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Analysis of non-stationary Navier-Stokes equations
approximated by the pressure stabilization method

Takayuki Kubo*

Department of Mathematics, University of Tsukuba

1 Introduction

The mathematical description of fluid flow is given by the Navier-Stokes equations:

Ou—Au+ (u-Viu+Vr=f V-u=0 t e (0,00),z €9,
uw(0,2) =a x € Q, (NS)
u(t,r) =0 x € 09,
where the fluid vector fields v = u(t,z) = (u1(t,x),...,u,(t,x)) and the pressure 7 =

7(t, ) are unknown function, the external force f = f(¢, ) is a given vector function, the
initial data a is a given solenoidal function and €2 is some bounded domain ( see section
2 for detail). It is well-known that analysis of Navier-Stokes equations (NS) is very
important in view of both mathematical analysis and engineering, however the problem
concerning existence and regularity of solution to (NS) is unsolved for a long time. One
of the difficulty of analysis for (NS) is the pressure term V7 and incompressible condition
V.u=0.

In order to overcome this difficulty, we often use Helmholtz decomposition. The
Helmholtz decomposition means that for 1 < p < oo, the following relation holds:

Lp(Q)" = Lp () © Gp(),

where L, ,(Q) = {u|u; € C°(Q),V-u= O}”'”LP and G,(Q) = {Vm € L,()" | 7 €
L,10c(€)}. We remark that whether the Helmholtz decomposition holds depends on the
shape of the region in the case where p # 2 (see Galdi [6] for detail).

On the other hand, in numerical analysis, some penalty methods (quasi-compressibility
methods) are employed as the method to overcome this difficulty. They are methods that
eliminate the pressure by using approximated incompressible condition. For example,
setting o > 0 as a perturbation parameter, we use V - u = —7/a in the penalty method,
V -u = Arm/a in the pressure stabilization method and V - u = —9;7/a in the pseudo-
compressible method. In this paper, we consider the Navier-Stokes equations with incom-
pressible condition approximated by pressure stabilization method. Namely we consider

In this note, we reorganize and summarize the paper [8] by the author and R. Matsui. More information and detail
proofs can be found in (8]
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the following equations:

Oie — Aty + (Ug - Vug + Vg = f t € (0,00),x € Q,
V- uy = Arm,/a t € (0,00),z €9,
Ua (0, ) = aq x €, (NSa)
Ua(t,x) =0, Opmo(t,z) =0 x € 0f.

(NSa) may be considered as a singular perturbation of (NS). As o — oo, (NSa) tends to
(NS) formally and we cancel the Neumann boundary condition for the pressure.

There are many results concerning the stationary Stokes equations and Navier-Stokes
equations by using the pressure stabilization method (for example [1],[7]). However there
are few results concerning the nonstationary Stokes equations and Navier-Stokes equa-
tions. As far as the authors know, only the result due to Prohl [9] is known as the results
concerning the nonstationary problem. In [9], Prohl considered the sharp a priori estimate
for the pressure stabilization method under some assumptions and showed the following
error estimates:

llua — U||L°°([0,T}-,Lz(ﬂ)) + |7 (70 — 7T)||Loo([o,T],W;1(Q)) < CCfl,
l|ta — uHLOO([O,T],Wzl(Q)) + H\ﬁ(% - 7T)||L°°([0,T],Lz<ﬂ)) < 00‘71/{ (1.1)

where 7 = 7(t) = min(¢,1). He proved a priori error estimate by using energy method.
In other words, he proved that if we can prove the existence of the local in time solution
to (NSa), the solution to (NSa) satisfies (1.1). So goal of this paper is to show the
existence theorem for (NSa) and the error estimates. In this paper, we shall use the
maximal regularity theorem in order to prove the local in time existence theorem and the
error estimate in the L, in time and the L, in space framework with n/2 < ¢ < oo and
max{1l,n/q} < p < co. Here, the maximal regularity theorem means that each term in
the abstract Cauchy problem is well-defined and has the same regularity. To be precisely,
when we consider the Cauchy problem

duu(t) + Au(t) = f(t), t>0, u(0)=0, (1.2)

where X be a Banach space, A be closed linear unbounded operator in X with dense
domain D(A) and f : R, — X is a given function has the maximal regularity, the maximal
regularity theorem means for each f € L,(R, X) there exists a unique solution u to (1.2)
almost everywhere and satisfying d;u, Au € L,(R,, X). However it is difficult to analyze
equations (NSa) as it is by using the maximal regularity theorem because the regularity
of solution to the first equation is different from the one of the second equations in (NSa).
For this purpose, in order to adjust the regularity of the solution to their equations, we
consider the following equations instead of approximated incompressible conditions in
(NSa):

(e, Vi) = a1 (Va, Vi) (Ve € WEH(Q)) (1.3)

for 1 < ¢ < co. We notice that (1.3) is a weak form of the approximated incompressible
condition V - u, = a 'An, and 9,7, = 0 on 9Q. We call (1.3) approximated weak
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incompressible condition in this paper. Therefore we consider

Oty — Aty + (g - Vg + Vg = f t € (0,00),z €9,
Ua(0,2) = aq x €, (1.4)
ua(t,z) =0 x € 00

under the approximated weak incompressible condition (1.3) in Li-framework.

2 Main results

Before we describe main theorem, we shall introduce some functional spaces and notations
throughout this paper. The letter C' denotes generic constants and the constant C, .
depends on a,b,.... The values of constants C' and C,; . may change from line to line.
For 1 < ¢ < 00, let ¢ = q/(¢—1). For any two Banach spaces X and Y, £L(X,Y) denotes
the set of all bounded linear operators from X into Y and we write £(X) = £(X,X)
for short. Hol(U, X) denotes the set of all X-valued holomorphic functions defined on a
complex domain U. As the complex domain where a resolvent parameter belongs, we use
Y. ={ e C\{0} | |argA| <m—e}and Z., ={A € Z. | |\ > Ao} for 0 <& < 7/2 and
Ao > 0. For any domain D, Banach space X and 1 < ¢ < oo, L,(D, X) denotes the usual
Lebesgue space of X-valued functions defined on D and || - ||z, (p,x) denotes its norm. We
use the notation L,(D) = Ly(D,R), || - l,c0) = || |z o,r) and for a,b,...,c € Ly(D),
l(a,b,...,c)l|lL o) = llallz,) +110llz,) + - - - +lcllz,py- In a similar way, for 1 < ¢ < oo
and a positive integer m, W;"(D, X) denotes the Sobolev spaces of X-valued functions
of defined on D. We often use the same symbols for denoting the vector and scalar
function spaces if there is no confusion. For 1 < p,q < oo, B,i(pl*l/ b )(D) denotes the real
interpolation space defined by ng_l/p)(D) = (Lg(D), W2(D))1-1/p,p- For a Banach space
X and some v € R, we set

Lpo(R, X) = {f(t) € Lpioe(R, X) | le™" fll,m.x) < 00, (v 2 0)},

Lpyo.(0) (R, X) = {f(t) € Lpro (R, X) | f(£) =0 (¢ <0)},
W 0,0 (R, X) = {f(£) € Lpo,0) (R, X) | /() € Ly (R, X)}.

P70,

In order to deal with the pressure term, we use the following functional spaces:

Ly1oe(D) ={f | flx € Ly(K), K is any compact set in D},
WD) = {6 € Lyioce(D) | VO € Ly(D)"}.
Since our proof is based on Fourier analysis, we next introduce the Fourier transform

and the Laplace transform. We define the Fourier transform, its inverse Fourier transform,
the Laplace transform and its inverse Laplace transform by

fO =IO = [ @ RO = g [ e r©s

LfIN) = Fle " fB))(7), L) =" FA),




respectively, where z,& € R", A = v+ ir € C and « - £ is usual inner product: z - £ =
" x;&. Furthermore, we define the Fourier-Laplace transform b
j=1LiSj ! y

L Fo[o(t, 2)]J(N,€) = Frale M o(t, 2)](N,€) = /oo (/n e~ Ay (¢, x)dx) dt.

—0Q

By using Fourier transform and Laplace transform, we define H;_ (R, X) for a Banach

space X. For A = +i7, we define the operator AJ as

(A3£)(#) = LAPLLANIE) = T FH T + 22 2Rl fOI](E).

For 0 < s <1 and 7y > 0, we define the space H;_ (R, X) as

0l

Hy o (R, X) = {f € Ly (R, X) | [l AL f|1, ) < 00(Vy = 70)}-

P70

In this paper, we assume next assumption for our domain €.

Assumption 2.1. Letn/2 < g < 0o andn < r < co. Let Q be a uniform W2 domain
introduced in [5] and L,(?) has the Helmholtz decomposition.

Here the assumption on a uniformly W2 " domain is used when we reduce the problem
on the bounded domain to one on the bent half-space and on the whole space. According
to Galdi [6], that “L,(€2) has the Helmholtz decomposition” is equivalent that the following
weak Neumann problem is uniquely solvable: for f € L,(),

(V6. V) = (f, V) (Voo € Wh(Q)).

The map P and Qq are defined by Qqf = 6, where 6 is the solution to the above weak
Neumann problem and Pof = f — VQqf. Pq is called the Helmholtz projection. We
remark that if ¢ = 2, Ly(Q2) has the Helmholtz decomposition for any Q (see Galdi [6]).

First main result is concerned with the local in time existence theorem for (1.4) with
approximated weak incompressible condition (1.3).

Theorem 2.1. Let n > 2, n/2 < ¢ < oo and max{1l,n/q} < p < oco. Let « > 0 and

To € (0,00). For any M > 0, assume that the initial data a, € B(i(pl_l/p)(ﬂ) and the
external force f € Ly((0,Ty), L,(Q)™) satisfy

aall g20-1m g + 1 £l £p(0.10), (@) < M- (2.1)

Then, there exists T* € (0,Ty) depending on only M such that (1.4) under (1.3) has a
unique solution (uy, 7o) of the following class:

Ua € Wpl((Oa T*)> LQ(Q>H) N LP((07 T*)> W(?(Q)n)v Ta € LP((O7 T*)v W;(Q»
Moreover the following estimate holds:

tallza0r),La@)) + | (Ortta, Vo, VA 1074, La(2)) + VU Lo (074, L0 (2) < Cropa1+
for1/p—1/r <1/2.
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Here we state the outline of the proof of main theorem (Theorem 2.1). We show
Theorem 2.1 by using the contraction mapping principle with two type maximal regularity
theorems (Theorem 2.2 and Theorem 2.9). In order to prove Theorem 2.2, we use the
Weis’ operator valued Fourier multiplier theorem. For this purpose, we have to show the
existence of R-bouned solution operator to the generalized resolvent problem of (1.4) (see
Theorem 2.7 for detail). In order to prove Theorem 2.9, we need the some estimate of
semigroup T, (t) for linearlized problem of (1.4). For this purpose, we have to show the
resolvent estimate (Corollary 2.8), which is a corollary of Theorem 2.7. Therefore our
main task is to show Theorem 2.7.

We shall explain the proof of Theorem 2.1 in more detail. In order to prove Theorem
2.1, we use the contraction mapping principle and maximal L,-L, regularity theorem for
the following linearized problems corresponding to (1.4):

Oty — At + Vo =f t> 0,2 €,
uo(t,z) =0 x € 09, (2.2)
ua(07 .CE) = Qq z e

under the approximated weak incompressible condition
(ta, Vio)o = a~ (VTa, Vio)a + (9 Vip)a p € Wa(9). (2.3)

First result is concerned with the maximal L,-L, regularity theorem for (2.2) under
(2.3) with a, = 0.

Theorem 2.2. Let 1 < p,q < oo and o > 0. Then there exists a positive number vy such
that the following assertion holds: for any f,g € Ly, 0)(R, Lg(Q)), (2.2) under (2.3) with
aq = 0 has a unique solution:

Uq € Lp~707(0)(R7 WqQ(Q)) N Wr)l,”/o,(O)(R’ Lq(Q))v Ta € Lpﬁo,(o)(Rv qu(Q))

Moreover, the following estimate holds:

lle™ " (Bytier, Vit A% Vg, A}/fa(v “Ua), VU, V)L, ® Ly @)
< Copalle™ (f, ag) |, kLo
for any v > 7.
Remark 2.3. By the property of Helmholtz decomposition, we can solve (2.3) for ua, g €
L,(Q2) and we see my = aQq(uq — g).

In order to prove Theorem 2.2, we use the operator valued Fourier multiplier theorem
due to Weis [13]. This theorem needs R-boundedness of solution operator. To this end,
we first introduce the definition of R-boundedness.

Definition 2.4. The family of the operators T C L(X,Y) is called R-bounded on L(X,Y),
if there exist constants C' > 0 and p € [1,00) such that for each N e N, T; € T, f € X
(j=1,...,N) and for all sequences {~;(u)}}_, of independent, symmetric, {—1,1}-valued
random variables on [0,1], there holds the inequality:

1 N 1 N
/0 IS )T f e < C / 1S )
j=1 j=1



The smallest such C' is called R-bound of T on L(X,Y), which is denoted by R(T).

Remark 2.5. According to [3], the following properties concerning R-boundedness is
known. From Definition 2.4, R-boundedness of the family of operators implies uniform
boundedness.
1Tz 0x vy = S IT()[ly < R(T).
x| x=
Moreover it is well-known that R-bounds behave like norms. Namely, the following prop-
erties hold.

(i) Let X,Y be Banach spaces and T,S C L(X,Y) be R-bounded. Then T+S ={T+S |
TeT,S eS8} is R-bounded and R(T +8S) < R(T) + R(S).
(i) Let X,Y,Z be Banach spaces and T C L(X,Y) and S C L(Y, Z) be R-bounded. Then
ST ={ST|T€eT,S eS8} is R-bounded and R(ST) < R(S)R(T).
The following theorem is the operator valued Fourier multiplier theorem proved by
Weis [5] for X =Y = L,(2).
Theorem 2.6. Let 1 < p,q < co and M(t) € C'(R\{0}, L(X,Y)) be satisfy
REAM(T) |7 € R\{0}}) =co <00, R{|7|O-M(7) |7 €R\{0}}) =¢1 < .
Then, Ty defined by [Tas f](t) = ]:E_l[M(T)}-m[f](T)](t)(f € S(R, X)) is the bounded
operator from L,(R, X) to L,(R,Y"). Moreover, the following estimate holds:

1T flle,myy < Cleo + )l fll,exy  (f € Lp(R, X)),
where C is a positive constant depending on p, X.

In order to prove the maximal L,-L, regularity theorem with the help of Theorem 2.6,
we need the R-boundedness for solution operator to the following generalized resolvent
problem

Mg — Aug + V7, = f  in Q,

{ Ug =0 on 0f) (24)

under the approximated weak incompressible condition (2.3), where the resolvent param-
eter A varies in X ), (0 < e < 7/2, A > 0).

We can show the existence of the R-boundedness operator to (2.4) under (2.3) as
follows:

Theorem 2.7. Leta>0,1<g< o0 and0< e <7/2. Set X,(Q) ={(F1, F2) | Fi, F» €
L,(0)}, then there exist a Ao > 0 and operator families U(N) and P(X\) with

UN) € Hol(Se . LX,(Q), WHQ)™),  P(A) € HollSe,, £(X,(2), W, (2)))

such that for any f,g € Ly(Q) and A € .y, (Ug,Ta) = UN)F,P(NF), where F =
(f,ag), is a unique solution to (2.4) under (2.3) and (U(X), P(N)) satisfies the following
estimates:

RL(Xq(Q)7Lq(Q)ﬁ)({(TaT)Z(G/\,au()‘)) [AETen}) SC (£=0,1),
Re(xg(@)Lo@m {(T0) (VP(N) [ A € B }) < C (£ =0,1)
Jor Gy ou = (Au, A2V, V2u, (A + a)V2(V - u)) and N = 1+ n +n2 +n?.

o1
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By Remark 2.5, we can prove the resolvent estimate for (2.4) under (2.3).

Corollary 2.8. Leta > 0,1 <g<ooand0 < e <7/2. Let \g > 0 be a number obtained
in Theorem 2.7. For f,g € L,(Q2) and X € ., there exists a unique solution (U, Ty)
to (2.4) under (2.3) which satisfies the following inequality:

H()‘uow )‘1/2qu7 Vzuotv ()‘ + a)l/Q(V . ua)a VT(O&)HL{;(Q) < CH(]* ag)”Lq(Q)'

Let A, be the linear operator defined by Ayu, = Auy, — aVQqu, and D(Ay) = {u €
WZ2(Q)" | ulog = 0}. By Corollary 2.8 with g = 0, we see that A, generates the semigroup
{T,(t) }1>0 on L,(2)™. Moreover there exists a positive constant C' > 0 such that for any
o € Ly()", ua(t) = T, (t)a, satisfies

||(ua,tl/ZVua,tV2ua,t8tua)||Lq(Q) < CeM|aq]| L, (t >0).
By the equations (2.2), we have
[VTallzy@) < [10ally@ + | = Auallr,@) < Ct e aall @) (2.5)

which means that we can not estimate the pressure term V7, near ¢ = 0. On the other
hands, since 7, = aQqu, is the pressure associated with u, = T,(t)a, and Vm, =
a(ug — Pouy), (Ua, Ts) enjoys (2.2) under (2.3) and V7, satisfies the following estimate:

[V7allz,@ = allta — Potallr,@) < lltalln,) < Cae|aqllr, @),

which implies the boundedness of Vi, near t = 0 and || V7o || L., ((0,1),2,() < COzeAOTHaaHLq(Q)‘

This is the effect of the pressure stabilization method.
By real interpolation, we can see the following maximal L,-L, regularity theorem for
(2.2) with f=g=0.

Theorem 2.9. Let @ > 0 and 1 < p,q < oo. Let A\g be a number obtained in Theorem
2.7. Fora, € B;(pl_l/p)(ﬂ), Uo = Ty (t)aq satisfy

€72 (Brttars VAU 2,((0.00).L0(2)) < Crpalltall g2i-1m
(7 = 20)Plle™ ol 1, (0,000, L0 @) < CrpallaallL, @),
(v - )‘0)1/(217)||€7’thua”Lp(((),oc),Lq(Q)) < Cn,p,q||aa|\33g—l/p>(m
for any v > N\g. Moreover m, = aQau, Satisfy
eV o |2, (0,000, La(2)) < Cn,p,q||aa||33§;—1/p)(9)7
V7ol Lo 01).La(2) < Crpge™® laal|L, @)
for any T > 0.

Next we consider the error estimate between the solution (u,7) to (NS) under the
weak incompressible condition (u, V)q = 0 for ¢ € /V[Z},(Q) and solution (uq, ) to (1.4)
under (1.3). To this end, setting ug = v — u, and 7g = ™ — 7,, we see that (ug, 7g)
enjoys that
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Oug — Aup + Vg + N(ug,uq) =0, t € (0,00),z € Q,
ug(0,2) = ag, x €, (2.6)
up(t,x) =0, x € 092,

where N(ug, uq) = (ug - Vug + (ug - V)ug + (ug - V)ug and ag = a — a, under the
approximated weak incompressible condition

(u, V)a = (Vg Vo)a + o~ (Vr, Ve)a peWh(Q) (27

for 1 < ¢ < oco. In a similar way to Theorem 2.1, we consider (2.2) under (2.7) for
aq = ap. By Theorem 2.2 with f = 0, ¢ = o !Vr and Theorem 2.9, we obtain the
following theorems:

Theorem 2.10. Let 1 < p,qg < oo and o > 0. Let vy be a positive number obtained
in Theorem 2.7. If usual Stokes equations under the weak incompressible condition has a

unique solution (u, w) in (Ly g o) (R, W2 (Q)")NW) (R, Lg()™)) X Lp v 0y (R, W;(Q)),

p,y8,(0)
(2.2) under (2.7) with ag = 0 has a unique solution:

up € LPNEv(O) (Rv WqZ(Q)n) N Wpl,'yE,(O) (Rv LQ(Q)n)a TE € LPG’Ey(O) (R7 qu(Q))

Moreover, the following estimate holds.

1
(i_’yt(atUE, aug, A% VUE, VZ’LLE, A}/fa(v . ’LLE)7 vT[-E)HLp(R-,Lq(Q))

< Copglle "'Vl L@ L)
for any v > vp.

Theorem 2.11. Let 1 < p,q < oo and a > 0. Let \g be a number obtained in Theorem
2.7. For ag € B;(pl*l/p)(Q), up =T, (t)ap and g = aQoup — ™ satisfy

lle " (Dyur, VPug, Vg) | Ly(000),Lo@) < Crpgllan [ p2a-1/2 (g
(v = 20)?lle up 1y (0001, La(@) < Crpallaellzy@),
(v = 20) | VU 1, (0,000 g (@) < Crpallasll gzo-1m g
for any v > Xo. Ifm € LOO((O,oo),/W;(Q)), T satisfies
e V|| Lai01).Ly) < Collag]Ly@) + IV L0020
for any T > 0.

By above two theorems, we can obtain the following theorem concerned with the error
estimates.

Theorem 2.12. Letn > 2, n/2 < ¢ < oo, max{1,n/q} <p < oo and a > 0. Let T* be a
positive constant obtained in Theorem 2.1 and (uq, 7o) be a solution obtained in Theorem
2.1. For any M > 0, assume that ag € BS,(,}‘“”)(Q) satisfies

||aE||B3FI}—l/p)(Q> < Ma™t. (28)
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Then there exists T° € (0,T*) such that (2.6) has a unique solution (ug, Tg) which satisfies

el Lo 0), @) + IVUEl L (0,1),2,(2))

+1(V?up, O, Vap) o, 0r) 040 < Copar! (2.9)
for1/p—1/r <1/2.

Remark 2.13. (2.9) means the following error estimates for the Navier-Stokes equations:

lu = vall L 0.1),L,)) < Ca™,
||(V2(U — Uq), Or(t — ug), V(T — 7rcx))HL,J((O,Tb),Lq(Q)) < 00717

In comparison with the result due to Prohl [9], we can extend Ly framework to L, frame-
work with respect to the error estimate.

3 Preliminary

In this section, we shall introduce some lemmas and definitions, which plays important
role for our proof. Before we describe some propositions and lemmas, we introduce the
notation of symbols. Set

r=|¢, wy = VA +r2 w=VA+a+r?
e~ n _ efbxn

g(z) = e*Z(wnern)’ M(a, b, x,,L) = — (3_1)

where & = (&1,...,&,-1). Here £(wy) is the symbol corresponding to heat equation and
M (wy, r,x,) is the symbol corresponding to Stokes equations.

We next introduce some lemmas. In order to apply the operator-valued Fourier mul-
tiplier theorem proved by Weis [13], we need the R-boundedness of solution operator to
(2.2). However since it is difficult to prove R-boundedness directly from its definition, we
first introduce the following sufficient condition for showing R-boundedness of solution
operator given in Theorem 3.3 in Enomoto and Shibata [4].

Theorem 3.1. Let 1 < ¢ < 0o and 0 < € < w/2. Let m(\, &) be a function defined on
2. x (R™\{0}) such that for any multi-index 8 € NI (Nyg = NU{0}) there exists a constant
Cs depending on 3 and A such that

02m(A€)] < Cole|
for any (X, &) € . x (R™\{0}). Let K, be an operator defined by
(K fl(@) = Fe (X, ) Flf1(€)] ()
Then the set { K | A € £.} is R-bounded on L(L,(R™)) and

R m{Kx | eX}) <O C
£ (g ({50 | B <€ max

with some constant C' that depends solely on q and n.



To prove the R-boundedness of the solution operator in R7, we use the following lemma
proved by Shibata and Shimizu [12] (see Lemma 5.4 in [12]).

Lemma 3.2. Let 0 < e <7/2, 1 < g < oo. Let m(\, &) be a function defined on ¥, such
that for any multi-index &' € Nj~' there exists a constant Cs depending on &', ¢ and N
such that

0pm(\, )| < Cyr™ ¥
Let K;(A\,m) (j=1,. ) be the operators defined by

[Ki(A\,m)g m(X, &) rE(wx)g(€, yn)] (") dyy.

[KQ )\ m ) QM(W)\ T, Tn +yn) (é-/ayN):I (xl)dy’f“

[K4 /\ ’ITL )\ é )CUTM(W/\,W Ty + yn)g(élayn)] (Il)dy’m

[K5)\m

/ -
/ Fo!

(Ka(nmlal(a) = [~ 7 [mO €N Ml + )6 )] (o
/ Fil
D)= [T IO M, + 5TE )] (i

Then, the sets {(10;)'K;(A,m) | A€ B.} (j =1,...,5,0 =0,1) are R-bounded families
in L(Ly(R7)). Moreover, there exists a constant Cy, 4. such that

Ry {(70) Kj(Am) [A€B}) < Chge (=1,...,5,(=0,1).

This lemma is proved in a similar way to Lemma 5.4 in [12] with the following lemma.

Lemma 3.3. For 0 <e <m/2, let A € ¥..

(i) There exist positive constants Cy,Co and C3 depending on e such that the following
inequalities hold:

lwa| = CLUANY2 +7),  Cola? +NY24+71) < Re w < Cs(a'/? + | A2 +1). (3.2)
(ii) There exist positive constants C' such that the following inequalities hold:
|D§:rs| < el
Dl < CAM2 )7,
|D‘g,w | < C@?+ N2+ r)sf“s/l,
|D& (1 4wy )®| < C(IAY? 4 r)sr 19,
D& (r )| < COAI +a¥® 4 7)1,
|Dg(w+wh)’| < C(AY2 + a2 4 r)° (\/\|1/2 +r) 7 (3.3)

for any s € R and multi-index §.
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(iii) There exist positive constants C such that the following inequalities hold:
|De{(r0r) e }| < Crlem (/2
|DI{(70,) e 7} < C(IA[Y? )77 e AN
\D‘S'{(Ta )z wmn} ( 1/2+|)\|1/2+r) 18] 7d(041/2+\)\\1/2+r)mn
|D‘g:{(78 YM(wy, my20)}| < C(x, or |N|7Y2)emdrzny =1,
DI (70:) M(wa,w, )} < Clay, or a 1/2)e ez (|\1/2 g )= (3.4)

for £ = 0,1 and any multi-index &' and (¢',x,) € (R""1\{0}) x (0,00), where d is a

positive constant independent of ¢ and §'.

Proof. (i) (3.2) are proved by elementary calculation.
(i) Let f(t) = t*/%. By Bell formula, we see

|3]

D=3y fOU% Y i (D87 (DErR),

(=1 014 +0¢=0,[0;| >1

where T, is some constant and f)(t) = d’f(t)/dt‘. Since |D2jr2| < 2r* 1%l we can
obtain the first estimate. We can prove the other estimates in a similar way to the first
estimate taking the elementary estimate: |\ + [£]?| > (sine)(|A| + |€*) (0 < & < 7/2,
¢ € R") into account.

(iii) It is sufficient to prove the last estimate with ¢ = 0 in (3.4), since we can prove
the other estimates sumlarly
Since M(wy,w, T,) = —T, f ~((A=0r+0w)zn dp by Bell formula, we have

< Cy % xflef(cl(170)(\)\l1/2+7‘)+020(a1/2+|)\\1/2+r))xn
=1
x (1= 0)(INM2 + r)' =10l 4 g(al/? 4 |A[V2 4 )1 1011
e (L= (AP 4 ) PH 002 4 N2 o)1),

|Dg:€7((176)w)\ +0w)zn

where we used |e~((1=0rt0w)zn| — o=((1=ORewr+0Rew)an - Setting ¢ = min(cy, cp), we see

| DY e~ (A=0)rt0)en | < O (/DA 0@ 2N 2 e (12 4 =18

which implies
1
DI M(w,w, z,)| < Cy / e~ (/=02 L0 2NN 2 )en g (IN[1/2 4 )1
0

1
— Cy / DN 24 =00/ 2 gy (12 4 )91
0

By integrating this right hand side, we have

| DEM(ws,w, )] < Cir(e/2) " o 2em DNz (12 )= (3.5)




On the other hands, by e=0e/2a?en < 1 e have
|D‘2,/M(wA,w7:vn)| < nyne—(c/z)q,\p/ur)wn(|)\|1/2 + r)"‘sl‘. (3.6)

Therefore, we obtain the last estimate with £ = 0 in (3.4). O

4 ‘R-boundedness of the solution operator to resolvent problem

Goal of this section is to prove the R-boundedness of the solution operator to the following
resolvent problem (2.4) in

(2.4)

Mg — Aty + V7, = f  in Q,
Uy =0 on 012,

where A € ¥.,,(0 < £ < m/2,X > 0) under the approximated weak incompressible
condition (2.3). Our method is based on cut-off technique. For this purpose, we shall
first prove the whole space case. Secondly we shall prove the half-space case by using the
result for the whole space case and some lemma introduced in section 3. Next we shall
prove the bent half-space case by reducing to the result for the half-space case with the
change of variable. Finally we shall prove the bounded domain case by using the result
for the whole space and the bent half-space case with cut-off technique. In this paper,
we focus the whole space case and the half-space case (see [8] for the bent half-space case
and the bounded domain case).

4.1 Problem in the whole space
In this subsection, we shall prove the following theorem:

Theorem 4.1. Let o > 0, 1 < ¢ < 00 and 0 < ¢ < w/2. Set X,(R") = {(F, %) |
F,Fy € Ly(R™)}. Then, there exist operator families U(X) and P(\) with

U e Hol(EE,E(Xq(R”),Wj(R”)”)), PN € Hol(EE,E(Xq(R"),/W;(R")))

such that for any f,g € Ly(R™)™ and X\ € ., (tug, 7o) = UN)F,P(\)F), where F
(f,ag), is a unique solution to (2.4) under (2.3) for the case Q = R™ and (U(N),P(N)
satisfies the following estimates:

R g iy, ({70 (Grad (W) [ A € 5.3) < € (£=0,1),
Re(x, &), Ly@nm) ({(T0)(VP(N) [ A€ 5.} < C (£=0,1)

Jor Gyau = (A, \XY2Vu, V2u, (A + a)Y2(V - 1)) and N = 1+ n +n2 4 n®.

Proof. In order to prove the R-boundedness of solution operator by using Theorem 3.1,
we shall obtain the solution formula to (2.4) under (2.3) by using Fourier transform. By
the property of Helmholtz projection, we know Vr, = aVQgn(uqs — g) and F[VQgnv] =
|€]72¢(€ - ). Applying the Fourier transform to (2.4), we obtain the following solution
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formula : e, ;(x) = u;(x) +uf;(x) and 74 (2) = 7(2) + 72 (x), where (u,7) is the solution
to Stokes equations given by

~

uy(x) = Fo! [IE«(&)} () - S {(%fk@ @, (1)

A+ €2 A+ [EP)IE
ZZ]: {fP f } (x) (4.2)
for j =1,...,n and the error term (u%, 7%) given by
Eone o | G&G (€ — adi)
Unj = - 1]:5 l|§|2(A +a+ |§|2) (CC),
&+ EP) (fr(€) — agi(§)
- ZZI EF(\+a +1€P) ] ) 3

for j = 1,...,n. Since in the whole space case, it is well-known that the solution oper-
ator to Stokes equations is R-bounded ([12] for detail), we consider the only error term
(uZ 7F). By Leibniz rule, for £ = 0, 1, we obtain

1/2
d.) D} (A + )& < C.,lel 8.) D} (A + )26,k < C.4le|71,
oo Dt | < e [0 PG | < o
gmfnf Ek - fk(/\ + |£| )
0,)! DY S| < O le| TP \(70,) DY 1,
o0 D | < Cee™,fron e 2| < ol
(4.4)
which implies from Theorem 3.1
RL(XQ(Rn),Lq(Rn)N)({(Tary(G/\,au(/\)) [ AeX}) <C (€=0,1),
Rex,@n),L,enm ({(70) (VP(N) | A € B.}) < C (£=0,1).
This completes the proof of Theorem 4.1. O

Remark 4.2. By Theorem 4.1, we see that the existence of the solution (uq,ms) to the
resolvent problem (2.4). Moreover by Theorem 2.6 and Remark 2.5, (uq,7,) satisfies the
following resolvent estimate:

”()‘“m )‘1/2vum VQUQ, ()‘ + a)l/Q(v : ua)v Vﬂ'(,) HLq(R”) < Cnvq,E”(.fv ag)HLq(R")'

4.2 Problem in the half-space
In this section we shall prove the following theorem:

Theorem 4.3. Let o > 0,1 < g < 00 and 0 < ¢ < 7/2. Set X (R%}) = {(F1, F>) |
Fi,F> € Ly(R%)}. Then, there exist operator families U(X) and P(X) with

UN) € Hol(S., L(X,(RL), WHRL)™),  P(A) € Hol(S., L(X,(R?), WHRY)),



such that for any f,g € Ly(R})" and X € 3., (uq, ) = UN)F,P(N)F), where F =
(f,g), is a unique solution to (2.4) under (2.3) and (U(N), P(N)) satisfies the following
estimates:

RL(XQ(Ri),Lq(M)N)({(TaT)Z(GA,aU(/\)) |A€X}) <C (L=0,1),
Re(x, @), L@y ({(70)(VP(V) [ A € X.}) < C (£=0,1)

Jor G qu = (A, X2V, V2u, (A + ) 2(V - u)) and N = 14 n +n2 +n.

In order to prove Theorem 4.3 by Lemma 3.2, we shall obtain the solution formula to
(2.4) under (2.3). By density argument, we may let f,g € C§°(R’). In this case, equation
(2.4) under (2.3) is equivalent to the following equations:

{/\ua—Aua—l—Vwa:f, Vou,—a'Ar,=V-g inR%, (4.5)

ulory =0,  Opmalory =0.

We shall obtain the solution formula to (4.5). For this purpose, we extend the external
force f and ¢ to the whole space. For f = (fi,...,f.) and ¢ = (g1,...,9a), let F' =

(f167 ) ffru ff;) and G = (QTa s 79271795)7 where

. i@ x,) (z, > 0) Y fuld! ) (z, > 0)
f] (x> = ! ’ 9 fn (CC) = ’ 9
fj(x ) _xn) (xn < 0) _fn(x ) _xn) (CC” < 0)
where 2’ = (21, ...,2,_1). We consider the resolvent problem with F' and G:
AU, — AU, + VI, = F, V-U,=aAll,+ V-G in R™. (4.6)

Here we remark that from the definition of our extension, (U,,II,) enjoys the boundary
condition

Upn(2',0) =0, 0,0, (2',0) = 0. (4.7)
By the result for the whole space and the definition of our extension, the following esti-
mates hold:
|(AUa, A2V U, VU, (A + )2V - Us), VI |l2,0) < CIl(F. 0G|, )
< Cl(f, e9)llLymn).  (48)

Setting u, = wy + U, and 7, = pa + I, we see that to solve (4.5) is equivalent to
solve

{ Mg — Awy + Vo =0, V-w, = Apy/a in R%,

4.9
(wa)j|xn:0 = hj‘mn:m an/)a|wn:0 = 07 ( )

where h; = —(Uy); for j =1,...,n—1 and h, = 0. Applying div and (A +a — A)A to
the first equation in (4.9), we obtain

A+ a—A)Ap, =0, A+a—-A)A—=A)Aw, = 0. (4.10)
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By applying the partial Fourier transform defined by
g(&-/’ xn) _ / efiz/.g/g(x/’ I‘n)dI/
Rn—1
o (4.9) and (4.10) , we have

ANWa); + r*(Wa); — 03 (Wa); + (i&;)pa =0,
MWa ) + 77 (Wa ) — 02 > (Wa)n + Onpa =0,

i€’ ;w’;l + 0n(Wa)n = ()Fl(—rzf); + 637’2)7 (4.11)
({U\;)j(glvo) = hj(5/70)7 @)n(gla 0) =0, 8715;(5/70) =
and
A +a+7* =D (r* — D})p, =0,
(+atr® = D+ r® = D) (r® = D) = 0, (4.12)

where i€’ - w0, = > '(i€;)(w,);. Since from (4.12), we see the solution (@g,py) can be
expressed by

Z)\; _ peim" + q€7W$”7 (’1’1}\;)] _ aje—mn + bjefwwn + Cjefwxn (413)

for j = 1,...,n, we shall find the solution to (4.11) having the form (4.13). By substituting
(4.13) to (4.11), we see

Aa; + (i€)p =0, —ac; + (i&)q =0,

Aa, —rp =0, —ac, —wq =0,
& ad —ra,=0, i€ -V —wyb,=0, i€ - —wc,=a"ta+N)yg,
a; +bj+cj=h;, a,+0b,+c, =0, —rp—wqg=0
for j=1,...,n— 1. Setting A = Awyw — 7?) and B = aw(wy — 1), we see
a i, ~ r
= - . h/7 = ——0D,
P="rA+ B’ a=-zF
_ ﬁ _ E] 763 _ &
a; = ——"P; b, = h oo CG=—"
_r by = Ly f e ="
Qn )\p: n )\p ap: n ap~

Therefore, we obtain the solution formula (w,); = w; + fJ;JE and po = p+ pa’, Where
(17]'7 ’Z‘:]\O/zEa ﬁ7 ﬁ;E) is given
iDJ‘ = E},e*wan + &;ng : ]/;:IM(W)\, T, xn):

~FE éj .A ) . Ej CY)\
waj - r A+B£ h (W)\,T,J?n)

ib’n = 7’5 : hl (w)\a T, fl?n),

wy+r A+ 8BS W M(w,wx )



B ~ QWA ~
—~FE s -l
= N n) — ———————————3& LW, Tn),
W 118 zf M(wy, T, x,) (w—FwA)(A—I—B)Zg M(w,wy, )

G- w,\+r€ e —ran

T
~F W,\+T —rz —wx
= - Rlem T R
" A—l—BZE +A Bz§ e

Since the symbol M(a, b, z,) defined by (3.1) has the following properties:
O M(a,b,z,) = —e " —bM(a, b, x,),
PZM(a,b,x,) = (a+b)e ™ +b*M(a,b, )

and by ¢(0) = — [;° 9,9(yn)dy,, we have

E(g',o e = [ E@la = DRE ),
€ 0Masbn) = [ {E@h() + M{a, bt +5) = D 5
where £(z) is defined by (3.1). Therefore, setting {; = ¢;/r, we obtain
= | F ) = D i,
n—1 0o o _
+Z/ Feor 1€ (E(@r)rhe (€, yn)
k=10 N
+ M(OJ,\7 T, Tp + yﬂ)(r - Dn)rhk(ga yn))](x,)dym
n—1 ) o A "
(wlfe) = =32 [ P66 E e’

+ M(wx, 7,20 + Yo ) (1 — Dn)rh;(f/, yn))}(x/)dyn
+ Z/ Fo'l=2 P50l )

— Jo wyx+rA+B
+ M(W)\v W, Ty, + yn)(w - Dn)rﬁvk(gl’ yn))](x/)dym
n—1 00 _
wne) =31 [ F G E )bl )
k=1 YO N
+ M(“/M T Tn + yn)(7 - D’ﬂ)rhk(glv yn))}(l,)dy’fh
n—1 oo . _
@) =3 [ F M e )
+ M(wr, 7y T 4 Yn) (1 — Dy)rhi(€' y))] (2 ) dyn

n—1

0o A _
DM R rey eo LOVCLRS

k=1
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+ M(@r,w, @ + ) (@ = Da)rhi(€, yn)) (2')dya,

o) ==Y [ F L) = D€ )]
k=1 0

r

(o)) = X [ F G i )~ Dol ],

P r A+B
n—1
ee} _ )\ ] - ,
+y /0 le[gkA%BzE(w)(w — D)rhi (€ yn) | dyn- (4.14)
k=1

We remark that (w, p) is the solution to the usual Stokes equations and (w®, p¥) is the
error between the solution to Stokes equations and Stokes equations approximated by
pressure stabilization. Since Shibata and Shimizu [12] proved R-boundedness of solution
operator to Stokes equations, it is sufficient to consider (wZ, pf) only. For this purpose,
we prepare the following lemma.

Lemma 4.4. Let 0 < € < 7/2 and o« > 0. For any multi-index o' and (A, &, x,) €
Ze x (R*I{0}) x (0,00), m(A, &) = r(wr+ 1) wlwr+w) ™ AA+B) L BA+B)™!
and aX(A+ B)™! enjoy

|05m(X, &) < Cr V. (4.15)
where C' is a positive constant which is dependent of € and o'

Proof. We first show that m(\, &) = r(wx+7) ' and w(wy+w) ! enjoy (4.15). By Leibniz
rule with (3.3), we see

—|5]
’ r s/ rov2 5/
D? <C E Pl < oYl

134 - 1/2 - ’
‘ Wy + T paes, [A[Y2 41

- —105] -

’ w ’ T ’
D61 < C )\ 1/2 1/2 4 7|01‘ < O —é |
‘ o tw| = >, (W +a r)r 2 ralZrry ="

§'=5,+8)

In order to prove m(\, &) = A(A+B)™, B(A+B)™! and aA(A+ B)~!, we shall consider
D{(A+ B). Since
A+ a)w n AN+ a)r

A+B=A+a)wlwy—r)+Ar(w—r) = Wy 7 wHr
A

)

we have

o )\1/2 1/2 y
‘D?(A+B))§C|)\|(|A|+a){|| ralt A r },.o

‘)\|1/2+T |)\|1/2+O(1/2+’I"
< CIM(AM2 + a2 (N2 + a2 ) (A2 + ) e (4.16)



Since |arglw(w +7)/r(wy +7)]| < 7 —¢, we know wr™(w + 7)(wy + r)~' € ., which
implies that

w w+r

|A+B|—|/\+a||>\|‘ 4
w+

+1'
wy +r T

w w—+r

> C(l)“l/z +Q1/2)2|/\|T(|)\|1/2 +a1/2 +’I”>71 <

+1)
wy+Tr r

> OO + a2 NNV + a2 ) (A2 4 )
By Bell’s formula with (4.16), we obtain

Dg(A+B)H < CIATHIAI + o) (A2 + b2 ) H(AM2 4 )P,

which implies (4.15) for m(\, &) = A(A+ B)™, B(A+ B)™ and a\(A+ B)™". O
Proof of Theorem 4 3. We shall prove Theorem 4.3 by Lemma 3.2 with Lemma 4.4. Set
(wa) o) (k=1,. n—l,ézl,...,G) as follows

(a0 = [ 7t |G pE (e )] (i,

_ A L (el ’
(o) = [ 75 |66 MOt + )P Rul€' )| ()

A e /
wa ]k3 / g]&cA B (OJ,\,T, Tn + yn)TDnhk(g 7yn>:| (‘T )dyvu
Tf 5 A L (¢l /
wa ]k4 / w/\j_’_krA_’_Bg(w)\)rhk(g ayn):| (I )dym
(w / 23 O My, w, T + g a(€, ) | (2)dy
Ot]k:5 0 OJ)\+’I“.A+B ) Wy n n S v In mny

r&; a\ ~
’U}a Jk6 / ]:57 wffkrA+BM(w)\7w7xn +yn)7nDnhk(§/7yn):| (x/)dyn
Setting Ko j(hi) = (wa), () for £ =1,2,4,5, by Lemma 3.2, Lemma 4.4 and (4.8),
we see that K, ; is R-bounded. Since hy = —(U, )k, U, Z/{Rn()\)F where Ugn (A) is the
solution operator in R” and F' = (f, ag), setting V; /(AN F = Ky jo(Urn (N F)i), we see
that G)\y(IVjﬁk,g()\)F = Ka,g,j(G)\_a(Z/{Rn (( ) ) is R-bounded by Remark 2.5.
Since Lemma 3.2 and Lemma 4.4 and the relation:

* - A
Awo)fus@) = [ ftl[sjgkmwm, P+ i)

><T‘IAII/2 (A2 Dlir (€', )] (&) dy,

we see there exists a R-bouned operator Ko 3,; such that Ko 3;(|A[Y2D,hy) = Mwa)F, 5(2).
Setting AV x3(\) F = Kayg’j(|A‘l/2Dn (Upn F)i.), we see AV i 5(A) F is R-bounded. In a sim-
ilar way, we can show that G oV;ke(A)F (¢ = 3,6) is R-bounded. Summing up, setting
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UNE); =32 Vike N F and UM E = (UN)F);)j=1,...n, We see U(A)F is the solution
operator in R%} and G U () F is R-bounded.
In the same way, we obtain the results for (w,)} (x) from the results for (w,)f(z)

and the results for (p,)F(x) from the equations (2.4) and the results for (w,)f(x) and

(10a)E (). '

yerny

O

5 Application to the approximated Navier-Stokes equations

In this section, we shall prove the local in time existence theorem for (NSa) and (2.6) (The-
orem 2.1 and Theorem 2.12) by the method due to Shibata-Kubo [11]. Before we prove
these theorems, we shall describe some facts shown by using maximal L,-L, regularity
theorem (Theorem 2.2).

Let (w,7) = Mrp(f) be the solution to

Ow—Aw+Vr=f ze€Qte(0,T),
w(0,z) =0 x €, (5.1)
w(t,z) =0 z € 0f

under the approximated weak incompressible condition (1.3)

For f € L,((0,T),L,(2)), let fo(t) = f(t) (0 <t < T) and fo(t) =0 (¢t € (0,T)).
Then, letting (w, ) be the solution to Stokes equation for f = f, on ¢t € (0,00), (w,7)
can define on ¢t € R. Moreover, this solution satisfies w(t) = 7(¢t) =0 (¢ < 0) and (5.1) on
t € (0,7). Furthermore, by Theorem 2.2, the following estimate holds: for 0 < S < T,
we have

100, 0,5). a0 < € lle oz, 0r).L0@) < Copa€™ M ILyi0m) Loy (5:2)
Similarly we have
V2w, 0.8).La(@) + IV Ly0.5).L(2) £ Capa€ Il flLy07).2402)- (5.3)
Moreover taking into account the fact about Bessel potential space:
le " ull 1, x) < Clle " ASul|,mx) < Cv~ " Mle™ Aul|, & x) (5.4)

for Banach space X, 1 <p<q¢g<oo,a=1/p—1/q, a < < oo and vy > 0 and the
estimate:

e ul| Lo rxy < Clle™" ASul| L,z x)
for0<a—1/p<landl<p< oo (see [2]), by Theorem 2.2 we obtain
IVl (0.9).Lo@) + 10l Lo ((0,9), L4 @))
< C®le ATV W] Ly () + C° e Aw]l 1, 1)
< Ce”s||e”t/\i/2vwHLP(R,LQ(Q)) + Cele A wl| L. Lo
< C®N Fll Ly, Lot (5.5)



where 1/p—1/r < 1/2.
Letting 8 =n/(2q) and £, (k = 1,2, 3) are the positive constants satisfying
1 1 1 1 1

1 1
0<--— <2, 0<-- <= Bif—t=1
p  Bply — 2 p (1—=0)ply — 2 p b6 Lyl

and setting
v = 1/(lsp), r1 = Pply, ro = (1= B)pla, (5.6)
by Sobolev embedding theorem and Holder’s inequality, we obtain
(v V)wllL,(0.9).Lq(2)
< S0l 0.s)za@nIV2UL,, 0.8) 20 I V2L 08, Lo ey IV L 0.8 oy (B7)
for any v, w € W ((0,T), Ly(€2)) N Ly,((0,T), W2(£2)) and 0 < S < T.

Proof of Theorem 2.1. Setting u* = Ty (t)a and 7 = aQquy, by Theorem 2.9 and (2.5),
(u*,7*) is the solution to (2.2) under (2.3) and satisfies

e (Du*, V2u*, V)| 1 (0,000, La(2) < Crpalltall gzi-1m ) < CM, (5:8)

where 1 < p,q < oo and )¢ is a positive number obtained in Theorem 2.7. Setting
Vo = Uq — u*, and p, = 7, — 7, we see that what (us, 7, ) is the solution to (1.4) under
(2.3) is equivalent to what (v,, ps) is the solution to

atva*Ava‘va)a:f*Nl(Ua)7N2(U‘*) te (O,T),.TGQ,
va(0,2) =0 x €1, (5.9)
valt,z) =0 te (0,T), x €I

under the approximated weak incompressible condition (1.3), where
N1 (Vg ") = (Vg - Vo + (0 - V)vg + (vg - V)u', No(u*) = (u* - V)u*.
In order to prove Theorem 2.1, we consider (5.9) under (1.3). For this purpose, we set

((w, 7))z = 10wl Ly0.19.Lo@) + V20l Ly 0.1) Lot + VT Ly(0.).Lo)
+ | wllzaio.1),L0@) + IV, 07,200 + IVO L, (07, L0)  (5.10)

with ry, ro is defined by (5.6). By (2.1), (5.2), (5.3) and (5.5), we have

(Mp=(f)))r~ < On,p,qe/\OT* fHLp((O,T*),Lq(Q)) < On,p,quOT*M' (5.11)

Set L = C, 4,7 M. To prove Theorem 2.1 by contraction mapping principle, we shall
define the underlying space X7 1, as follows:

Xrp = {(w,7) € W,((0,7), Ly(Q)") N Ly((0,T), Wg(2)"))
x Ly((0,T), WH(Q)) | w]imo = 0, {(w,7))r < 2L}. (5.12)
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Here the constant T is determined later as the sufficiently small constant. We define
the map ® as

O(w, 0) = Mp(f) — Mp(Ny(va, u*)) — Mp(Ny(u*)),

where My is the solution operator to (5.1) under (1.3). We shall prove that @ is the
contraction mapping on Xr . By (5.7) and (5.8) we have

N2 ()2, 0.8, Lo < 1 V)WL, 0.8) Lyt < CSTe* "M
for 1 < p <ooandn/2 < g < oco. By (5.2) the following inequality holds:
(M- (Nao(u")) 7+ < Crupg€® T [ N2 ()|, 07 24(2) S Crpg(T7)7€0TM? - (5.13)

for 0 < T* < Tp. In a similar way, for (v,, po) € X7+ 1 we obtain
[N (vas u) |, (0,9),L4(0)) < Ce™TSTML,
which implies
(M (N1 (Va, u*))) 7 < Crppgl| N1 (Ve ) 1070, Lg () < C(TF)7eMT ML, (5.14)
Therefore there exists a constant C' = C,, , , 1, such that
(D(Va, pa))r+ < L+ C(T*) (2T M? + M ML)

for (Va, pa) € Xr~. Taking the time T*(< Tp) sufficiently small such that
C(T*)eMT" M < 1/2 and O(T*)7e2*T" M? < /2, we have (®(w, 7))« < 2L. Therefore,
® is the mapping on Xy« ;. Moreover taking into account the facts:

<I>(w1, 7'1) — q)(’lUQ,TQ) = MT*(Nl(’LUQ, u*) — Nl(whu*))
and
Ni(we,u*) — Ny(wy, u*) = ((we — wy) - V)u* + (u* - V) (w2 — wy)

for (w;, ) € Xp«p (1 = 1,2), by (5.7), (5.8) and (5.12), we can show the following
inequality holds:

([ V1 (w2) — NI(UJl)HLP((O,T*),Lq) < On,p,q,To(T*)ve)\OT*M<(w277—2) — (w1, 1)) 1",
which implies
(®(w1,71) — ©(wa, 7)1+ < Crprgry (TH) X M {(wa, 79) — (wi,71)) 7+
Taking T* sufficiently small such that C(T*)Ye*?" M < 1/2 if necessary, we obtain
(@(wr, ) = D(ws, 72)) 7+ < (1/2)((wr, 1) — (w2, 7)) 1.

Therefore, we see that @ is the contraction mapping on Xp.. By the contraction mapping
principle, we see that ® has fixed point (va,ps). Satisfying ®(va, pa) = (Vas pa), by
(5.13), we see that (uq,Ta) = (U* + Vo, ™ + po) is the unique solution for (1.4) under
(1.3). Therefore we obtain Theorem 2.1. O



Proof of Theorem 2.12. Let (u*,7*) be a solution to (2.2) with f = g =0 and a, = ag.
By Theorem 2.9, the following estimates hold.

le™" (Bew”, V2", V™) | 1, ((0.00).La0) < Crpallasl ga-1m g < CMa™, (5.15)

where 1 < p,q < 0o. In order to look for the solution (v,, po) of (2.6) as v, = up — u*
and p, = mg — 7%, we shall obtain the solution to

Opve — Ay + Vpo = —Np(vg, u*) — Na(u*, ug) t € (0,00),z €9,
v,(0,2) =0 x €, (5.16)
Va(t, z) =0, r €09,

under the approximated weak incompressible condition (2.7), where

N1 (Va, ") = (Vo - V)Uq + (0" 4 Uq) - V)V + (Vo - V)(u" + uqg),
No(u™,ug) = (W' - V) (U + uy) + (g - V)u™.

In a similar way to Theorem 2.1, we shall define underlying space X, as follows:
Xrg = {(w,7) € (W,((0,T), Ly(Q)") N Ly((0, T), W7 (Q)"))
X Ly((0,T), W} () | wlimo = 0, al(w,7))r < Lg}, (5.17)
where ((w, 7))y is defined in (5.10). Setting the map ® defined by
®(w,0) = —Mr-(Ni(va, u")) = Mp+(Na(u", ta)),

where Mr(f) is a solution operator to (5.1) under (2.7), we shall estimate Ny (v,,u*) and
Ny (u*,uy) in a similar way to Theorem 2.1. Setting 8, £x(k = 1,2,3),~,r;(i = 1,2) as the
same positive constant in proof of Theorem 2.1, we see

cs /1 1 .
| N1 (Vars W), (0,8), 14 () < — (aLg + EerT MLg+ LLE)

and
. ST L ont a2, ror
1V2(w, o) [y 0,) a0y SC— | —e™7 MZ 4" ML
for 1 < p < oo, by (2.8), (5.2) for 0 < T” < T*, the following inequality holds:

05<MT|;(N1(1)Q, U*) + NQ(U*, Ua)»T’ S Cn,p,q,M,L,LE (Tb)'y.

In a similar way to Theorem 2.1, taking T* sufficiently small if necessary, we can prove
that @ is the contraction mapping on X7» ;. Therefore we obtain Theorem 2.12. O
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