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1 lntroduction

Although every oil & gas plant should avoid oil spills, it is impossible to have a guarantee that no

incident will occur. For instance, in 2010, Deepwater Horizon oil spill occurred in Golf of Mexico, and,

in 2011, another occurred in Campos Basin in Brazil. These events show the importance of studies
related to the problems caused by oil spills on environment and means to make contingency.

To avoid impacts of an oil spill in offshore oil & gas production, it is necessary to maintain vessels

in stand‐by with protection equipment near oil production maritime units. Determination of location
of these vessels is complex, as it is important to attend any oil spill in Iess than a critical time, according
to regulations. The main objective of this work is similar to the one presented by Costa (2007), there
is, implement an optimization model for strategic decision of the location of these facilities. It is a

covering problem, where each vessel works Iike a warehouse and accident points are clients.

This work presents an implementation similar lakovou, Douligeris, lp e Korde (1996) model, which
is. However, now this work also intends to consider oil transportation in the model. This work assumes

that oil would have constant speed and would spread in a radius trajectory.

2 Literature review

lakovou, Douligeris, lp  e Korde (1996) proposed a mixed linear integer mathematical programing
model to define Iocations of oil response installations that is the base for this work. This model was

also on experiments of Costa (2007). In this model, main objective is to determine the candidate
Iocations for warehouse opened, the quantity of equipment stored at them and quantity of equipment

that each of this warehouses would be responsible to send to maritime units in case of oil spill.

On model input, we should provide costs for opening a new facility, operational costs to maintain

equipment in facility, transportation costs in case of emergency, demands in case of accident, duration
of trips between each warehouse location candidate and clients, critical time to reach accident zone
and demands in case of accident.

Model considers that probability of having two accidents at same time is very Iow, so response
system capacity considers only one accident per scenario.

Model is as follows:

Sets

 I Candidate Iocations for vessel (warehouse)
 J Types ofequipment
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 K Client Iocations (maritime unit location)

Parameters

 \alpha_{i} Cost to open warehouse on location  i

 \beta_{ij} Cost to maintain equipment  j on location  i

 \gamma_{j} Cost to transport equipment  j per unit of time

 \tau_{ik} Travel time between warehouse  i and location  k

 C_{ij} Capacity of location  i for equipmentj

 D_{jk} Demands of equipmentj on discretization  l of client  k

 A_{ik} 1 if travel time of route between location  i and point  l of client
 k circumference takes less than critical time

M Number sufficiently big.

Variables

 x_{ij} Quantity of equipmentj stored at vessel  i

 y_{i} 1 if vessel  i opens

 z_{ijk} Quantity of equipmentj sent from vessel  i to point  l in client  k,

that is in position  p in route

min   \sum_{i}\alpha_{i}y_{i}+\sum_{i}\sum_{j}\beta_{ij}x_{ij}+\sum_{i}\sum_{j}\sum_
{k}\gamma_{j}\tau_{ik}z_{ijk} (1)

 S.t.

 \chi_{ij}\leq C_{ij}y_{i}  \forall iEI,jEJ (2)

  \sum_{i}z_{ijk}\geq D_{ik}  \forall j\in J,  kEK (3)

 z_{ijkl}\leq x_{ij}  \forall i\in I,jEJ,  k\in K (4)

 z_{ijkl}\leq MA_{ikl}  \forall i\in I,j\in J,  k\in K (5)

 x_{ij},  z_{ijk}\in \mathbb{Z}^{+}  \forall i\in I,j\in J,  k\in K (6)

 y_{i}\in\{0,1\}  \forall i\in I (7)

Objective function minimizes opening costs, operational costs to maintain equipment on
warehouse and transportation costs for scenarios concerning accidents on each of the risk points.
Constraint (2) guarantees that only opened facility can store any product, until its capacity. Constraint
(3) ensure attendance of demands of each client. Constraint (4) deals with capacity of warehouse.
Constraint (5) makes possible only trips between warehouse and clients that take Iess than critical time.
Rest of constraints deal with definition of variables.
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3 Model

On this work, we propose modifications on model proposed by lakovou, Douligeris, lp  e Korde

(1996) to consider oil transportation. Therefore, now we does not need to attend not only original
location of clients, but also all border of area affected by oil spill. We adopt two different approaches:

in a simpler model, we discretize this border in points and treat them exactly as previous model; and

in a more advanced model, we also define order of stops during attendance of points.

3.1 Discrete model considering oil transportation

In this case, oil suffers transportation after spilldue to wind and maritime currents. Therefore, now

it is necessary to reach not only oil spill origin, but also all border of affected area within critical time.
For simplification, model considers that oil spreads is in a radial trajectory, with constant speed  w , in
all directions. In critical time  (T_{crit}) , oil would cover an area inside a circle with

 r=wT_{crit} . (8  \}

Therefore, now constraints of problem have to impose that all vessels could reach all points of this
circumference within  T_{crit}.

For example, for a point  B in circumference, assuming that vessels operate with speed  v , time
required to reach oil is

 r( \theta)=\frac{v}{dist} . (9  \}

Where dist is the distance between warehouse and any point in circumference, as in Figure 1.

Warehouse is represented by point  A, with coordinates  (a, b) , and client is represented by point  C,

with coordinates  (c, d) . We should attend all points of discretized circumference formed by oil spread,
for example point B.

 t\prime\theta 0,\bullet^{eee-eee}C=(c_{k}.d_{k})
 B=(x.y) \prime'r=wT_{\iota\tau it}

dist

 \bullet^{\prime^{t}}\prime\prime
’

 A=(a_{i\prime}b_{i})

Figure 1. Distance traveled by vessel.

Expressing  x and  y in function of  \theta , we have:
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 x=c_{k}+r\cos(\theta) (10}

 y=d_{k}+r\sin(\theta) (11)

To calculate distance between A and  B , we proceed as following:

 dist=\sqrt{(x-a_{i})^{2}+(y-b_{i})^{2}} (12)

Considering that vessel has a speed  v , model only allows routes performed bellow critical time.

Therefore, now matrix of allowed routes would have following values:

 \{\begin{array}{l}
A_{ikl}=1, ifi \frac{dist}{v}\leq T_{crit}
A_{ikl}=0, ifi \frac{dist}{v}>T_{crit}
\end{array} (13}

For simplification, model discretizes circumference in a set of points, which vessel would have to

attend. For  N discretization, each points  l would have following demands

 \beta_{jkl} :

  \beta_{jkl}=\frac{\alpha_{jk}}{N} (14)

For example, if the quantity of discretization is four, clients considered in this model would be as
in Figure 2.

 l=2

  \beta_{jk2}=\frac{\alpha_{jk}}{4}
 \prime\prime\prime^{--\bullet-}.-s_{N}

 \prime tt  sss
 l=3 I

  \beta_{jk3}=\frac{\alpha_{jk}}{4}\bullet\bullet,\bullet\prime\backslash 
\backslash \backslash s\prime s_{N1' ,N\prime s_{s-}\prime}\sim.
\bullet\sim\prime\prime\prime\prime\beta_{jk1}=\frac{\alpha_{jk}}{4}l=1
 l=4

  \beta_{jk1}=\frac{\alpha_{jk}}{4}
Figure 2. Example of clientsfor new model, considering circumference divided in 4 sections.

With these new assumptions, model is now as follows:
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Sets

 I Candidate Iocations for vessel (warehouse)
 ] Types of equipment
 K Client Iocations (maritime unit location)
L Points of discretized circle

Parameters

 \alpha_{i} Cost to open warehouse on location  i

 \beta_{ij} Cost to maintain equipment  j on location  i

 \gamma_{j} Cost to transport equipment  j per unit of time

 \tau_{ikl} Travel time between warehouse  i and discretization  l of

location  k

 C_{ij} Capacity of location  i for equipmentj

 D_{jk} Demands of equipmentj on discretization  l of client  k

 A_{ikl} 1 if travel time of route between location  i and point  l of client
 k circumference takes less than critical time

M Number sufficiently big. In this case, we consider it as   \max(C_{ij})

Variables

 \chi_{ij} Quantity of equipmentj stored at vessel  i

 y_{i} 1 if vessel  i opens

 z_{ijkl} Quantity of equipmentj sent from vessel  i to point  l in client  k,

that is in position  p in route

min   \sum_{i}\alpha_{i}y_{i}+\sum_{i}\sum_{j}\beta_{ij}x_{ij}+\sum_{i}\sum_{j}\sum_
{k}\sum_{l}\gamma_{j}\tau_{ikl}z_{ijkl} (15  \}

 s.t.

 \chi_{ij}\leq C_{ij}y_{i}  \forall iEI,jEJ (16)

  \sum_{i}z_{ijkl}\geq D_{ikl}  \forall j\in J,  k\in K,  l\in L (17 \}

  \sum_{\iota}z_{ijkl}\leq x_{ii}  \forall i\in I,j\in J,  k\in K (18)

  \sum_{\iota}z_{ijkl}\leq MA_{ikl}  \forall i\in I,jEJ,  k\in K (19)

 x_{ijt}z_{ijk}\in \mathbb{Z}^{+}  \forall i\in I,j\in J,  k\in K (20)

 y_{i}\in\{0,1\}  \forall i\in I (21  \}
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Objective function minimizes opening costs, operational costs to maintain equipment on

warehouse and transportation costs for scenarios concerning accidents on each of the risk points.
Constraint (16) guarantees that onlyopened facility can store any product, until its capacity. Constraint

(17) ensure attendance of demands of each point  l of each client circumference. Constraint (18) deals
with capacity of warehouse, imposing that, for each scenario of oil spill, sum of deliveries from a

warehouse to circumference points should be lower than this warehouse capacity. Constraint (19)
makes possible only trips between warehouse and points of circumference that take Iess than critical
time. Rest of constraints deal with definition of variables.

3.2 Discrete model considering oil transportation and vessel routing

In previous approach, we only allowed clients reached before critical time in a directly route from

vessel original position. It does not take into account that vessel can attend several clients before
arriving, resulting in much more time than expected. To deal with it, we also propose a more complex
model, which can decide vessel routes and arrival times.

Sets

 I Candidate Iocations for vessel (warehouse)
 J Types ofequipment
 K Client Iocations (maritime unit location)
L Points of discretized circle, zero representing routes that come

from origin

Parameters

 \alpha_{i} Cost to open warehouse on location  i

 \beta_{ij} Cost to maintain equipment  j on location  i

 \gamma_{j} Cost to transport equipment  j per unit of time

 T_{kl_{1}l_{2}} Travel time between points in discretization  l_{1} and  l_{2} of
location  k

 \tau_{ikl} Travel time between warehouse  i and discretization  l of

location  k

 C_{ij} Capacity of location  i for equipmentj

 D_{jk} Demands of equipmentj on discretization  l of client  k

CT Critical time

Variables

 x_{ij} Quantity of equipmentj stored at vessel  i

 y_{i} 1 if vessel  i opens

 z_{ijkl} Quantity of equipmentj sent from vessel  i to point  l in client  k,

that is in position  p in route

 a_{ikl_{1}l_{2}} Vessel  i performs trip between points  l_{1} and  l_{2} of client  k

 t_{ikl} Time when point  l of client  k is attended by vessel  i
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 q_{ijkl_{1}l_{2}} Quantity of equipmentj onboard on vessel between points  l_{1}
and  l_{2} of client  k

 y_{i}+ \sum_{i}\sum_{i}\sum\sum_{jji_{jikl}}\sum_{k}\sum_{l^{l_{1}}}\sum_{l_{2}
}\gamma_{j}T_{kl_{T}l_{2}}q_{ijkl_{1}l_{2}}+\sum^{}\sum_{j}^{\beta_{ij}}\sum_{k}
^{x_{ij}}\sum_{l}^{+}\gamma\tau qijk0 (22  \}

 s.t.

 \chi_{ij}\leq C_{ij}y_{i}  \forall i\in I,j\in J (23)

  \sum_{i\in l}z_{ijkl}\geq D_{jkl}  \forall j\in J,  k\in K,  l\in L (24 \}

  \sum_{l\in L}z_{ijkl}\leq x_{ii}  \forall i\in I,jEJ,  k\in K (25)

  \sum_{l\in L}a_{ik0l}\leq 1  \forall i\in I,  k\in K (26)

  \sum_{l_{3}\in L}a_{ikl_{2}l_{3}}\leq\sum_{l_{1}\in L\prime}a_{ikl_{1}l_{2}}  \forall i\in I,  k\in K,  l_{2}\in L (27)

 a_{ik\iota l}\leq 0  \forall i\in I,  k\in K,  lEL ’ (28)

 t_{ikl_{1}}+T_{kl_{1}l_{2}}-t_{ikl_{2}}=M_{1}(1-a_{ikl_{1}l_{2}})  \forall i\in I,  k\in K,  l_{1}\in L,  l_{2}\in L (29 \}

 t_{ik0}+\tau_{ikl}-t_{ikl_{2}}=M_{1}(1-a_{ikl_{1}l_{2}})  \forall i\in I,  k\in K,  l_{2}\in L (30)

 t_{ikl_{2}} \leq M_{1}\sum_{l_{1}\in L'}(1-a_{ikl_{1}l_{2}})  \forall i\in I,  k\in K,  l_{2}\in L' (31)

 t_{ikl}\leq CT  \forall i\in I,  kEK,  l\in L (32)

 z_{ijkl_{2}} \leq M_{2}(\sum_{l_{1}\in L^{\backslash }}a_{ikl_{1}l_{2}})  \forall i\in I,j\in J,  k\in K,  l_{2}\in L (33 \}

 a_{ikl_{1}l_{2}} \leq\sum_{j}z_{ijkl_{1}}  \forall i\in I,  k\in K,  l_{1}EL',  l_{2}\in L (34)

 x_{ij}\in \mathbb{Z}^{+}q_{i_{\dot{j}}kl_{1}l_{2}}-x_{ii}\leq M_{3}(1-
a_{ikl_{1}l_{2}})  \forall i\in I,j\in J,  k\in K,  l_{1}\in L',  l_{2}\in L  (36)(35) \forall i\in I,j\in J, k\in K

 z_{ijkl}t_{ikl}t,  q_{ijkl_{I}l_{2}},  r_{ijkl}\in \mathbb{R}^{+}  \forall i\in I,  k\in K,  l_{1}\in L,  l_{2}\in L,  l\in L (37)

 y_{i},  a_{ikl_{1}l_{2}},  b_{ikl}\in\{0,1\}  \forall i\in I,  k\in K,  l_{1}\in L,  l_{2}\in L,  l\in L (38 \}

Objective function minimizes opening costs, operational costs to maintain equipment on
warehouse and transportation costs for scenarios concerning accidents on each of the risk points.

Constraint (23) guarantees that only opened facility can store any product, until its capacity. Constraint
(24) ensures attendance of demands of each point  l of each client circumference. Constraint (25)

allows deliveries only in case of warehouse has enough equipment for it and it is opened,

Constraint (26) ensures that every trip have only one beginning. Constraint (27) ensures that trips
can occur only in arcs where vessel already arrived at first client. Constraint (28) ensures that trips

cannot occur in arcs beginning and ending on same point.
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Constraints (29) and (30) calculate arrival time at each client and on first client of route,

respectively. Constraint (31) makes time be equal to zero on departing time of vessel and on cases
there is no route occurring. Constraint (32) ensures that only points reached before critical time can
be attended.

Constraint (33) ensures that deliveries only occur in points attended by a route. Constraint (34)
ensures that there is only trips in case of necessity of deliveries. Constraints (35) calculates quantity of

equipment onboard on every stop of vessel, which we consider equal to the original quantity of goods
in the vessel. Other constraints deal with definition of variables.

4 Experiments

Experimentation used same instance as Costa (2007). For experiments, we implemented model
proposed by lakovou, Douligeris, lp  e Korde (1996), as well as ourtwo model considering oil

transportation. For simple model considering oil transportation, experiments considered different
choices for quantities of discretization, ranging from lto 500. For more complex model, we also did

this, but with quantities of discretization in a range from lto 10. We considered instance with two
sizes, one with only first two clients and another one with a1110 clients.

Implementation was in Python, with Pulp library. Optimal solution was obtained using Gurobi

solver for all models and also COIN‐OR for lakovou, Douligeris, lp  e Korde (1996) model. Computer
used has following specification: Processor Intel core 172.  20GHz,  16GB memory RAM.

5 Results

5.1 Model without oil transportation

For instance with 10 clients, model constructed has 534 variables and 1088 constraints. According

to optimal solution found by solvers, Iocations4 and 5 will open. For this instance, GUROBI obtained
solution in 0.  42s and COIN‐OR in 0.  39s . Considering also time demanded to process results and make

output in Excel, time required was 1.  92s and 1.  90s , respectively.

5.2 Model with oil transportation

Time required for solving problem, for different quantities of discretization, is in Figure 3. Model
can achieve solution in acceptable computational time for any choices for discretization. Cases with
more number of points lead to a better approximation of problem, but it makes problem more difficult

to solve and it takes more time to reach optimal result. However, even in this cases, demanded time

is not so big.
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Figure 3. Computational time required for solve problem with oil transportation.

As seen on Figure 4 and Figure 5, quantity of variables and constraints of each problem have a
great increase when number of divisions is bigger.

 300000
—Instance with 2 clients

250000 —Instance with 10 clients

20000

15000

10000

5000

 0 100 200 300 400 500

Quantity of discretization

Figure 4. Number of variables for model with oil transportation.
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Figure 5. Number of constraints for model with oil transportation.
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5.3 Model with oil transportation and routing
Time required for solving problem, fordifferent quantities of discretization, is in Figure6. As model

is much more complex than previously, time required is bigger, then we defined a time limit for solver

of  5000s.  ln case this time is reached, solver stops processing and gives current results, which would
be not optimal solution. In Figure 7, we present gap obtained in each of the results. It would be zero

in cases we reached in optimal solution, and worse in cases it is near 1. This problem is much more

complex than previous, resulting in bigger computational times and solution far from optimality as
number of discretization increases.

 6000

 5000

4000

3000

2000

1000

 0

 0 2 4 6 s 10

Quantity of discretization

Figure 6. Computational time requiredfor solve problem with oil transportation and routing.
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Figure 7. Gap for problem with oil transportation and routing

Increase on time can be explained by dimension of problem, as can be seen on numberofvariables

and constraints of on Figure 8 and Figure 9.
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Figure 8, Number of variables for model with oil transportation and routing.
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Figure 9. Number of constraints for model with oil transportation and routing.

6 Conclusion

This work presented a model to define location for oil spill response installations considering oil

transportation in radial trajectory. We discretize border of oil spill regions in points and consider that
all this points should be attended by vessel. With this model we can define quantities of supplies that
each of Iocations would store and how many equipment would be sent for each risk point in case of
accident.

In addition, we also presented a more complex model capable to define sequence of stops inside

each route. With this, we can obtain time vessel reaches each client considering route travel time,

leading to a result more similar to real world.

For simple model, we could obtain results in acceptable computational time. However, for more

complex model, model demanded more time to reach optimal solution. Therefore, for future works, it
is expected to have enhancement on already implemented models, Ieading to Iess computational time.
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In addition, we expect to develop a new model considering continuous approach, without
discretization.
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