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APPROXIMATE MINIMALITY 1N SET OPTIMIZATION AND
APPLICATION

(集合最適化における近似最適性とその応用)

YUTO OGATA, TAMAKI TANAKA

小形 優人,田中 環

ABSTRACT. This paper contains a weak optimality notion for set optimization. We con‐

sider a new concept of approximate efficiency for set optimization in terms of conical

intervals and conical distance by using Tanaka’s approximate minimality for vector op‐

timization. Also, we show in the last part minimal element theorems and a variational

principle by using our optimality.

1. INTRODUCTION

Weak optimality is a fundamental technique as approximation to be pripared for ad‐

dressing optimization problems in which exact solutions does not exists. Loridan [1]

proposed \varepsilon‐efficiency in 1984, which is a well known weak efficiency on vector optimiza‐

tion.

In 1996, another weak optimality notion was given by Tanaka [2], characterized with
 \varepsilon‐neighborhoods. It focuses on cases where Loridan’s  \varepsilon‐efficiency does not make sense. In

case systems prefer “too many” (unbounded) solutions to an  \varepsilon‐effcient solution, it may

mean the Loridan’s method does not choose appropriate solutions.

As a main part of this paper, we propose a weak set optimality in a similar way

to Tanaka’s approximate minimality. To realize this approach, we shall introduce set

relations and conical intervals both taken to be like the pointwise ordering of vectors and

neighborhoods of sets, respectively.

Finally, our definition is used to establish minimal element theomrems and a variational

principle as application. The similar work has been done by researchers such as [5] directly

inspiring the paper.
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2. PRELIMINARIES

Throughout this paper, we let  X be a topological vector space,  C a convex solid (i.e.,

intC  \neq\emptyset ) cone in  X . Also,  \leq c is the pointwise ordering between two vectors in  X

(  x\leq cy\negarrow y-x\in C for  x,  y\in X ) and  \preceq c is a binary relation between two subsets of

X. Note that  \leq c and  \preceq c are usually denoted by  \leq and  \preceq , respectively.

3. MOTIVATION

Firstly, we begin with the definitions of Loridan’s  \varepsilon‐effciency and Tanaka’s  \varepsilon‐approximately

efficiency. Let  S be a nonempty subset of  \mathbb{R}^{n},  \mathbb{R}_{+}^{n} the positive orthant of  \mathbb{R}^{n}.

Definition 3.1 (  \varepsilon‐efficient point (Loridan [1], 1984)).  \overline{x}\in S is an  \varepsilon‐effcient point toward
 d\in \mathbb{R}^{n} iff  (\overline{x}-\mathbb{R}_{+}^{n})\cap(\varepsilon d+S\backslash \{\overline{x}
\})=\emptyset or equivalently,  /\exists x\in S such that   x+\varepsilon d\leq

 \overline{x} and  x\neq\overline{x}.

Definition 3.2 (  \varepsilon‐approximately efficient point (Tanaka [2], 1996)).  \overline{x}\in S is an  \varepsilon‐

approximately efficient point of  S w.r.t.  C iff  (\overline{x}-C)\cap(S\backslash B_{\varepsilon}(\overline{x}))=\emptyset.

Definition 3.1 let us to give the translation by  \varepsilon d to the entire system but a considered

point. This method has helped a lot of problems and their solutions. However, the essen‐

ciality of this weakness strongly depends on the shape of given sets. In this research, we

look into pathological cases in which Definition 3.1 turns to be meaningless. Particularly,

the following cases could distinguish the definitions.

Example. Let  S_{1}  :=\{x\in \mathbb{R}^{2}|x_{1}^{2}+x_{2}^{2}<1\} and  S_{2}  :=-\mathbb{R}_{++}^{2}=-int\mathbb{R}_{+}^{2}.
 (-2/3, -2/3) is  a(1/10)‐effcient point toward (1, 1) of  S_{1} and so is  a(1/10)‐approximately

efficient point with respect to  \mathbb{R}_{+}^{2} . On the other hand, (1/10, 1/10) is  a(1/10)‐efficient

point toward (1, 1) of  S_{2} while it fails to be an  \varepsilon‐approximately efficient point for any
 \varepsilon>0 . At this point, Definition 3.2 is in a sense, to complement Definition 3.1, regardless

of a specified direction.

4. MAIN RESEARCH

We let  X be a topological vector space,  \mathcal{A} a family of bounded subsets of  X,  \preceq c a set

relation defined as  A\preceq cB  :\vec{-}(A\subset B-C)\wedge(B\subset A+C) . let us impose the order

interval of a convex ordering cone. In this paper, we define a conical interval as a set of

 \varepsilon‐near points” of a set:  I_{C,k}(A;\varepsilon)  :=(A+\varepsilon-C)\cap(A-\varepsilon+C) for  k\in C\backslash −c1C. The

motivatin of this concept is shown in [3] as order interval:  [-x, x]  :=(-x+C)\cap(x-C)

(e.g.,  C\subset \mathbb{R}^{n} is a cone,  x\in \mathbb{R}^{n} ).
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To begin with, we recall a Loridan‐type basic efficiency.

Definition 4.1. Let  C be a convex solid pointed ordering cone,  k\in C\backslash −c1C,  \varepsilon>0.

 \overline{A}\in \mathcal{A} is an  \varepsilon‐minimal set toward  k with respect to  \preceq iff  A\preceq\overline{A} for some   A\in \mathcal{A}\Rightarrow

 \overline{A}+\varepsilon k\preceq A.

Next, our main generalizaion from [2] and an example contrasting difference between
them are shown below.

Definition 4.2. Let  C be a convex solid pointed ordering cone,  k\in C\backslash −c1C,  \varepsilon>0.

 \overline{A}\in \mathcal{A} is an  \varepsilon‐approximately minimal set toward  k with respect to  \preceq iff  A\preceq\overline{A} for some

 A\in A\Rightarrow A\subset I_{C,k}(A;\varepsilon) .

Example. Let  B  := \bigcup_{a>0},{}_{b\in \mathbb{R}}S(a, b) where  S(a, b)  :=\{(x, y)|(x-a)^{2}+(y-b)^{2}<a^{2}/4\}.

Then, for  (a, b)\in \mathbb{R}^{2},  S(a, b) is  (a/2)‐efficient toward (1, 1). On the other hand, any sets

in  B are not  \varepsilon‐approximately efficient.

5. APPLICATION

We show some application of the approximate minimality to Ekeland’s variational prin‐

ciple. Here, we define  X,  Y are topological vector spaces,  C_{X},  C_{Y} are convex solid cones

in each space.  P(\cdot) denotes the set of all subsets in a specified space.

First of all, we introduce topological structures named as “boundedness” for families

of sets given by Hamel and Löhne.

Definition 5.1 (A. Hamel, A. Löhne (2006), [5]). A set  @\subset P(Y) is said to be  \overline{\prec}c_{Y}-

bounded below if and only if there is a nonempty set  \overline{S}\subset P(Y) such that  \overline{S}\overline{\prec}c_{i}^{S} for

all  S\in@. Similarly,  @\subset P(Y) is said to be  \preceq c_{Y}‐bounded above if and only if −@ is

 \overline{\prec}c_{Y}‐bounded below.

Similarly, the other type is defined by switching all the signs  \overline{\prec}c_{Y}’ or  \preceq c_{Y}\cdot ”

We set conical distance taken to be a quasi‐metric function on  P(Y) , which is confirmed

by the next proposition following it. The conical distance is defined with the conical

interval between two specified sets.

Definition 5.2 (Conical distance). Let  Y be a topological vector space,  A,  B\in P(Y) ,

 k\in C_{Y}\backslash −clCY. The conical distance  D_{C_{Y},k} :  P(Y)\cross P(Y)arrow \mathbb{R}_{+}\cup\{+\infty\} is defined as

 D_{C_{Y},k}(A, B)  := \max\{\inf\{t\geq 0|A\subset I_{C_{Y},k}(B;t)\}, \inf\{t\geq 0|B\subset 
I_{C_{Y},k}(A;t)\}\}.
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Proposition 5.1. Let  Y be a topological vector space,  A,  B\in P(Y),  k\in C_{Y}\backslash −clCY.

Then, the following statements hold;

 \bullet  A_{1}=A_{2} implies  D_{C,k}  (A_{1}, A_{2})=0 ;

 \bullet  D_{C_{Y},k}(A_{1}, A_{2})=D_{C_{Y},k}(A_{2}, A_{1}) ;

 \bullet  D_{C_{Y},k}(A_{1}, A_{2})\leq D_{C_{Y},k}(A_{1}, A_{3})+D_{C_{Y},k}(A_{2}, 
A_{3}) .

Particularly, we denote  D_{C_{Y},k}(A_{1}, A_{2})=0 by  A_{1}\approx A_{2}.

This paper describes set relations as characterization of the position of two sets.

Definition 5.3 (Set relations in a product space). For  V_{1},  V_{2}\in P(X) and  W_{1},  W_{2}\in P(Y)

and  d\in C_{X}\backslash −clCX,  k\in C_{Y}\backslash −clCY,

 (V_{1}, W_{1})\overline{\prec}^{d}c_{X},c_{Y}(V_{2}, W_{2})
\Leftrightarrow^{def}W_{1}+D_{C_{X},d}(V_{1}, V_{2})k\overline{\prec}c_{Y}
^{W_{2};}

 (V_{1}, W_{1})\preceq_{c_{X},c_{Y}}^{d}(V_{2}, W_{2})\Leftrightarrow^{def}W_{1}
+D_{C_{X},d}(V_{1}, V_{2})k\preceq c_{Y}^{W_{2};}

Unless otherwise specified, we let  \mathcal{A}\subset P(X)\cross P(Y) and  \Psi(\mathcal{A})  :=\{S\in P(Y)|(V, S)\in
 \mathcal{A} for some  V\in P(X) }.

Theorem 5.1 (Minimal element theorem). Let  X,  Y be topological vector spaces,  C_{X},  C_{Y}

convex cones in  X,  Y,  d\in C_{Y}\backslash −clCY. Also let  \mathcal{A}\subset P(X)\cross P(Y) satisfying for some

 (V_{0}, W_{0})\in \mathcal{A} and  \mathcal{A}_{0}  :=\{(V, W)\in \mathcal{A}|(V, W)\overline{\prec}^{d}c_{X},c_{Y}(V_{0}, W_{0}) and the following holds:

 \bullet  \Psi(\mathcal{A}_{0}) is  \overline{\prec}c_{Y}‐bounded above;

 \bullet  \Psi(\mathcal{A}_{0}) is  \overline{\prec}c_{Y}‐bounded below;

 \bullet For  any\overline{\prec}^{d}C_{X},C_{Y}‐decreasing sequence  \{(V_{n}, W_{n})\}_{n\in \mathbb{N}} , there exists  (V, W)\in \mathcal{A}_{0} such

that  (V, W)\overline{\prec}_{C_{X},C_{Y}}^{d}(V_{n}, W_{n}) for all  n\in \mathbb{N}.

Then, there exists  (\overline{V},\overline{W})\in \mathcal{A} such that

(i)  (\overline{V},\overline{W}) 只  dc_{x},c_{Y}(V_{0}, W_{0}) ;

(ii) If  (\tilde{V}, \tilde{W})\overline{\prec}_{C_{X},C_{Y}}^{d}(\overline{V},\overline
{W}) for some  (\tilde{V},\tilde{W})\in A , then  \tilde{V}\approx\overline{V}.

This theorem directly follows from the Brézis‐Browder principle ([4]) and it is obvious

that the other case with the switched sign  \preceq_{C_{X},C_{Y}}^{d}” also comes true.

To conclude this section, a variational principle for set‐valued set functions is given

by recasting Theorem 6.1 in [5] as application of our research with the following sircum‐
stances:

 \bullet\overline{\prec}c_{Y}-domF :  =\{V\in P(X)|\exists a nonempty set  W\in P(Y) s.t.  F(V)\overline{\prec}c_{Y}^{W\};}

 \bullet\preceq c_{Y}-domF :  =\{V\in P(X)|\exists a bounded set  W\in P(Y) s.t.  F(V)\preceq c_{Y}^{W\};}
 \bullet graphF  :=\{(V, W)\in P(X)\cross P(Y)|F(V)=W\}.
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Theorem 5.2 (Variational principle). Let  X,  Y be topological vector spaces,  C_{X},  C_{Y}

convex cones in  X,  Y,  k\in C_{X}\backslash ‐clCX,  d\in C_{Y}\backslash ‐clCY,  \varepsilon>0 . Also, let  F :  P(X)arrow P(Y) ,

 V_{0}\in\preceq c_{Y}-domF,  S(V_{0}):=\{V\in P(X)| (V, F(V))\preceq_{C_{X},C_{Y}}^{d}(V_{0}, F(V_{0}))\} and  \mathcal{A}_{0}  :=

{  (V, W)\in graphF  |V\in S(V_{0}) } satisfying:

 \bullet  F(S(V_{0})) is  \preceq c_{Y}^{d}‐bounded below;

 \bullet  F(V_{0}) is an  \varepsilon‐approximate efficient point of  F(X) ;

 \bullet For all  \preceq_{C_{X},C_{Y}}^{d}‐decreasing sequences  \{(V_{n}, W_{n})\}\in \mathcal{A}_{0} , there is  (V, W)\in \mathcal{A}_{0} such

that  (V, W)\preceq_{c_{X},c_{Y}}^{d}(V_{n}, W_{n}) for all  n\in \mathbb{N}.

Then, there exists  \overline{V}\in\preceq c_{X}-domF such that

(i)  F(\overline{V})+D_{C_{X},k}(\overline{V}, V_{0})\preceq c_{Y}^{F(V_{0});}
(ii)   D_{C_{Y},d}(\overline{V}, V_{0})\leq\varepsilon ;

(iii)  F(V)+D_{C_{X},k}(V,\overline{V})\not\leq c_{Y}^{F(\overline{V})} for all  V\not\simeq\overline{V}.

This theorem is established from the previous theorem by applying  \mathcal{A} to graphF. We

remark that the other type with  \overline{\prec}^{d}C_{X},C_{Y}’ cannot be given similarly due to the fact that

 B\subset I_{C,d}(A;\varepsilon) is not equivalent to  A\subset I_{C,d}(B;\varepsilon) for some  A,  B\in \mathcal{A} and  \varepsilon>0.

REFERENCES

[1] P. Loridan,  \varepsilon ‐solutions in vector minimization problems, J. Optim. Theory Appl., 43, 265‐276 (1984).

[2] T. Tanaka, Approximately efficient solitions in vector optimization, J. Multi‐criteria Decision Anal.,

5, 271‐278 (1996).

[3] J. Jahn, Vector optimization, Springer‐Verlag Berlin Heidelberg, 2004.

[4] H. Brézis, F. E. Browder, A General Principle on Ordered Sets in Nonlinear Functional Analysis,

Advances in Mathematics, 21, 355‐364 (1976).

[5] A. Hamel, A. Löhne, Minimal element theorems and ekeland’s principle with set relations, J. Non‐

linear and Convex Anal., 7, 19‐37 (2006).

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, NIIGATA UNIVERSITY, NIIGATA, JAPAN

新潟大学大学院自然科学研究科

E‐mail address (Yuto Ogata): y‐ogata@m.sc.niigata‐u.ac.jp

E‐mail address (Tamaki Tanaka): tamaki@math.sc.niigta‐u.ac.jp

188


