(As) \ S including dim V' = dim W, and
dimW¢ — dim V¢ is constant positive number for C' € S. By these condition, we have
dimW < dimV (see (1)). Suppose that there is an isovariant map f: V' — W. Let C
be a cyclic subgroup generated by z, and H a solvable subgroup of N4, (C) of order 840
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generated by x and (14, 16)(18,19). Then H normalizes C and g;(C) =1 and g;(H) =
which is a contradiction. Therefore, there is no isovariant map V" — W.
Thus we consider a new condition. For a map v: RCycl;(G) — Qs and a subgroup

H of G, we put
FH) =Y. Bu(C)(0),

CERCycl, (H)

1
29

where 7: Cycl, (G) — Q is a class function which sends a cyclic subgroup C' of G to v(C")
such that C’ € RCycl,(G) is conjugate to C' in G. If H € RCycl,(G) then 4(H) = ~(C),
and if Hy and H, are conjugate in G then 4(H;) = 4(H,). Recall that g;(Hs) — gs(H1) =
gym (Hy/Hy) and if Hy/H, is a BUG then g;m (Hy/Hy) > 0 for an isovariant G-map
f:V — W. A group G is a SCG (subgroup condition group) if for an arbitrary map
~v: RCycl, (G) — Qx¢ such that 4(H;) < 4(Ha) for subgroups H; < Hy < G with Hy/H,
a CCG, 4(G) > 0. A SCG is a BUG.

Question 18 Is the group Ay a SCG?

A sufficient condition to be a BUG is that the minimizing value of the following linear
programming is zero.

Minimize Y zydimV
Velrr (G)
—1<zy <1, Vehn(G)

S ap(dimVHr — dim VH#2) >0, H, < Hy, < G, Hy/H, solvable
Vehr (G)

subject to

where Irry(G) is the set of all irreducible nontrivial representation G-spaces.
Since there are many inequalities, we could not check whether the minimizing value is
zero or not for Ass. We must reduce partial condition to compute.
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