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Abstract
In this paper, we propose a new resolvent in complete geodesic spaces and we
show that it is well-defined as a single valued mapping. Moreover, we propose
spherical nonspreadingness of sum-type and we show that the new resolvent
satisfies this condition.

1 Introduction

Let X be a complete CAT(0) space and f a proper lower semicontinuous convex
function from X into |—00,o0]. A resolvent for f is defined by

Jyx = argmin {f(y) + d(y, 55)2}
yeX

for all z € X. In 1998, Mayer [7] proved its well-definedness; see also Jost [2]. It is
known that Jy is nonspreading, that is,

2d(‘]fxa ']fy)2 g d(JfI, y)2 + d($7 ny)2

for all x,y € X. See [6] for more details.
Let X be a complete CAT(1) space with d(v,v") < w/2 for all v,v’ € X and f a
proper lower semicontinuous convex function from X into |—oo,00]. In this case, a
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resolvent of f is defined by
Qgz = argmin {f(y) + tand(y, z) sind(y, z)}
yeX

for all z € X. In 2016, Kimura and Kohsaka [5] proved its well-definedness. They
also showed that the resolvent is spherically nonspreading of product-type, that is,

cos? d(Qrx, Qry) 2 cosd(Qrx,y)cosd(z, Qry)

for all x,y € X.

In this paper, we propose a new resolvent in a complete CAT(1) space and we
show that it is well-defined as a single-valued mapping. Moreover, we propose spher-
ical nonspreadingness of sum-type and we show that the new resolvent satisfies this
condition.

2 Preliminaries

Let X be a metric space with metric d. We denote by F(T') the set of all fixed points
of a mapping from X into itself. A continuous mapping ¢ : [0,1] — X is called geodesic
if ¢ satisfies ¢(0) = z, ¢(l) = y and d(c(s), c(t)) = |s—t| for all x,y € X and s,¢ € [0, 1].
Its image, which is denoted by [z, y], is called geodesic segment with endpoints = and
X. X is said to be a geodesic space if there exists [z, y] for all z,y € X. In this paper,
when X is a geodesic space, its geodesic is always assumed to be unique.

Let X be a geodesic space. There exists a unique point z € [z, y] such that d(z, z) =
(1 — w)d(z,y) and d(z,y) = ad(z,y) for all z,y € X and o € [0,1]. This point is
called convex combination of z and X, which is denoted by ax @ (1 — a)y. A subset
C C X is said to be convex if [z,y] C X for all z,y € C. A geodesic triangle of
vertices x,y,z € X is defined by [z, y] U [y, 2] U [z, 2], which is denoted by A(z,y, 2).

Let M2 be a two dimensional model space for all k € R. For example, Mg = R,
M? = S? and M2, = H?. A comparison triangle to A(z,y,2) C X of vertices
Z,7,z € M2 is defined by [z, 7] U [7, 2] U [z, Z] with d(z,y) = d(z,7),d(y,z) = d(7, Z)
and d(z,x) = d(Z,7), which is denoted by A(Z,7, 2). Z € [z, 7] is called comparison
point of z € [z,y] if d(z,z) = d(F,Z) holds. For all kK € R, X is called a CAT(k)
space if d(p, q) < d(p, ) holds whenever p,g € A are comparison points for p,q € A.
In general, if k¥ < ’, then the CAT (k) spaces are CAT(x') spaces [1]. The following
lemma is important to show the main theorem.

Lemma 2.1 ([3]). Let X be a complete CAT(1) space, x,y,z € X with d(x,y) +
d(y, z) + d(z,x) < 2w, and « € [0,1]. Then

cosd(ax @ (1 — o)y, z) sind(z,y)

= cosd(x, z) sinad(x,y) 4+ cosd(y, z) sin(1 — a)d(z,y).



Lemma 2.2 ([4]). Let X, z,y,z, and o be the same as in Lemma 2.1. Then
d (52 y.z) cos Ld(e.y) 2 ¢ cosd(z,2) + 3 cosd(y,2)
cosd | 5 ® 5y, z ) cos 5d(z,y) 2 5 cosd(z, 2) + 5 cosd(y, 2).

Lemma 2.3 ([5]). Let X,z,y, z, and o be the same as in Lemma 2.1. Ifd(z,z) < w/2
and d(y, z) < /2, then

cosd(ax @ (1 — a)y,z) = acosd(z, z) + (1 — o) cosd(y, 2).

Let X be a geodesic space and f a function from X into |—oo,00]. The function
f is said to be lower semicontinuous if the set {x € X | f(z) < a} is closed for all
a € R. If f is continuous, then it is lower semicontinuous. The domain of f is defined
by {z € X | f(x) € R}, which is denoted by domf. The function f is said to be
proper if domf is nonempty. The function is said to be convex if

flaz @ (1 - a)y) < af(x) +(1-a)f(y)
for all z,y € X and « €10, 1].

Lemma 2.4 ([5]). Let X be a complete CAT(1) space with d(v,v') < w/2 for all
v,v" € X, [ a proper lower semicontinuous convez function from X into ]—oo, 0]
and p an element of X. Suppose that f(x,) — oo whenever {x,} is a sequence of X
with d(p, ) — 7/2. Then argminy f is nonempty. Further, if

1

sy edomfo 2y f (o0 50) < 310+ 370),

then argminy f consists of one point.

Lemma 2.5 ([5]). Let X be a complete CAT(1) space with d(v,v") < 7/2 for all
v,v' € X. Then every proper lower semicontinuous conver function from X into
|—00, 0] is bounded below.

3 Resolvents for convex functions in complete CAT(1) spaces

Let X be a metric space and T a mapping from X into itself. Then T is said to be
spherically nonspreading of sum-type if

2cosd(Txz, Ty) = cosd(Tx,y) + cosd(x, Ty)

for all x,y € X. It is obvious that if T' is spherically nonspreading of sum-type, then
T is spherically nonspreading of product-type.
In this section, we show that a new resolvent

Ryx = argmin{ f(y) — log(cosd(y, z))}
yeX
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is well-defined, where f is a proper lower semicontinuous convex function. Moreover
we show the fundamental properties of the new resolvent.

Throughout this section, we suppose that X is a complete CAT(1) space with
d(v,v") < /2 for all v,v’ € X.
Lemma 3.1. Let f be a proper lower semicontinuous convez function from X into
|—o0, 00]. If

9(-) = f(-) — log(cos d(:, p))

for each p € X, then g is a proper lower semicontinuous convex function from X into
|—00, ).

Proof. Let z,y € X and « € |0, 1[. From Lemma 2.3, we know that

cosd(ax @ (1 — a)y,p) = acosd(x,p) + (1 — o) cosd(y, p)

holds for all p € X. Since —logt is decreasing and convex for all ¢ 2 0, we get

< —log(acosd(z,p) + (1 — a) cosd(y, p))

—log(cosd(az @ (1 — a)y,p)) =
< —alog(cosd(z,p)) — (1 — a)log(cos d(y, p)).

Thus g is convex. On the other hand, it is obvious that g is proper and lower semi-
continuous. O

Theorem 3.2. Let [ be a proper lower semicontinuous convex function from X into
|—o0, 00]. If
9(-) = f(-) —log(cos d(-, p))

for each p € X, then argminyg consists of one point.

Proof. Let {x,} be a sequence of X with lim,,_, d(z,,p) = 7/2 for each p € X.
Then, it is obvious that lim, . (—log(cos d(xy,p))) — co. On the other hand, from
Lemma 2.5, we know that there exists K € R such that f(z) =2 K for all x € X. So,
we get

g(zn) 2 K + log(cosd(xy,p)) — oo

and hence g(z,,) — co. From Lemma 2.4 and 3.1, argmin y g is nonempty.
We next show that argmin y g consists of one point. Suppose that z,y € domf with
x # y. Then, Lemma 2.2 implies that

1 1 1 1 1
cosd (235 @ 2y,p) > cosd <2x ® 2y,p) cos id(x,y)

1
= —cosd(x,p) + 3 cosd(y,p)

DN =

for all p € X. Further, since —logt is decreasing and convex for all ¢ > 0, we get

1 1 1 1
—log <cosd (236 < Qy,p)) < —log (2 cosd(z,p) + 5 cos d(y,p))
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< — 3 log(cosd(z,p)) ~ 3 log(cosd(y,p))

Since f is convex, the inequality
1 1 1 1
SrOsy) <2 -
g (2:6 29) 59(@) + 59(y)
holds. Thus argmin y g consists of one point. O
Definition 3.3. Let f be a proper lower semicontinuous convex function from X into
]—00, 00]. Then we define a new resolvent R; : X — X by

Ryx = argmin{ f(y) — log(cos d(y, x))}
yeX

for all z € X. From Theorem 3.2, we know that Ry is well-defined.
Remark 3.4. Let C' be a nonempty closed convex subset of X. If f = i¢, then
R; = Pc, where P is metric projection from X onto C. In fact,
Ryx = argmin{ f(y) — log(cos d(y, x))}
yeC

= argmin{— log(cos d(y, z))} = argmind(y, ) = Pox
yel yel

for all z € X.

Theorem 3.5. Let f be a proper lower semicontinuous convex function from X into
|—00,00] and Ry a resolvent of f. Then the following properties hold:

(1) Ry is spherically nonspreading of sum-type;
(i) F(Rys) = argminy f.

Proof. Put T = Ry. We first show (i). Let z,y € X with Te # Ty and put
zi =tTx ® (1 —t)Ty for all ¢ € ]0,1[. Then, by the definition of T and convexity of
f, we have

f(Ty) —log(cos d(Ty,y)) < f(2) — log(cos d(zt,y))

<
S tf(Tx) + (1 —1)f(Ty) — log(cos d(z, y))

and hence

t(f(Tz) — f(Ty)) 2 log(cos d(zt,y)) — log(cos d(T'y, y))
cosd(zt,y)
g | ——25 ).
cosd(Ty, y)
So, using Lemma 2.1 and putting D = d(Tx,Ty), we get

tF(T2)=1(TY) gin D
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cosd(z¢,y) sin D
cosd(Ty,y)
cosd(T'z,y)sintD + cosd(Ty, y) sin(l — t)D
cosd(Ty,y)
cosd(Tz,y)sintD + cosd(Ty, y) sin D costD — cosd(Ty,y) cos DsintD
cosd(Ty,y)
cosd(Tx,y) — cosd(Ty,y) cos D
cosd(Ty,y)
cosd(Tx,y) — cosd(Ty,y) cos D
cosd(Ty,y)

1\

v

=sintD + sin D costD

=sintD

t
+ sin D — 2sin D sin? §D

and hence

Hf (Ta)—F(Ty) _ |
sinD (e . )

sintD cosd(Tz,y) — cosd(Ty,y) cos D
t cosd(Ty,y)

v

2 t
— Zsin Dsin? = D.
t 2
Letting t | 0, we obtain

sin D(f(Tx) — f(Ty)) = cosd(Tz,y) — cosd(Ty,y) cos D).

D
cosd(Ty,y)

From this inequality, we also know that

v

sin D(f(Ty) — f(Tx)) (cosd(z,Ty) — cosd(Tx,x) cos D)

cosd(Tx,x)

holds. Adding these inequalities, we get

02 m(cos d(Tz,y) — cosd(Ty,y) cos D)
+ W(cos d(z,Ty) — cosd(Tz,x) cos D).
So we have
1
2cosD = cosd(Tx,y) + cosd(Tn.2) cosd(x, Ty)

cosd(Ty,y)
= cosd(Tx,y) + cosd(z, Ty).

Thus we get the conclusion.
We next show (ii). Let u € argminy f. Then we have

f(u) —log(cosd(u,u)) = f(u) = f(y) = f(y) —log(cos d(y, u))
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for all y € X. Hence we get
f(u) —log(cos d(u, u)) = inf {f(y) — log(cos d(y,u))}-

This implies that v € F(T). Inversely, let uw € F(T') and ¢ € ]0,1[. Then, by the
definition of T" and the convexity of f, we have

f(u) = f(u) —log(cos d(u, u))
< flty © (1 —t)u) — log(cosd(ty @ (1 — t)u,u))
= f(ty © (1 = t)u) — log(costd(y, u))
<

tf(y) + (1 —t)f(u) — log(costd(y,u))

and hence
~ log(costd(y, u))
t

for all y € X. Letting ¢ | 0, we obtain f(u) < f(y). This implies that u € argmin y f.
O
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