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Abstract. Under the robust characteristic cone constraint qualification (RC‐
CCQ), a represented form of the  \epsilon‐normal set to a convex set  C at  \overline{x}\in C is
proposed, where  C  :=\{x\in \mathbb{R}^{n}:g(\cdot, v)\leqq 0, \forall v\in \mathcal{V}\} , here  g:\mathbb{R}^{n}\cross \mathbb{R}^{p}arrow \mathbb{R} is
a continuous function such that for all  v\in \mathbb{R}^{p},  g(\cdot, v) is a convex function, and
 \mathcal{V}\subset \mathbb{R}^{p} is a compact and convex uncertain set. Then, the proposed result is
applied to studying approximate optimality theorems for a quasi  (\alpha, \epsilon) ‐solution
for the robust counterpart of a convex optimization problem in the face of data
uncertainty.

1 Introduction

The problem to examine a point in a given set, which minimizes a given numer‐
ical function over that set, is an interesting mathematical model, and we say
it as mathematical optimization problems. In particular, if the given numerical
function is a convex function and the given set is a convex set, it is then said
to be convex programming; see, for example, [4, 5, 15] for a more detail study.
The fact that an optimal solution of a mathematical programming problem may
not be exact but very near to it leads to the concepts of approximate solutions,
which play an important role in algorithmic study of optimization problems.
It is worth mentioning that among them, the concept of the so‐called quasi  \epsilon ‐
solution introduced by Loridan [14] is motivated by the well‐known Ekeland’s
Variational Principle [6].

In 2008, Beldiman et al. [2] introduced a new class of approximate solutions
in  scalar/vector optimization problems, and discussed the relationship among
the introduced approximate solutions. However, they did not explore the opti‐
mality conditions for such a class of approximate solutions. In this paper, we aim
to study the approximate optimality conditions for such a class of generalized
approximate solutions in robust convex optimization problems. An overview
of the optimization problems with data uncertainty and the method (robust
approach) to deal with such problems is stated in Section 3, as we shall see.
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In the face of approximate solutions in the robust convex optimization, Lee
and Lee [12] and Lee and Jiao [11] employed the robust version of Farkas’s lemma
to study some characterizations of  \epsilon‐solutions and quasi  \epsilon‐solutions, respectively.
Besides, Lee and Lee [13] and Jiao and Lee [10] proposed approximate optimality
conditions for  \epsilon‐solutions and quasi  \epsilon‐solutions in the robust convex semidefinite
programs according to its special structure, respectively.

Apart from the Farkas’s lemma approach, Strodiot et al. [16] pointed out
an effective method, i.e., by analysing  c‐normal set when the feasible set was
explicitly expressed in terms of (convex) inequality systems under Slater’s con‐
straint qualification; then they formulated approximate optimality for a convex
programming problem.

In the present paper, we focus on the study of a generalized approximate
solution in the sense of Beldiman et al. [2] for robust convex optimization prob‐
lems in the face of uncertainty data. First, we study the  c‐normal set, which is
explicitly expressed in terms of robust (convex) inequality systems, under a con‐
straint qualification called robust characteristic cone constraint qualification [7],
which is weaker than the Slater condition. Then, we examine approximate opti‐
mality theorems on the generalized approximate solution for the robust convex
optimization problem.

The rest of this paper is organized as follows. Section 2 states some no‐
tations and preliminaries. In Sect. 3, we examine the approximate optimality
theorem on the generalized approximate solution for the robust convex opti‐
mization problem. Finally, Conclusions are given in Sect. 4.

2 Preliminaries

This section gives some notations and preliminary results that will be used in
the paper. We abbreviate  (x_{1}, x_{2}, \ldots, x_{n}) by  x . The Euclidean space  \mathbb{R}^{n} is
equipped with the usual Euclidean norm  \Vert .  \Vert . The nonnegative orthant of  \mathbb{R}^{n}

is defined by  \mathbb{R}_{+}^{n}  :=\{ (x_{1} , x_{n})\in \mathbb{R}^{n} : x_{i}\geqq 0\} . The inner product in  \mathbb{R}^{n} is

defined by  \{x, y\}  :=x^{T}y for all  x,  y\in \mathbb{R}^{n} . We say that a set  A in  \mathbb{R}^{n} is convex
whenever  \mu a_{1}+(1-\mu)a_{2}\in A for all  \mu\in[0,1],  a_{1},  a_{2}\in A . For a given set
 A\subset \mathbb{R}^{n} , we denote the interior, closure and convex hull generated by  A , by
int  A , cl  A and conv  A , respectively.

Let  f be a function from  \mathbb{R}^{n} to  \overline{\mathbb{R}} , where  \overline{\mathbb{R}}  :=[-\infty, +\infty] . Here,  f is said
to be proper if for all  x\in \mathbb{R}^{n},   f(x)>-\infty and there exists  x_{0}\in \mathbb{R}^{n} such
that  f(x_{0})\in \mathbb{R} . We denote the domain of  f by dom  f , that is, dom  f  :=\{x\in
 \mathbb{R}^{n}:f(x)<+\infty\}.

The epigraph  f , epi  f , is defined by epi  f  :=\{(x, r)\in \mathbb{R}^{n}\cross \mathbb{R}:f(x)\leqq r\}.
The function  f is said to be convex if for all  \mu\in[0,1],   f((1-\mu)x+\mu y)\leqq
 (1-\mu)f(x)+\mu f(y) for all  x,  y\in \mathbb{R}^{n} ; equivalently, epi  f is convex. The function

74



75

 f is said to be concave whenever  -f is convex. Let  f :  \mathbb{R}^{n}arrow \mathbb{R}\cup\{+\infty\} be a

convex function, the (convex) subdifferential of  f at  x\in \mathbb{R}^{n} is defined by

 \partial f(x)=\{\begin{array}{l}
\{x^{*}\in \mathbb{R}^{n}:\{x^{*}, y-x\}\leqq f(y)-f(x), \forall y\in \mathbb{R}
^{n}\}, if x\in dom f,
\emptyset, otherwise.
\end{array}
More generally, for any  \epsilon\geqq 0 , the  c‐subdifferential of  f at  x\in \mathbb{R}^{n} is defined by

 \partial_{\epsilon}f(x)=\{\begin{array}{l}
\{x^{*}\in \mathbb{R}^{n}:\{x^{*}, y-x\}\leqq f(y)-f(x)+\epsilon, \forall y\in 
\mathbb{R}^{n}\}, if x\in dom f,
\emptyset, otherwise.
\end{array}
We say  f is a lower semicontinuous function if   \lim_{yarrow}\inf_{x}f(y)\geqq f(x) for all

 x\in \mathbb{R}^{n} . Let  \delta_{C} be the indicator function with respect to a closed convex subset
 C of  \mathbb{R}^{n} , that is,  \delta_{C}(x)=0 if  x\in C , and  \delta_{C}(x)=+\infty if  x\not\in C.

Definition 2.1 (  \epsilon‐Normal Set) Let  C\subset \mathbb{R}^{n} be a closed convex set and   x\in

 C . Then  N_{\epsilon}(x, C)  :=\{\xi\in \mathbb{R}^{n}:\{\xi, y-x\}\leqq\epsilon, \forall y\in C\} is called the  \epsilon ‐normal set

to  C at  x.

The following two lemmas are the sum rule and the scalar product rule of
the  \epsilon‐subdifferential that will be used in the sequel.

Lemma 2.1 [5, Theorem 2.115] Consider two proper convex functions  f_{1},  f_{2} :
 \mathbb{R}^{n}arrow\overline{\mathbb{R}} such that ridom   f_{1}\cap ridom   f_{2}\neq\emptyset . Then for  \epsilon>0,

  \partial_{\epsilon}(f_{1}+f_{2})(\overline{x})=\bigcup_{\in\in 1+2=\in}
(\partial_{\epsilon_{1}}f_{1}(\overline{x})+\partial_{\epsilon_{2}}f_{2}
(\overline{x}))\in 1\geqq 0\in 2\geqq 0
Lemma 2.2 [5, Theorem 2.117] For a proper convex function  f :  \mathbb{R}^{n}arrow\overline{\mathbb{R}} and
any  \epsilon\geqq 0,

 \partial_{\epsilon}(\lambda f)(\overline{x})=\lambda\partial_{\epsilon/\lambda}
f(\overline{x}), \forall\lambda>0.

3 Main Results

3.1 Model Statements

A standard form of a convex programming problem [4, 5] is the one:

  \min f(x) subject to  g_{i}(x)\leqq 0,  i=1,  m , (CP)

where  f,  g_{i} :  \mathbb{R}^{n}arrow \mathbb{R},  i=1,  m are convex functions.

The convex programming problem (CP) in the face of data uncertainty in
the constraints can be captured by the one:

  \min f(x) subject to  g_{i}(x, v_{i})\leqq 0,  i=1,  m , (UCP)
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where  g_{i} :  \mathbb{R}^{n}\cross \mathbb{R}^{q}arrow \mathbb{R} is continuous,  g_{i}(\cdot, v_{i}) is convex and  v_{i}\in \mathbb{R}^{q} is an
uncertain parameter which belongs to the set  \mathcal{V}_{i}\subset \mathbb{R}^{q},  i=1,  m . The prob‐
lem (UCP) is to optimize convex optimization problems with data uncertainty
(incomplete data), which means that input parameters of these problems are
not known exactly at the time when solution has to be determined [3].

In the present paper, we explore approximate optimality theorem for prob‐
lem (UCP) by examining its robust (worst‐case) counterpart [1, 3]:

  \min f(x) subject to  g_{i}(x, v_{i})\leqq 0,  \forall v_{i}\in \mathcal{V}_{i},  i=1,  m . (RCP)

Denote by  F  :=\{x\in \mathbb{R}^{n}:g_{i}(x, v_{i})\leqq 0, \forall v_{i}\in \mathcal{V}
_{i}, i=1, m\} as the feasible
set of problem (RCP).

3.2 Solution Concepts

Consider the robust counterpart (RCP) of problem (UCP).

Definition 3.1 Let  \alpha\geqq 0 and  \epsilon\geqq 0 be given, then  \overline{x} is said to be

(i) an  \epsilon ‐solution of problem (RCP), if  f(\overline{x})\leqq f(x)+\epsilon,  \forall x\in F ;

(ii) a quasi  \alpha ‐solution of problem (RCP), if  f(\overline{x})\leqq f(x)+\alpha\Vert x-\overline{x}\Vert,  \forall x\in F ;

(iii) a regular  (\alpha, \epsilon) ‐solution of problem (RCP), if for any  x\in F,\overline{x} is an  \epsilon‐
solution of problem (RCP) as well as a quasi  \alpha‐solution.

Now, we introduce a generalized approximate solution, i.e., the so‐called
quasi  (\alpha, \epsilon) ‐solution, for problem (RCP).

Definition 3.2 [2] Let  \alpha\geqq 0 and  \epsilon\geqq 0 be given, then  \overline{x} is said to be a quasi
 (\alpha, \epsilon) ‐solution of problem (RCP), if

 f(\overline{x})\leqq f(x)+\alpha\Vert x-\overline{x}\Vert+\epsilon, \forall 
x\in F.

3.3 Approximate Optimality Theorem

In this subsection, we establish approximate optimality theorem for (RCP) un‐
der a robust characteristic cone constraint qualification [7], that is, the cone

  \bigcup_{v_{i}\in \mathcal{V}_{\dot{i}},\lambda_{i}\geqq 0} epi  ( \sum_{i=1}^{m}\lambda_{i}g_{i}(\cdot, v_{i}))^{*}
is closed and convex.

Note that the set  D  := \bigcup_{v_{i}\in \mathcal{V}_{\dot{i}},\lambda_{i}\geqq 0} epi  ( \sum_{i=1}^{m}\lambda_{i}g_{i}(\cdot, v_{i}))^{*} is a cone in  \mathbb{R}^{n+1} , which

is called the robust characteristic cone [7].
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Definition 3.3 We say a robust characteristic cone constraint qualification (RC‐
CCQ) holds if the robust characteristic cone  D is closed and convex.

Jeyakumar and Li [7] have shown that the robust characteristic cone  D is convex
whenever  g_{i}(x, \cdot) is concave and  \mathcal{V}_{i}\subseteq \mathbb{R}^{q},  i=1,  m , is convex; in addition,
they also proved that the robust characteristic cone  D is closed whenever the
robust slater condition holds, that is,  \{x\in \mathbb{R}^{n}:g_{i}(x_{0}, v_{i})<0,  \forall v_{i}\in \mathcal{V}_{i},  i=

 1,  m\}\neq\emptyset.

3.3.1  \epsilon‐Optimality conditions for an unconstrained problem

Lemma 3.1 Consider the unconstrained convex programming problem:
  \min f(x) subject to  x\in \mathbb{R}^{n}.  (CP_{u})

Then  \overline{x} is an  \epsilon ‐solution of  (CP_{u}) if and only if  0\in\partial_{\epsilon}f(\overline{x}) .

Theorem 3.1 Let  \overline{x} be a quasi  (\alpha, \epsilon) ‐solution for  (CP_{u}) . Then there exist
 \overline{\epsilon}_{f}\geqq 0 and  \overline{c}_{b}\geqq 0 with  \overline{\epsilon}_{f}+\overline{\epsilon}_{b}=\epsilon , such that

 0\in\partial_{\overline{\epsilon}}ff(\overline{x})+
\alpha\partial_{\overline{\epsilon}_{b}/\alpha}\Vert\cdot-\overline{x}
\Vert(\overline{x}) .

Remark 3.1 For any  \epsilon\geqq 0 , let  \overline{x}=0,  \partial_{\epsilon}\Vert\overline{x}\Vert=\partial\Vert\overline{x}\Vert=
\mathbb{B}.

With the help of Remark 3.1, we get the restatement of Theorem 3.1.

Theorem 3.2 (Restatement of Theorem 3.1) Consider the unconstrained
convex programming problem  (CP_{u}) . Let  \overline{x} be a quasi  (\alpha, \epsilon) ‐solution for  (CP_{u}) .
Then there exist  \overline{\epsilon}_{f}\geqq 0 and  \overline{\epsilon}_{b}\geqq 0 with  \overline{\epsilon}_{f}+\overline{\epsilon}_{b}=\epsilon , such that

 0\in\partial_{\overline{\epsilon}}ff(\overline{x})+\alpha \mathbb{B}.

3.3.2 Representation of the  \epsilon‐normal set

In order to obtain the approximate optimality condition in terms of the con‐
straint functions  g_{i}(x, v_{i})\leqq 0,  \forall v_{i}\in \mathcal{V}_{i},  i=1,  m , the  c ‐normal set (see
Definition 2.1) must be explicitly expressed in their terms. Below, we present
such a result, which modifies the one studied by Strodiot et al [16], under the ro‐
bust characteristic cone constraint qualification (see Definition 3.3) rather than
the Slater’s constraint qualification.

Proposition 3.1 Let  \epsilon\geqq 0 be given. Let  g :  \mathbb{R}^{n}\cross \mathbb{R}^{p}arrow \mathbb{R} be continuous
function such that for all  v\in \mathbb{R}^{p},  g(\cdot, v) is a convex function. Suppose that
 \mathcal{V}\subset \mathbb{R}^{p} is compact and convex, and (RCCCQ) holds. Let  \overline{x}\in C:=\{x\in
 \mathbb{R}^{n}:g(\cdot, v)\leqq 0,  \forall v\in \mathcal{V}\} . Then  \xi\in N_{\epsilon}(\overline{x}, C) if and only if there exist  \overline{\lambda}\geqq 0,
 \overline{v}\in \mathcal{V} and  \overline{\epsilon}\geqq 0 such that

 \overline{\epsilon}\leqq\overline{\lambda}g(\overline{x},\overline{v})+\epsilon and  \xi\in\partial_{\overline{\epsilon}}(\overline{\lambda}g)(\overline{x},
\overline{v}) .

Remark 3.2 We mention here that if  \epsilon=0 , then the  \epsilon ‐normal set at  \overline{x} to  C

becomes a normal cone at  \overline{x} to  C . With the same condition (RCCCQ), Jiao et
al [9] obtained a result, which is the representation of the normal cone  \overline{x} to  C.
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3.3.3 Approximate optimality conditions

Now, we are ready to give the main theorem in the paper, which is the approx‐
imate optimality condition for a quasi  (\alpha, \epsilon) ‐solution of problem (RCP) under
the fulfilment of the robust characteristic cone constraint qualification.

Theorem 3.3 (Approximate Optimality Theorem) Let  \alpha\geqq 0 and  \epsilon\geqq 0

be given. Let  g_{i} :  \mathbb{R}^{n}\cross \mathbb{R}^{q}arrow \mathbb{R},  i=1,  m be continuous functions such that
for each  v_{i}\in \mathbb{R}^{q},  g_{i}(\cdot, v_{i}) is convex on  \mathbb{R}^{n} . Suppose that the (RCCCQ) condition
holds. Then,  \overline{x} is a quasi  (\alpha, \epsilon) ‐solution of problem (RCP) if and only if there
exist  \overline{\epsilon}_{0}\geqq 0,\overline{\epsilon}_{i}\geqq 0,\overline{v}_{i}
\in \mathcal{V}_{i} and  \overline{A}_{i}\geqq 0,  i=1,  m such that

 0 \in\partial_{\overline{\epsilon}_{0}}f(\overline{x})+\sum_{i=1}^{m}\partial_{
\overline{\epsilon}_{\dot{i}}}(\overline{\lambda}_{i}g_{i}(\cdot,\overline{v}
_{i}))(\overline{x})+\alpha \mathbb{B},
  \sum_{i=0}^{m}\overline{\epsilon}_{i}-\epsilon\leqq\sum_{i=1}^{m}
\overline{\lambda}_{i}g_{i}(\overline{x},\overline{v}_{i}) .

4 Conclusions

In this paper, we studied a generalized approximate solution, i.e., quasi  (\alpha, \epsilon) ‐
solution for a robust convex optimization problem. Approximate optimality
theorems for the generalized approximate solution in the robust convex opti‐
mization problem under the (RCCCQ) condition were studied, after we explored
the representation of the  \epsilon‐normal set to a convex set (see Proposition 3.1). It is
worth mentioning that Proposition 3.1 played a key role in establishing our main
results, which informed us that our approach in this paper was different from
[10−12]. Besides, we claim that most of the results of this paper are presented
in the paper [8] by the authors.
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