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Abstract

In this paper, we propose a new resolvent in complete geodesic spaces and we
show that it is well‐defined as a single valued mapping. Moreover, we propose
spherical nonspreadingness of sum‐type and we show that the new resolvent
satisfies this condition.

1 Introduction

Let X be a complete CAT(0) space and  f a proper lower semicontinuous convex
function from  Xinto ]  -\infty,  \infty]. A resolvent for  f is defined by

 J_{f}x= \arg\min_{\in yX}\{f(y)+d(y, x)^{2}\}
for all  x\in X . In 1998, Mayer [7] proved its well‐definedness; see also Jost [2]. It is
known that  J_{f} is nonspreading, that is,

 2d(J_{f}x, J_{f}y)^{2}\leqq d(J_{f}x, y)^{2}+d(x, J_{f}y)^{2}

for all  x,  y\in X . See [6] for more details.
Let  X be a complete CAT(I) space with  d(v, v')<\pi/2 for all  v,  v'\in X and  fa

proper lower semicontinuous convex function from  X into ]  -\infty,  \infty]. In this case,  a
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resolvent of  f is defined by

 Q_{f}x= \arg\min_{y\in X}\{f(y)+\tan d(y, x)\sin d(y, x)\}
for all  x\in X . In 2016, Kimura and Kohsaka [5] proved its well‐definedness. They
also showed that the resolvent is spherically nonspreading of product‐type, that is,

 \cos^{2}d(Q_{f}x, Q_{f}y)\geqq\cos d(Q_{f}x, y)\cos d(x, Q_{f}y)

for all  x,  y\in X.
In this paper, we propose a new resolvent in a complete CAT(I) space and we

show that it is well‐defined as a single‐valued mapping. Moreover, we propose spher‐
ical nonspreadingness of sum‐type and we show that the new resolvent satisfies this
condition.

2 Preliminarles

Let  X be a metric space with metric  d . We denote by  \mathcal{F}(T) the set of all fixed points
of a mapping from  X into itself. A continuous mapping  c :  [0, l]arrow X is called geodesic
if  c satisfies  c(0)=x,  c(l)=y and  d(c(s), c(t))=|s-t| for all  x,  y\in X and  s,  t\in[0,1].
Its image, which is denoted by  [x, y] , is called geodesic segment with endpoints  x and
X.  X is said to be a geodesic space if there exists  [x, y] for all  x,  y\in X . In this paper,
when  X is a geodesic space, its geodesic is always assumed to be unique.

Let  X be a geodesic space. There exists a unique point  z\in[x, y] such that  d(x, z)=
 (1-\alpha)d(x, y) and  d(z, y)=\alpha d(x, y) for all  x,  y\in X and  \alpha\in[0,1] . This point is
called convex combination of  x and  X , which is denoted by  \alpha x\oplus(1-\alpha)y . A subset
 C\subset X is said to be convex if  [x, y]\subset X for all  x,  y\in C . A geodesic triangle of
vertices  x,  y,  z\in X is defined by  [x, y]\cup[y, z]\cup[z, x] , which is denoted by  \triangle(x, y, z) .

Let  M_{\kappa}^{2} be a two dimensional model space for all  \kappa\in \mathbb{R} . For example,  M_{0}^{2}=\mathbb{R}^{2},
 M_{1}^{2}=\mathbb{S}^{2} and  M_{-1}^{2}=\mathbb{H}^{2} . A comparison triangle to  \triangle(x, y, z)\subset X of vertices
 \overline{x},\overline{y},\overline{z}\in M_{\kappa}^{2} is defined by  [\overline{x},\overline{y}]\cup[\overline{y},\overline{z}]\cup[\overline{z},
\overline{x}] with  d(x, y)=d(\overline{x},\overline{y}),  d(y, x)=d(\overline{y},\overline{z})
and  d(z, x)=d(\overline{z},\overline{x}) , which is denoted by  \triangle(\overline{x},\overline{y},\overline{z})-.\overline{z}\in[\overline{x}
,\overline{y}] is called comparison
point of  z\in[x, y] if  d(x, z)=d(\overline{x},\overline{z}) holds. For all  \kappa\in \mathbb{R},  X is called a CAT  (\kappa)
space if  d(p, q)\leqq d(\overline{p},\overline{q}) holds whenever  \overline{p},\overline{q}\in\triangle- are comparison points for  p,  q\in\triangle.
In general, if  \kappa<\kappa' , then the CAT  (\kappa) spaces are CAT  (\kappa') spaces [1]. The following
lemma is important to show the main theorem.

Lemma 2.1 ([3]). Let  X be a complete CAT(I) space,  x,  y,  z\in X with  d(x, y)+
  d(y, z)+d(z, x)<2\pi , and  \alpha\in[0,1] . Then

 \cos d(\alpha x\oplus(1-\alpha)y, z)\sin d(x, y)

 \geqq\cos d(x, z)\sin\alpha d(x, y)+\cos d(y, z)\sin(1-\alpha)d(x, y) .
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Lemma 2.2 ([4]). Let  X,  x,  y,  z , and  \alpha be the same as in Lemma 2.1. Then

  \cos d(\frac{1}{2}x\oplus\frac{1}{2}y, z)\cos\frac{1}{2}d(x, y)\geqq\frac{1}
{2}\cos d(x, z)+\frac{1}{2}\cos d(y, z) .

Lemma 2.3 ([5]). Let  X,  x,  y,  z , and  \alpha be the same as in Lemma 2.1. If  d(x, z)<\pi/2
and  d(y, z)<\pi/2 , then

 \cos d(\alpha x\oplus(1-\alpha)y, z)\geqq\alpha\cos d(x, z)+(1-\alpha)\cos d(y,
z) .

Let  X be a geodesic space and  f a function from  Xinto ]  -\infty,  \infty]. The function
 f is said to be lower semicontinuous if the set  \{x\in X|f(x)\leqq a\} is closed for all

 a\in \mathbb{R} . If  f is continuous, then it is lower semicontinuous. The domain of  f is defined
by  \{x\in X|f(x)\in \mathbb{R}\} , which is denoted by dom f . The function  f is said to be
proper if dom f is nonempty. The function is said to be convex if

 f(\alpha x\oplus(1-\alpha)y)\leqq\alpha f(x)+(1-\alpha)f(y)

for all  x,  y\in X and  \alpha\in ]  0,1 [.

Lemma 2.4 ([5]). Let  X be a complete CAT(I) space with  d(v, v')<\pi/2 for all
 v,  v'\in X,  f a proper lower semicontinuous convex function from  X into ]  -\infty,  \infty ]
and  p an element of X. Suppose that   f(x_{n})arrow\infty whenever  \{x_{n}\} is a sequence of  X

with  d(p, x_{n})arrow\pi/2 . Then   \arg\min_{X}f is nonempty. Further, if

 x,   y\in dom f,  x \neq y\Rightarrow f(\frac{1}{2}x\oplus\frac{1}{2}y)<\frac{1}{2}f(x)+\frac{1}
{2}f(y) ,

then   \arg\min_{X}f consists of one point.

Lemma 2.5 ([5]). Let  X be a complete CAT(I) space with  d(v, v')<\pi/2 for all
 v,  v'\in X. Then every proper lower semicontinuous convex function from  X into
 ]-\infty,  \infty] is bounded below.

3 Resolvents for convex functions in complete CAT(I) spaces
Let  X be a metric space and  T a mapping from  X into itself. Then  T is said to be
spherically nonspreading of sum‐type if

2  \cos d  (Tx, Ty)\geqq\cos d(Tx, y)+\cos d (  x , Ty)

for all  x,  y\in X . It is obvious that if  T is spherically nonspreading of sum‐type, then
 T is spherically nonspreading of product‐type.

In this section, we show that a new resolvent

 R_{f^{X}}:= \arg\min_{\in yX}\{f(y)-\log(\cos d(y, x))\}

143



144

is well‐defined, where  f is a proper lower semicontinuous convex function. Moreover
we show the fundamental properties of the new resolvent.

Throughout this section, we suppose that  X is a complete CAT(I) space with
 d(v, v')<\pi/2 for all  v,  v'\in X.

Lemma 3.1. Let  f be a proper lower semicontinuous convex function from  X into
 ]-\infty,  \infty] . If

 g(\cdot)=f(\cdot)-\log(\cos d(\cdot,p))

for each  p\in X , then  g is a proper lower semicontinuous convex function from  X into
 ]-\infty,  \infty].

Proof. Let  x,  y\in X and  \alpha\in ]  0,1 [. From Lemma 2.3, we know that

 \cos d(\alpha x\oplus(1-\alpha)y,p)\geqq\alpha\cos d(x,p)+(1-\alpha)\cos d(y,p)

holds for all  p\in X . Since ‐  \log t is decreasing and convex for all  t\geqq 0 , we get

 -\log(\cos d(\alpha x\oplus(1-\alpha)y,p))\leqq-\log(\alpha\cos d(x,p)+(1-
\alpha)\cos d(y,p))

 \leqq-\alpha\log(\cos d(x,p))-(1-\alpha)\log(\cos d(y,p)) .

Thus  g is convex. On the other hand, it is obvious that  g is proper and lower semi‐
continuous.  \square 

Theorem 3.2. Let  f be a proper lower semicontinuous convex function from  X into
 ]-\infty,  \infty] . If

 g(\cdot)=f(\cdot)-\log(\cos d(\cdot,p))

for each  p\in X , then   \arg\min_{X}g consists of one point.

Proof. Let  \{x_{n}\} be a sequence of  X with   \lim_{narrow\infty}d(x_{n},p)=\pi/2 for each  p\in X.
Then, it is obvious that   \lim_{narrow\infty}(-\log(\cos d(x_{n},p)))arrow\infty . On the other hand, from
Lemma 2.5, we know that there exists  K\in \mathbb{R} such that  f(x)\geqq K for all  x\in X . So,
we get

  g(x_{n})\geqq K+\log(\cos d(x_{n},p))arrow\infty

and hence   g(x_{n})arrow\infty . From Lemma 2.4 and 3.1,   \arg\min_{X}g is nonempty.
We next show that   \arg\min_{X}g consists of one point. Suppose that  x,   y\in dom f with

 x\neq y . Then, Lemma 2.2 implies that

  \cos d(\frac{1}{2}x\oplus\frac{1}{2}y,p)>\cos d(\frac{1}{2}x\oplus\frac{1}{2}
y,p)\cos\frac{1}{2}d(x, y)
  \geqq\frac{1}{2}\cos d(x,p)+\frac{1}{2}\cos d(y,p)

for all  p\in X . Further, since‐  \log t is decreasing and convex for all  t>0 , we get

‐   \log(\cos d(\frac{1}{2}x\oplus\frac{1}{2}y,p))<-\log(\frac{1}{2}\cos d(x,p)+
\frac{1}{2}\cos d(y,p))
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  \leqq-\frac{1}{2}\log(\cos d(x,p))-\frac{1}{2}\log(\cos d(y,p)) .

Since  f is convex, the inequality

 g( \frac{1}{2}x\oplus\frac{1}{2}y)<\frac{1}{2}g(x)+\frac{1}{2}g(y)
holds. Thus   \arg\min_{X}g consists of one point.  \square 

Definition 3.3. Let  f be a proper lower semicontinuous convex function from  X into
 ]-\infty,  \infty] . Then we define a new resolvent  R_{f} :  Xarrow X by

 R_{f}x= \arg\min_{y\in X}\{f(y)-\log(\cos d(y, x))\}
for all  x\in X . From Theorem 3.2, we know that  R_{f} is well‐defined.

Remark 3.4. Let  C be a nonempty closed convex subset of  X . If  f=i_{C} , then
 R_{f}=P_{C} , where  P_{C} is metric projection from  X onto  C . In fact,

 R_{f}x= \arg\min_{y\in C}\{f(y)-\log(\cos d(y, x))\}
 = \arg\min_{y\in C}\{-\log(\cos d(y, x))\}=\arg\min_{y\in C}d(y, x)=P_{C}x

for all  x\in X.

Theorem 3.5. Let  f be a proper lower semicontinuous convex function from  X into
 ]-\infty,  \infty] and  R_{f} a resolvent of  f . Then the following properties hold:

(i)  R_{f} is spherically nonspreading of sum‐type;
(ii)   \mathcal{F}(R_{f})=\arg\min_{X}f.

Proof. Put  T=R_{f} . We first show (i). Let  x,  y\in X with Tx  \neq Ty and put
 z_{t}=tTx\oplus(1-t)Ty for all   t\in ]  0,1 [. Then, by the definition of  T and convexity of
 f , we have

 f(Ty)-\log(\cos d(Ty, y))\leqq f(z_{t})-\log(\cos d(z_{t}, y))

 \leqq tf(Tx)+(1-t)f(Ty)-\log(\cos d(z_{t}, y))

and hence

 t (f(Tx)-f(Ty)) \geqq\log(\cos d(z_{t}, y))-\log(\cos d(Ty, y))

 = \log(\frac{\cos d(z_{t},y)}{\cos d(Ty,y)}) .

So, using Lemma 2.1 and putting  D=d  (Tx , Ty  ) , we get

 e^{t(f(Tx)-f(Ty))}\sin D
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  \geqq\frac{\cos d(z_{t},y)\sin D}{\cos d(Ty,y)}
  \geqq\frac{\cos d(Tx,y)\sin tD+\cos d(Ty,y)\sin(1-t)D}{\cos d(Ty,y)}
 = \frac{\cos d(Tx,y)\sin tD+\cos d(Ty,y)\sin D\cos tD-\cos d(Ty,y)\cos D\sin 
tD}{\cos d(Ty,y)}
 = \sin tD\frac{\cos d(Tx,y)-\cos d(Ty,y)\cos D}{\cos d(Ty,y)}+\sin D\cos tD
 = \sin tD\frac{\cos d(Tx,y)-\cos d(Ty,y)\cos D}{\cos d(Ty,y)}+\sin D-2\sin 
D\sin^{2}\frac{t}{2}D

and hence

  \sin D(\frac{e^{t(f(Tx)-f(Ty))}-1}{t})
  \geqq\frac{\sin tD}{t}\frac{\cos d(Tx,y)-cosd(Ty,y)}{\cos d(Ty,y)}

cos

 D- \frac{2}{t}\sin D\sin^{2}\frac{t}{2}D.
Letting  t\downarrow 0 , we obtain

  \sin D (f(Tx)-f(Ty)) \geqq\frac{D}{\cos d(Ty,y)}(\cos d(Tx, y)-\cos d(Ty, y)
\cos D) .

From this inequality, we also know that

  \sin D (f(Ty)-f(Tx)) \geqq\frac{D}{\cos d(Tx,x)}(\cos d(x, Ty)-\cos d(Tx, x)
\cos D)
holds. Adding these inequalities, we get

 0 \geqq\frac{1}{\cos d(Ty,y)}(\cos d(Tx, y)-\cos d(Ty, y)\cos D)
 + \frac{1}{\cos d(Tx,x)}(\cos d(x, Ty)-\cos d(Tx, x)\cos D) .

So we have

2   \cos D\geqq\frac{1}{\cos d(Ty,y)}\cos d(Tx, y)+\frac{1}{\cos d(Tx,x)}\cos d (  x ,  Ty )

 \geqq\cos d(Tx, y)+\cos d (  x , Ty).

Thus we get the conclusion.
We next show (ii). Let  u \in\arg\min_{X}f . Then we have

 f(u)-\log(\cos d(u, u))=f(u)\leqq f(y)\leqq f(y)-\log(\cos d(y, u))
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for all  y\in X . Hence we get

 f(u)- \log(\cos d(u, u))=\inf_{y\in X}\{f(y)-\log(\cos d(y, u))\}.
This implies that  u\in \mathcal{F}(T) . Inversely, let  u\in \mathcal{F}(T) and   t\in ]  0,1 [. Then, by the
definition of  T and the convexity of  f , we have

 f(u)=f(u)-\log(\cos d(u, u))

 \leqq f(ty \oplus(1-t)u)-\log(\cos d(ty\oplus(1-t)u, u))

 =f(ty \oplus(1-t)u)-\log(\cos td(y, u))

 \leqq tf(y)+(1-t)f(u)-\log(\cos td(y, u))

and hence

 f(u) \leqq f(y)-\frac{\log(\cos td(y,u))}{t}
for all  y\in X . Letting  t\downarrow 0 , we obtain  f(u)\leqq f(y) . This implies that  u \in\arg\min_{X}f.

 \square 
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