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A GENERALIZATION OF THE ALUTHGE
TRANSFORMATION IN THE VIEWPOINT OF
MATRIX MEANS

TAKEAKI YAMAZAKI

ABSTRACT. The Aluthge transformation is generalized in the view-
point of the axiom of matrix means. It includes the mean trans-
formation which is defined by S. H. Lee, W. Y. Lee and Yoon.
Then we shall give some properties of it. Especially, we shall show
that n-th iteration of the mean transformation of an invertible ma-
trix converges to a normal matrix. The numerical ranges of these
transformations are considered. Throughout this report, we shall
consider only n—by—n matrices.

1. INTRODUCTION

Let M,, be a set of all n-by-n matrices. Let "= U|T'| € M,, be the
polar decomposition of 7. The Aluthge transformation is defined by
A(T) = |T|2U|T|2 in [1]. The Aluthge transformation has been stud-
ied by many authors, especially, if T is a bounded linear operator on a
complex Hilbert space, then the Aluthge transformation preserves the
spectrum, and A(7') has a non-trivial invariant subspace if and only if T’
has so. Moreover if T is semi-hyponormal (i.e., |T*| < |T']), then A(T)
is hyponormal (i.e., A(T)A(T)* < A(T)*A(T')). Hence the Aluthge
transformation A(T") of an operator is looked like to have better prop-
erties than that of 7. Recently, new operator transformations were
defined in [11, 12] which were similar to the Aluthge transformation.
In this paper, we shall unify these transformations in the viewpoint
of matrix means, and give some properties in the finite dimensional
Hilbert space case.

Matrix mean of positive definite matrices is defined by Kubo-Ando
as follows. Let M be the cone of positive definite matrices.

Definition 1 (Matrix mean, [10]). Let 9 : M;}> — M be a binary
operation. If M satisfies the following four conditions, then M is called
a matriz mean.
(1) If A< C and B < D, then M(A, B) <M(C, D),
(2) X*M(A, B)X < M(X*AX, X*BX) for all X € M,,
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(3) M is upper semi-continuous on M,
(4) M(1,1) =1, where I means the identity matriz in M,,.

We notice that if X is invertible in (2), then equality holds. To
get a concrete formula of a matrix mean, the following relation is very
important.

Theorem A ([10]). Let 9 be a matriz mean. Then there exists a
matriz monotone function f on (0,00) such that f(1) =1 and

M(A, B) = A2 f(A2 BA7)A2

for all invertible A € M} and B € M. A function [ is called a
representing function of a matriz mean IN.

Especially, if the assumption f(1) = 1 is removed, then (A, B) is
called a solidarity [5] or a perspective [4]. We note that for a matrix
mean M, with a representing function f, f'(1) = A € [0,1] (cf. [6]),
and we call 91 a A-weighted matrix mean. Typical examples of ma-
trix means are the A-weighted geometric and A\-weighted power means.
These representing functions are f(z) = z* and f(z) = [1 — A + Azf]¢,
respectively, where A € [0, 1] and ¢ € [—1, 1] (in the case t = 0, we con-
sider ¢ — 0). The weighted power mean interpolates the arithmetic,
the geometric and the harmonic means by putting ¢ = 1,0, —1, re-
spectively. In what follows, the A\-weighted geometric and A-weighted
power means of A, B € M are denoted by Af,B and P;(\; A, B),
respectively, i.e.,

Af\B = A3(A7 BAZ Az,

e

P\ A, B) = A3 [1 A+ )\(A_TIBA_TI)t} A3,

For A, B € M,, let Ly and Rg be linear maps on M, defined as
follows:

La(X) = AX, Rp(X)=XB
for X € M,,. They are called left and right multiplications, respec-
tively. We can consider the arithmetic mean of L, and Ry as follows:
La+Rp AX+XB

7 X=——
Especially, let T'= U|T| be the polar decomposition of an operator 7.
Put A = B = |T|. Then we have

Lir +R|T|( ) = IT\U+UIT|

2 2

which is called the mean transformation [11]. In this report, we shall

discuss generalization of the Aluthge transformation in the viewpoint
of matrix means of left and right multiplications.
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This report is organized as follows: In Section 2, we shall give a
definition of generalized Aluthge transformation in the viewpoint of
matrix means of left and right multiplications. Then we shall give
some basic properties of the generalized Aluthge transformations. In
Section 3, we shall prove that the iteration of mean transformation
of an invertible matrix converges to a normal matrix. In Section 4,
we shall give inclusion relations of numerical ranges among generalized
Aluthge transformations.

2. GENERALIZED ALUTHGE TRANSFORMATION

In this section, we shall give a definition of the generalized Aluthge
transformation. M,, is a Hilbert space with an inner product (A, B) =
trB*A for A, B € M,,. Also for a positive matrix A, L, and R, are
positive definite since

(LyX, X) = trX*AX >0

and (R, X, X) > 0 for all X € M,,. Hence we can consider functional
calculus of left and right multiplications. It is easy to see that for a
positive matrix A, f(La) = Ly and f(R4) = Ry hold for any
analytic function f defined on o(A), a spectrum of A. Moreover since

RpLA(X) = Rp(AX) = AXB = L4Rp(X),

L4 and Rp are commuting. Hence geometric mean of L., and Ry are
obtained as follows.

Lati»Rp(X) = A2 X B2

for all X € M,,. Especially, let T'= U|T| be the polar decomposition.
then the Aluthge transformation A(T) := |T|zU|T)|z can be considered
as Lypif1 2Ry (U), and the mean transformation can be considered as
w (U). Here we shall generalize these operator transformation via
matrix means.

Definition 2 (Generalized Aluthge transformation). Let T' = U|T| €
M,, be the polar decomposition of an invertible matriz, and let My be an
matriz mean with a representing function f. Then the the generalized
Aluthge transformation Aoy, (T') is defined by the following formula.

A, (T) := Ry f (R Ly ) (U).-

Especially, let |T'| = V*diag(sy, ..., $,)V, where V' is a unitary matrix.
Then
A (T) = V™ ([P(s;,8:) o VUVT) V,
where Py(a,b) := af(2) a perspective function for a,b > 0, and Ao B

means the Hadamard product for A, B € M,,. We remark that for
a, b > 0, Pf(a, b)] = Sﬁf(al,b]).
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Proposition 1. Let T' € M,, be invertible and T = U|T| be the polar
decomposition, and My be a matriz mean with a representing function
[ Then T' = Aoy (T) if and only if T is normal, i.e., |T|U = U|T|.

Proof. If U|T| = |T|U, then Ryp(U) = Ly (U) holds. Let f(t) =

Z a,t" be the Taylor expansion. Then we have
n=0

A, (T) = Ryry f (R L)) (U)

oo

| Zan R\T\L\Tl )(U)

n=0

o
7 <Za Riri |"T> (U)
o (3

2

n=0

Zan il T|> U)
=Ryp <Z Qn ) =R f(HU = U|T],

where I means the identity operator on M,, and the last equality follows
from f(1) = 1.
Conversely, assume that 7" = Agy, (7). Firstly, we have the following

T = Ay (T) = Rp f(R L) (U) = f (Ripy L)) (T)-

Since f is an operator monotone function, there exists an inverse func-

8

tion f~'. Let f! Zb t" be the Taylor expansion of f~!. Then

n=0
we have

L Rir(T) = fH(f (L Rym))(T)
(Z bnfaL;RT)“) (T)

(o) -

where the last equality follows from f~'(1) = 1. Hence we have
|T|~'T|T| =T, that is, |T|U = U|T)|. O

In the case of f(t) = 3, Agy ; is the same as the Aluthge transforma-
tion, i.e., A, (1) = |T|2U|T|z, and it is well known that o(Am,(T)) =
o(T') holds for all operators in B(H). But in the case of other matrix
mean, it is not true (cf. [11]). More precisely, we have the following
property.
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Theorem 1. Let T' € M,, be invertible and My be a matriz mean with
a representing function. Then trace(T) = trace(Agy, (1)).

To prove this, we prepare the following another formula of Aoy (7).

Theorem 2. Let T" € M,, be invertible, and My be a matriz mean
with a representing function f. Then there exists a positive probability
measure p such that

1 o]
Ao, (T) = / / e~ U=NUTIT o= MITI gy N).
0 0

Proof. First of all, we shall show Theorem 2 in the harmonic mean case.
The harmonic mean case has been considered in [12]. In that paper,
the author has considered only weighted shift, and has not obtained
any concrete formula. Let T'= U|T| be the polar decomposition of 7.
For A € [0, 1], let $, be a weighted matrix harmonic mean of a weight
A, i.e., the representing function is

f)y=[1—=Xx+Xx"""
We have
Ag\(T) = Ry [(1 = NI+ ARz Lyr) 7' 7H(0)

||
= [(1 = ML+ ARz Lyr) (D).
Let X = Ay, (T). Then we have
X = [(1= NI+ ARy Lyzy) "1 7H(T)

= [(1= NI+ ARyp-1lLyr) (X)) = U|T]

— 1-NX|T|""+ \T|"'X =U

— X{(1 =N} = {-ANT|""}X =U.
Here the spectral of (1 — \)|T|™* and —A|T'|™! are included in the

right and left open complex half plane, respectively. So by [7] (cf. [2,
Theorem VII.2.3]), we have

X = / T T gy
J0

Hence we take a probability measure 1 as ;(1) = 1, and obtain Theo-
rem 2 in the harmonic mean case.

Next, we shall show Theorem 2 in other matrix mean case. Let 91¢
be a matrix mean with a representing function f. Then it is known
that (cf. [6]) there exists a positive probability measure p such that

() = /0 (L= A+ A1 ().
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Hence we have

Aoy, (T) = R|T\f(R|T\L\T\)(U)
—Rp / (1= N+ AR L) ] (A ()

= [ Rl = N+ ARG ) @)

/ / —(1 —\t|T|~t —)\t|T| dtdu(}\)
Proof of Theorem 1. By Theorem 2, we have

trace (Am, (T)) = trace (/ / —(A=iT™ Ue’\‘T_ldtd,u(/\)>
= trace (/ / Ue_tT_ldt) = trace(T).
o Jo

3. ITERATION OF THE MEAN TRANSFORMATION

In this section, we shall prove that the iteration of the mean trans-
formation of an invertible matrix (i.e., the generalized Aluthge trans-
formation in the case of non-weighted arithmetic mean) converges to a
normal matrix. Iteration of mean transformation has been considered
in [3]. In that paper, the authors give a complete form of the limit of
iterated mean transformation of rank one operator.

Theorem 3. Let T = U|T| be the polar decomposition of an invert-
wble matriz T, and let 2 be a non-weighted arithmetic mean. Then the
sequence {AL(T)} converges to a normal matriz N, where AY(T) =

Ao (A H(T)). It satisfies trace(T) = trace(N) and trace(|T|) = trace(|N]).

Proof. First of all, we shall give a polar decomposition of AL(T") (n =
1,2,...) by induction on n. Assume that let AL(T) = U,P, be the
polar decomposition of Ay (7T') with a partial isometry U,, and a positive
matrix P,. Since U is unitary,

Ry + L U|T| + |T|U T|+ U*|T|U
AQ[(T): \T|+ lTI(U): ‘ |+| | :U| |+ | |
2 2 2
and
T|+ U*T|U T|+ UT|U T+ U*|T|U\?
|Am(T)|2:|\+2\I U*U||+2|| :<||+2|| )

Since LJFU ALY >0,U; =U and P, = 7|T|+U AL
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Assume that
J

1 A
Uj=U and P; = 2—]2 (i) U**|T|u*

k=0
forall j =1,2,....,n — 1. We have

Ag(T) _ Un—lpn—l ;’ Pn—lUn—l

o UPn—l + Pn—lU
B 2
Pnfl + U*pnflU

2
1 1 & (n-
‘45<y4 cngWﬂW+U*
=0

1 n
U= (”) U\ T|U*.
k=0

=U

1 n—1 .
s> (o
k=0

)

Since P, = L=t =1l we have U, = U and P, = £ 371 <Z) UH|T|U*.

By Theorem 1 and the above, we have trace(T") = trace(A%(T))
and trace(|T|) = trace(|AR(T)|) for all n = 0,1,2,.... Hence we
shall only prove that {|A%(7")|} converges. Since U is unitary, we
can diagonalize U as U = V*DV with a unitary matrix V and D =
diag(e®V=1, ..., e’V=1). Then

U|T| + |T|U
aa(r) = ST
_ VDVIT|V'V + V*VIT|V*DV
B 2
DVIT|V* + V|T|V*D
=y VI VIR v ngovimvew:

We notice that for every T' € M,, and unitary U, we have
Ag(UFTU) = U*An(T)U.
Hence AR(T) = V*AR(DV|T|V*)V, and

Ay (T)] = V] Aq(DVITIV)[V

o * 1 . n xk * Mk
-V {%ZQ)D V|T|V*D }V.

k=0
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Let V|T|V* = P. Then D**V|T|V*DF = P o [¢k0=00V=1] and

1~ (n xk . — (n E(0;—60;)v/—1
an<k)D V|T|V*D _2[Z<k>e j

k=0 k=0

oP

— Qin |:(1 + 6(93'—91‘)\/—71)"} o P

(1 + e(@—ei)m) "
2

< 1if60; # 0,4 2mm for all integer m, and

oP.

. (05-0;)v/=T1
We notice that ’He%

14e(05=00vV=T
2
exists a matrix P such that

= 1if 0, = 0; + 2mm for some integers m. Hence there

lim |AZ(T)| = lim V* < <+€
n—00 n—00 2

and we have lim, o AL(T) = lim, ., U|AY(T)| = UFy. Moreover
UPy = AY(UR) = w holds, and U P, is a normal matrix since
UPy = ByU holds. O

oP)V_PO,

4. NUMERICAL RANGES OF THE GENERALIZED ALUTHGE
TRANSFORMATIONS

In this section, we shall show inclusion relations among numerical
ranges of the generalized Aluthge transformations. We shall consider
a relation < between two matrix means. It is defined as follows. Let
My and I, be matrix means with representing functions f and g,
respectively. 9ty < N, if and only if for any natural number m and

s >0(i=1,2,..,m)

[Pf(si, 5;‘)}

Pg(siﬂ Sj )
is a positive definite matrix. It is known that Let 2, £, & and $ be
non-weighted arithmetic, logarithmic, geometric and harmonic means.
Then

HE=L=U

(cf. [8]). In this section, we shall consider only symmetric matrix
means. A matrix mean M, is symmetric if and only if M(A, B) =

M, (B, A).

Theorem 4. Let T' € M,,, and let My, N, be symmetric matriz means
with representing functions [ and g, respectively. Then the following

hold.
(1) if My =N, then W (A, (T)) € W (An, (1)) holds,
(2) if My <A, then W((Ag, (1)) € W(T) holds,
where A is the non-weighted arithmetic mean.
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To prove Theorem 4, we shall use an idea of double integral trans-
formation for the generalized Aluthge transformation.

Theorem 5. Let T € M, be invertible, and let T = U|T| be the
polar decomposition of T. Assume that |T| = >")_, siPy is a spectral
decomposition of a positive invertible matriz |T'|. Then for a matriz
mean My with a representing function f,

Agy, (T Z P(sk, s1)PUP,.
k,l=1

Proof. First of all, for a representing function f of a matrix mean 9,
there exists a positive probability measure p, s.t.,

F(t) = /0 L= A+ M1 Mdu(n).

Then the perspective function of f is obtained as follows:

W Pyt =af (1) = 102020 )

for a,b > 0. By Theorem 2, we have

Ay, (T / / ~ONAT = MIT (V)

/ / (Ze (1=N)ts P) (Ze Ats;. PZ> dtdp(\)

/ / Z e 10N B Prdtdp(A)

0 k=1

/ / —t[(l sy, +)\sl ]dtdlLL( )PkUB
k=1

= 2/ 1= N)sit + sy dp(\) RUP,

k=1

= Z Py (sk, s1) U P,

k=1

where the last equality holds by (1). d

Theorem 5 can be considered as matrix version of a double integral
transformation which has been introduced in [8]. In [8], it has not
been shown whether every operator mean can be represented to the
double integral transformation in the infinite Hilbert space case or not.
However, matrix case is true as in Theorem 5.
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In the case of infinite dimensional case, let |T'| = fOHT” sdEs be a
spectral decomposition, if an operator mean 91y can be represented to
the form of double integral transformation, then it is given as follows:

Il il
Agn, (T) = /0 [ Pl AU AE

In [8], they discussed more general case. Let H, K € B(H) be posi-
tive operators with the spectral decompositions are

1| IFI
H= / sdE, and F = / tdF,
0 0

respectively. Then for an operator mean 91y with a representing func-
tion f,
[ H]]
My (H,K)(X) = Ps(s, t)dEXdF,

0

for X € B(H) if it exists. Especially, if H, K € M, with the spectral
decompositions

H = ZskPk and K = Ztlle
k=1 1=1
then
My (H, K)(X) =Y Prlsi, t) X Qs
k=1

for X € M,,. The following norm inequality is important.

Theorem 6 ([8]). Let M, N be operator means (MM < N) and H, K
be positive operators. Then for any unitarily invariant norm || - ||, we
have

(A, K)X|| < |9(H, K)X]]
for all X € B(H).

Moreover, we shall prepare the following result to prove Theorem 4.

Theorem 7 ([9, 13]). Let T' € B(H). Then
W(T) = (u « lp =A< |T = M|}
AeC

Using the above results, we shall show Theorem 4.

Proof of Theorem 4. (1) Let |T'| = >_}_, s, P, be the spectral decom-
position of |T'|. Then |T'| and each projection P, are commuting, and
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P,P; = O for all i # j. Then for A € C,
M (T, |T)(U = AT

= Prsis) (U = AT )P

k=1

= Z Py (sk, s)PUP, — A Z P (s, s1) Pe|T) ' P,

k=1 k=1

— Z Pf(sk; Sl)PkU'Pl — Azpf(sla Sl)‘PI‘T|_1
k=1 =1

= Amf(T) - )\I’

where the last equality follows from Pf(a,a) = af(%) = a. Then by
Theorem 6, we have

1A (T) = M || = |90, (|T1, TN = AT]H)]
< 9171 |THU = AT D] = 1A, (T) = M|

forall A € C. Hence by Theorem 7, we have W (Agy, (1)) € W (An, (T)).

(2) Let 2 be a non-weighted arithmetic mean. Then we can show

W(Au(T)) CW(T). In fact, Ay(T) = w and W(T') = W(|T|U)
holds for any invertible matrix 7. Hence by (1), we can prove (2). [
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