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1. Introduction: The S‐transform

The traditional spectrum analysis, built on the theory of Fourier anal‐
ysis, relies on the assumption that signals are stationary; that is, their
statistical properties are time invariant. In reality, signals generated
from real‐world applications are finite‐duration and non‐stationary.
Time‐frequency analysis offers a variety of techniques that map a one‐
dimensional temporal signal into a function of both time and frequency.
Such a function is called a tiıne‐frequency representation or spectruın
describing the temporal variation of frequency content within the sig‐
nal. Tilne‐frequency analysis techniques are effective in detecting local
signal structure and processing non‐stationary signals. It have been ap‐
plied successfully in a wide range of fields including geophysics, speech
recognition_{i} music analysis, oceanology and bio‐medicine. Comprehen‐
sive reviews on the related theory and applications can be found in
[1, 2, 3].

The Stockwell transform or the  S transfor1n (ST), proposed by
Stockwell in 1996 [4], is a linear time‐frequency analysis method. Let
 \psi\in L^{1}(\mathbb{R})\cap L^{2}(\mathbb{R}) be such that   \int_{-\infty}^{\infty}\psi(t)dt=1 , the ST of a signal
 x(t) in  L^{2}(\mathbb{R}) with respect to the window function  \psi(t) is defined by

 ST_{x}(t, f)=|f| \int_{-\infty}^{\infty}x(\tau)\overline{\psi(|f|(\tau-t))}e^{-
j2\pi\tau f}d\tau,  t\in \mathbb{R} , (1.1)
where  f\in \mathbb{R}/\{0\} . At zero frequency  f=0 , the ST is equal to the
average of the signal, i. e.,

  ST_{x}(t, 0)= \int_{-\infty}^{\infty}x(\tau)d\tau . (1.2)
The ST can also be defined in the frequency domain, i. e.,

  ST_{x}(t, f)= \int_{-\infty}^{\infty}X(\alpha+f)\overline{\Psi(\frac{\alpha}
{|f|})}e^{j2\pi\alpha t}d\alpha , (1.3)
where  t\in \mathbb{R} and  f\in \mathbb{R}/\{0\}.  \Psi(f) are the Fourier spectrum of the
signal  x and the window function  \psi , respectively. The discrete analog
of Equation (1.3) is often used to colnpute the ST by taking advantage
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of the efficiency of the fast Fourier transform (FFT) algorithm. The
original Stockwell transform was proposed with the Gaussian window,

  \psi(t)=\frac{1}{\sqrt{2\pi}}e^{t^{2}/2} The window width is proportional to the inverse of

the frequency variable. There are many functions eligible to be a 10‐
calizing window function.The choice of the Gaussian window function
is due to the fact that the joint time and frequency resolution reaches
the lower bound of the uncertainty principle [2].

The ST was first derived as the “phase correction” of the con‐
tinuous wavelet transform [4, 5] and thus it inherits the multi‐scale
resolution feature from the wavelet transform. In particular, the ST
and the continuous Morlet wavelet is apart by a frequency dependent
phase correction [4, 6, 7, 8]. But unlike the wavelet transform, the
ST has the absolutely referenced phase information, i. e., the phase
information at any time given by the ST is always referenced to the
Fourier phase of the signal at zero time. This absolutely referenced
phase ensures that the time average of the ST spectrum returns the
Fourier spectrum of the signal. Thus the ST has a closed relationship
to the well‐understood Fourier spectrum. The ST can also be inter‐
preted as a ınodification of the short‐time Fourier transform with a
frequency‐dependent window width. Such interpretation makes the ST
a well‐received tool for signal processing. Its underlying mathematics
has been rigorously investigated in papers [9, 10, 7, 11].

Similar to the two‐dimensional Fourier transform (  2D FT), an
extension of the ST to a two‐ditnensional signal is simply a product
of two one‐dimensional  S‐transforms (i.e., one along each dimension)
[12]. However such a localizing window is rotational‐sensitive and hence
generates different weights for different spatial directions. This is not
desirable when rotational difference is not considered. Zhou [13] then
proposed the polar form of the  2D ST that is rotationally invariant
and used it to differentiate texture in geophysics. The PST provides
space‐frequency information with a resolution inversely proportionally
to the spatial inverse of frequencies. In addition, the PST is rotation‐
invariant. That is, rotating a local region of an image does not affect
its local spectrum. The PST has been successfully used to establish
ilnage biolnakers for multiple sclerosis and brain tulnor [14, 15, 16].

2. On the Use of the  S‐Transforms

As a hybrid of short‐tilne Fourier transform and wavelet transform,
the ST therefore has quickly gained popularity in the signal processing
colnlnunity. Howerver, when using the conventional ST for practical
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applications there are still solne challenges in terms of the clarify of
the spectrum and computational intensity.

Since the precision of the joint time‐frequency resolution given
by the ST is limited by the uncertainty principle, the inverse fre‐
quency window width may not separate different signal components
well especially when they are spread over a wide range of frequencies.
Pinnegar[17] introduced variations of the ST with arbitrary and vary‐
ing shape in order to determine the  P‐wave arrival time in a noisy
seismogram. Guo et al. [18] proposed a modified version of the ST
by multiplying the  S‐spectrum by a parametrized dilatation factor in
such a way that low frequencies are amplified and high frequencies
reduced. Sejdič et al. [19] considered the generalized ST (GST) with a
choice of the parametrized window width given as   \frac{1}{|f|^{q}} while Pei and

Wang [20] proposed a version of the GST with arbitrary linear scal‐
ing window width   \frac{p}{|f|} . In their approaches, the concentration measure
has been applied on the normalization form of the GST‐spectrogram
instead of energy distributions. Since the GST‐spectrogram is not a
 L^{2}(\mathbb{R}) function, such a normalization will generate some bias in the
representation. Combining the GSTs of [19] and [20] and implement‐
ing an auto‐optimization selection of the parameters  p and  q to min‐
iınize the energy concentration of the GST, Liu [21] developed adap‐
tive  S‐transforms (AST) to maximize the separation of different fre‐
quency components for studying the brain functions using magnetoen‐
cephalography (MEG) signals.

It is important to obtain well separated multiple components of
the signal in order to accurately estimate their frequencies related to
physiological activities or natural vibrations of objects. To further im‐
prove the readability of the ST spectrogram, Liu and Zhu [22] in‐
troduced the reassigned spectrogram of Stockwell transform by re‐
mapping the surface of the spectrogram of Stockwell transform. The
reassigned spectrogram of Stockwell transform therefore has signal en‐
ergy highly concentrated at the instantaneous frequency/group delay
curves and greatly increases the resolution and readability of the time‐
frequency structure of the underlying signal.

One major limitation of using the ST for practical applications
is its intensive computation. For a signal of length  N , the full ST
requires to compute  N^{2} ST coefficients and the total computational
complexity is  O(N^{3}) . This limits its use for large size or higher dimen‐
sional signals. This problem was initially addressed by Brown et al.
[23] colnbining parallel and vector computations to provide a 25‐fold
reduction in computation time. The  S‐spectrum contains high alnount
of information redundancy. To improve its computational efficiency,
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the discrete orthonormal Stockwell transforlns (DOST) are proposed
[24, 25, 26]. The DOST is based on a set of orthonormal basis func‐
tions that localize the Fourier spectrum of the signal. It samples  N ST
coefficients resulting a time‐frequency representation with zero infor‐
lnation redundancy while retaining the advantageous phase properties
of the ST. The fast DOST algorithms developed by [25, 26] reduce
the computational complexity from  O(N^{2}\cdot\log(N)) to  O(N\cdot\log(N)) .
The fast  2D DOSTs developed by [26, 29] make it possible to analyze
image texture and compress images using the  2D ST. The develop‐
ment of the DOST releases the potential of the ST for more practical
applications. However, due to its non‐redundancy, the DOST provides
a rather coarse time‐frequency representation with its frequency reso‐
lution proportionally scaled to the logarithm of the frequency. Such a
representation may not be always easy to interpret and be sufficient
to reveal all the details within a specific signal. Certain amount of in‐
formation redundancy producing a finer representation is sometilnes
preferable when analyzing a signal. More versatile algorithms [27, 28]
have been developed using the framework of frames.

The ST has being successfully used in a wide range of applica‐
tions including geophysical signal analysis [30, 13, 31, 32], power sys‐
tem analysis [33, 34, 35], itnage colnpression [39], bio‐medical signal
processing [36, 21, 22, 37, 16, 38], and ocean wave analysis [40]. Note
that due to the large body of work related to the ST, this overview
does not include all the relevant references.
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