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REVIEW ON EXAMPLES OF NONLINEAR MAPPINGS

TAE-HWA KIM*

ABSTRACT. In this paper, we systemically survey several examples relative to
nonlinear mappings/operators and investigate strict inclusions of two different
classes of nonlinear mappings/operators. Some open questions are also added.

1. INTRODUCTION

Let X be a real Banach space with its dual space X*. Denote by (:,-) the
duality product and it will be convenient to write (z,z*) for z*(z) for every z* €
X* throughout this paper. For brevity, we denote by (S) the class of smooth
spaces, by (G) the class of spaces with Gdteaux differentiable norms, by (F) the
class of spaces with Fréchet differentiable norms, by (UG) the class of spaces with
uniformly Gdteaur differentiable norms, by (US) the class of uniformly smooth
spaces. Also, we denote the classes of, by turns, strictly convex, uniformly convez,
reflexive Banach spaces, and Hilbert spaces by (SC), (UC), (R) and (H). Then,
we often write X € (R)N(S)N(SC) if X is a reflexive, smooth and strictly convex
Banach space.

Let 0 # C C X and let T : C — C be a mapping. We use F(T) to denote the
set of fixed points of T'; that is,

FT)={zeC: Tz =z}
Recall that the operator J : X — 2%~ defined by

J(z) = {j(z) € X*: (z,j(x)) = || = i(=)|*}
is called the (normalized) duality mapping. Sometimes, it will be simply denoted
by Jz unless distinction is needed.

In what follows we denote strong and weak convergence in X by “—” and “—”,
respectively. We denote by 1¢ its characteristic function, which takes value 1 on
C and 0 on C¢, where A¢ denotes the complement of A and I denotes the identity
operator on X Also, 0f denotes the subdifferential of a function f : X — R. We
sometimes use the notations D(T) and R(T) to denote the domain and the range
of an operator T', respectively. We often write R and R, in place of (—o0, 00) and
[0, 00), respectively.

Throughout this paper, we assume, unless other specified, that C' is a nonempty
subset of a real Banach space X (for more useful applications to the fixed-point

theory and so on, it may be suitable to take C' to be closed convex in all examples)
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and let T : C — C be a mapping. Especially, if X € (H) (the duality product
(-,-) is just the inner product in H), we give an equivalent formulation which is
represented by the inner product.

It seems interesting for beginners relative to nonlinear mappings/operators to
systematically survey classes of several nonlinear mappings/operators and to clas-
sify /unify their implications concerning to their inclusion relations each other.
There are lots of slight transformations about several nonlinear mappings. However,
it is not easy to distinguish their differences, much hard in classes of nonLipschitzian
mappings. Even if the author has already tried to investigate and unify their rela-
tions in [30], lots of mistakes there stimulated him to review on several examples,
and the scopes of the previous works were also expanded to pseudocontractive op-
erators of several types. In this paper, some equivalent transformations for proving
some examples will be suggested. Also, we investigate strictness for inclusion of
two classes of nonlinear mappings. Finally, some open questions are added. This
work is rewritten as beginners’s guide in this fields in place of my earlier work [30].

2. CLASSES OF LIPSCHITZIAN MAPPINGS OF NONEXPANSIVE TYPE
Definition 2.1. A mapping T : C — C is said to be Lipschitzian if
where L := L7 denotes the Lipschitz constant of T. Obviously, it is equivalent to
the following property: for each n € N, there exists a constant k, > 0 such that
|T"z — T y|| < knllz —y|, Vz,yeC. (2.1)
For a Lipschitzian mapping T', we say:
(a) T is uniformly k-Lipschiztain if k,, = k for all n € N;
(b) T is nonezpansive if k, =1 for all n > 1; that is,
”TI - Ty“ < H.’L‘ - y“’ vay eC.
(c) T is asymptotically nonexpansive [13] if limy, o0 krn = 1.
Before introducing firm nonexpansivity, we review the following Lemma 3.3 in

[15], which is a simple fact concerning the (proper) convex function f(s) = [|lu+ sv||
on R, where u,v € X are arbitrarily given:

Lemma 2.2. ([15]) For two points u,v € X, the following are equivalent:

(@) |lull < |lu+ sv|| for all s € [0,1];

(b) the convez function f(s) = |lu+ sv| is increasing on [0,1];

(c) there is j(u) € J(u) such that (v, j(u)) > 0.
Remark 2.3. Note that s € [0,1] in (a) and (b) could be replaced with all s > 0 by
convexity of f.

Given z,y € C and a mapping T : C — C, consider the following convez
functions ¢ : [0,1] — [0, c0) defined by
e(s) =z —y) —s[I -T)z— (I = T)y]|.

Definition 2.4. A mapping T : C — X is firmly nonezpansive [15] if ¢ is non-
increasing on [0, 1]; equivalently,

Tz — Tyl [(Tz —Ty) + s[(I = T)z — (I = T)y]ll,
Is(z—y)+ (1 —9)(Tz—Ty)|, Yz,yeC, se0,1], (2.2)
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which is equivalent to the following: for each z,y € C, there is j(Tz — Ty) €
J(Tz — Ty) such that

1Tz — Ty|* < (z — y,§(Tz - Ty)). (2.3)
In case that X € (H), since J = I, the inequality (2.3) becomes
ITz - Ty|* < (z —y, Tz - Ty), Vaz,yeC,
which is equivalent to
Tz - Ty|?* < ||z - y|* = |(I = T)z = (I = T)y|?, V=z,yeC.
Remark 2.5. Note that ¢(s) is non-increasing if and only if
f(s) =o(l=s)=|[(Tz —Ty) + s[(I - T)z — (I - T)yl|

is increasing; as a consequences of Lemma 2.2, two subsequent equivalents (2.2)

and (2.3) can be immediately obtained. Note also that (2.2) holds for all s > 0 in
view of Remark 2.3; see also Lemma 11.1 in [15].

Notation 2.6. Denote the classes of mappings which are firmly nonexpanisve,
nonexpansive, asymptotically nonexpansive, uniformly Lipschitzian, Lipschitzian,
uniformly continuous, and continuous by (FN), (N), (AN), (UL), (L), (UC) and
(C) in order.

Remark 2.7. Note that the following hold:

(FN) & (N) & (AN) & (UL) & (L) & (UC) & (C). (2.4)
It is obvious that if we take Tz = 22 for z € C = R, then T € (C) \ (UQ); if we
take Tz = /z, Vo € C = [0,00) C R, T € (UC) \ (L); furthermore, if we take
Tz =2z for x € C, then T € (L) \ (UL) with its Lipschitz constant Ly = 2.

3. CLASSES OF NON-LIPSCHITZIAN MAPPINGS OF QUASI-NONEXPANSIVE TYPE

Now consider the special cases when F(T') # 0.

Definition 3.1. A mapping T : C — C is said to be

(b)" quasi-nonezpansive [12] if F(T') # 0 and (b) in Definition 2.1 is satisfied for
all (z,q) € C x F(T): namely,

[Tz —ql| < llz—qll, V(z,q) € Cx F(T).

(c)' asymptotically quasi-nonezpansive if F(T) # () and (c) in Definition 2.1 is
remained true for all (z,q) € C x F(T).

(d)' T : C — C is said to be firmly quasi-nonexpansive if F(T') # § and Definition
2.4 is satisfied for each (z, q) € Cx F(T'): more explicitly, for each (z,q) € Cx F(T),
there is j(T'z — q) € J(T'z — q) such that

Tz — q||* < (z - ¢,§(Tz — q)); (3.1)
equivalently,
[Tz —qll <lls(z —q) + (1 =s)(Tz —q)|, Vs=>0,(z,q) €eCxF(T). (32
In particular, in case that X € (H), (3.1) becomes
Tz - q|* < (z — ¢, Tz — q) & (Tx — 2, Tx — q) <0; (3.3)
equivalently,
T2 - gl < ||z - ql* ~ llz = Tz|?, V (z,q) € C x F(T). (3.4)
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Remark 3.2. Note also that if X € (H), then
Te(Fg-N) & 2T —I € (¢-N) (3.5)
because T € (Fg-N) < (Tz —¢q,Tz —z) <0 from (3.3), and
I@T - Do — gl = 4(Te - ¢, T —2) + |z =y, V(z,9) € C x F(T)
by the analogous proof of the following equivalence:
Te(FN) & 2T —I € (N); (3.6)
see Theorem 12.1 in [14] for more equivalent forms.

Remark 3.3. Whenever X € (H) and (3.4) holds, T is often called directed operator;
see [11, 48].

Notation 3.4. Denote the classes of mappings which are firmly quasi-nonexpanisve,
quasi-nonezrpansive, and asymptotically quasi-nonexpansive by (Fq-N), (¢-N), and
(Ag-N) in turns.

Then it is immediate that

(F¢-N) & (¢-N) & (Ag-N). 3.7)
and if F(T) # 0, we readily see that
(FN) & (F¢-N), (N) & (¢-N), (AN) C (Ag-N), (3.8)

Recall that the following notation
H(z,y)={ue H:{u—y,z—y) <0}
is originally due to Haugazeau [17].
Definition 3.5. ([2|). ={T:H - H|domT = H, F(T) C H(z,Tz), Vx € H}

Remark 3.6. Note that if domT = H, ¥ = (F¢-N), by immediately combining
(3.5) with the well known fact T € ¥ < 2T — I € (¢-N); see Proposition 2.3 in
[2]. Furthermore, we could observe that if T is a subgradient projector relative to a
continuous convex function f : H — R, such that the level set S(f,0) = {z € H :

f(z) <0} #0, ie,

if f(z) <0,

where g is a selection of 9f, then T € ¥ = (Fg-N); see also Proposition 2.3 in [2],
while every (metric) projector T' € (FN).

Tw:{ z - 280 g(z) if f(z) >0
X

Let X € (S). Since the normalized duality mapping J from X to X* is single-
valued, the Lyapunov functional ¢ : X x X — [0, 00) is well defined as

o(z,y) = |zl - 2(z, Jy) + |lyl|®>, Vaz,yeX.

In 2008, Kohsaka and Takahashi [33] say that a mapping T : C — C is non-
spreading if

¢(Tz,Ty) + &(Ty,Tz) < ¢(Tz,y) + ¢(y, Tx), Vz,yeC.
In particular, if X € (H), it reduces to
2Tz - Ty|® < Tz - y|* + e ~ Ty|?, Vz,y€C;
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equivalently,

Tz — Ty|> < |z — y|* + 2(z — T2,y — Ty), Vaz,y€C; (3.9)
see [20].
Notation 3.7. Denote the class of nonspreading mappings by (nonS).

Remark 3.8. Obviously, (FN) & (nonS). Furthermore, if X € (SC) N (UG) and
F(T) # 0, (nonS) & (¢-N); see [33].

4. EXAMPLES FOR MAPPINGS OF NONEXPANSIVE/QUASI—NONEXPANSIVE TYPE

From now on, we will survey strict inclusions for classes of nonlinear mappings
stated in section 2 and 3. We begin with an example of a mapping T € (AN)\(g-N)
with F(T) # 0.

Example 4.1. Let X = (P, where 1 < p < co. Obviously, X is uniformly convex
and uniformly smooth. Let T : X — X be defined by

Tz = (0,22, a0x2,a323,---), V&= (x1,%2,23,24,---) € X, (4.1)
where {a,}22 , is a sequence of real numbers such that az > 0, a, € (0,1) forn # 2
and Y s an = % (e.g., if ay < 1, consider a, =1 — ;15 forn >2); ifax > 1,
then we take as = a>~ Y, and a, = 1 — ﬁg forn > 4). Then F(T) # 0 and
T € (AN)\ (g-N).
Proof. Clearly, F(T) = {0}, where 0 = (0,0, ---), and T is Lipschitzian, i.e., |Tz —
Ty| < 2|z — y|| for all z,y € X. Since a,, € (0,1) for n # 2, we firstly see
n+j oo n
[[ei<1=2>a;<2]Jais Vi1, n>2 (4.2)
= i=2 i=2
Taking ky, := 2], a; | 1, as a simple calculation, we have
n n n+1 n+2
—N—
Tnm = (07 7071_[0'2'1:?’ H a; T2, H ai£3,"')
i=2 i=2 i=3
for ¢ = (z1,%2,23,---) € X and n > 2. Then it follows from (4.2) that
IT"z = T"y|| <knlz —yl, Vn=>1;
thus T € (AN). However, if we take z = (0,1, ---), then
IT2 0] = ap > 1= |}z — 0]}
hence T & (¢-N). O

Remark 4.2. (a) Example 4.1 is originally due to Goebel and Kirk [13] in the Hilbert
space £2, where a, = A, € (0,1) for allm > 2 and }_,” , A, = 3 (in this case,
we can define T : C — C, where C = B the unit ball of X = ¢2). In 2007,
their example was slightly modified by Oslike et al.; see Example 2 in [38], where
T : B — £? was defined as in (4.1). Generally, since Tz ¢ B for z € B, it should
be modified as in Example 4.1 for their further argument. In 2008, it was carried
over the Banach space P, p > 1; see Example 3.13 in [27].

(b) Due to (3.8), if T is defined as in Example 4.1, then T € (Ag-N) \ (N)
and also T € (AN) \ (IV), which clarifies the strictness of “(N) ¢ (AN)” in (2.4).
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Moreover, T € (Ag-N) \ (¢-N), which ensures the strictness of “ (¢-N) ¢ (Ag-N)”
in (3.7).
(c) Since 1 4+ z < € := E(z) for all z € R, we have

< H(1+(7—1_].—1)2)§H(1+(T.}]_)2)

n=2 i

If T is defined as (4.1) and a, = 1+ (T_lT)g for n > 2, since

= ; < < — | =
2 < kn 2}2[;11 < 2};[2% <2B(%) =k,
T € (UL) \ (AN), which proves strictness of “(AN) & (UL)” in (2.4).
(d) If we take b, = exp((—1)"=27) for n > 2, then by,, | 1on [1, €] while bypy1 11
on [exp(—3),1] but [Tn2, bn = exp([Treo(—1)"=27) = exp(In2) = 2. Now define
Tr = (0 sinx a2b21}2, a3b3I3, s ), Vo= (I1,$2,$3, o ) € X.

Since []-, 5 and [[I_, b, — 2, if we take ky := [[;—, a;b;, then it is obvious
that T € (AN) \ (Fg-N), too.

Consider the following easy example of a mapping T € (AN) \ (N).

Example 4.3. ([28]). Let X =R and C =[0,1]. For eachz € C, letT:C — C
be defined by

kz, if0<z<1/2
Te=q mk-2), if1/2<z<k;

where 1/2 < k < 1. Then F(T) = {0} and T € (AN) \ (NV).

Proof. Clearly, F(T) = {0}. Since 55~ — 0, there exists K € N such that
s < Lforall n > K. Now we show that T € (AN). Indeed, if 0 < z < 1/2
and 1/2 < y < k, then T"z = k"z and T"y = 55—~ (k — y). by noticing 72 > 1,
ﬁ >1 < k <1, we observe
K k™ k"
Tn - Tn = n — — o k. _ ‘
e =T = o=+ 5 - g k=)

kn(‘”'l)+2kki1{(k_%)_(k_y)”
< k\z——\+ K }

if we take k, — 1 such that k, > 2 foralln>Kand/’cn—2,c 7 for n < K. The

remaining cases are obvious. Hence T € (AN). However, if we take 1/2 < z,y < k,
then

i

< Iw—yISanx—yI,

k
Tz —Ty| = - -
Tz ~ Tyl = gp—le —yl > |z — g,
which claims T & (N). O

93
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Example 4.4. Under the same hypotheses of B C X = (P with Example 4.1,
consider a shifting operator T : B — B defined by
Tx = (0,21,22, ), Vz=(z1,%2,---)€ B.
Then, F(T) = {0} and T € (¢-N) \ (Fg-N).
Proof. Clearly, F(T) = {0}. Since |Tz|| = ||z||, T € (¢-N). However, if we take
z = (1,0,---) € B,¢g=0and s = 1 in (3.2), we readily see that |z + Tz| =
1(1,1,0,---)|| = 25 and
1
Tz -0 =1> 52% = |lsz+ (1 —8)Tz| < p>1,
which yields T' ¢ (Fg-N) by (3.2). d
Remark 4.5. Note that Example 4.4 ensures strictness of (Fg-N) G (g-N).

Next let us introduce an easy example of a discontinuous mapping T € (Fg-N)\
(FN), F(T) # 0, assuring strictness of “(FN) ¢ (Fg-N)” in (3.8), which was
originally due to Bauschke and Combettes [2].

Example 4.6. ([2]) Let H = R with its usual norm | -| and C = [-m,7|. Let
T :C — C be defined by

3z, zeCNQ;
0, z e CnNQ°.

Then, F(T) = {0} and T € (Fg-N) \ (FN).

Proof. Clearly, F(T) = {0}. We readily see that 2T — I = (31q — 15) I € (¢-N)
for

3
Tz = Zl@l$ = {

1 (4
2T — Da — 0| = ‘(§1Q(:¢) - 1Q(x))1z{ <|z—0|, VzeC.
Hence T € (¢-F') by (3.5). However, if we take z = m and y = 1, then 2T — I ¢ (N)
for
1
QT - D — (2T =Dl =7+ 5 > r — 1].

From (3.6), we have T' ¢ (FN). a
Question 4.7. How about strictness of “{AN) C (Ag-N)” in (3.8)? Construct

an example of a mapping T € (Ag-N) \ (AN) in a case when F(T) # 0. It still
remains open.

Recall that if F(T) # @, then (N) ¢ (¢-N) in (3.8). Consider the following
example due to Hicks and Kubicek [18] of a non-Lipschitzian mapping T € (¢-N) \
(IV), showing that the class (¢-IV) is strictly larger than the class (N) with F(T) #
0.

Example 4.8. ([18]; Example 1) Let X = R and C = [-1,1]. Define T : C — C
by

o

To — %xsml z e C\{0};
T =0.

Then F(T) = {0} and T € (¢-N \ (N).
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Proof. Obviously, F(T') = {0}). For any z(# 0) € C, since

2 1 2
|Tz| = l—zsin—‘ < —|$| < |z,

which proves that T € (¢-N). However, if we take z = 2 and y = 2, then
2 2. . 2 2 37r 16
lTl'—Tyl = ‘5';81115—'?;'3—”8111? —G
> o=y
I P
3r Y
and so, T' ¢ (N). Clearly, T is not Lipschitzian; see Example 4.3 of [25] for detailed
proof. a

The following example of a Lipschitzian mapping T € (¢-N) \ () was originally
due to Chidume [8].
Example 4.9. ([8]) Let X = £ and C = {z € £ : ||z||oc < 1}. DefineT :C — C
by

Tz = (0,22,23,---), x=(z1,22,---) € C.
Then, F(T) = {0} and T € (¢-N) \ (N).
Proof. 1t is clear that F(T) = {0} and [Tz — TY|loo < 2|z — y||ec for all z,y € C;
hence T is Lipschitzian. Moreover, since
ITzlloc = 10,23, 23, )lloc
< 0,21, 22, )lloo = [I2lloo, VY €C,

it results T € (¢-N). However, if we take z = (3,2,---), y=(3,3,---) in C, then
1Tz = Tylleo = H( '16’ 16 )H 16 % - ”(4 T )H = lle = yllee,
thus T' & (N). O

The following example of T € (¢-N) \ (F'g-N) due to [41] is not adequate for our
argument because T is linear.

Example 4.10. ([41]) Let H := R? with the usual norm and C := [-1,1]x[-1,1] C
H, DefineT : C — C by

Tz = (—1152,1131), V= (Il,xg) e C.

Then F(T) = {0}, where 0 = (0,0) € C. Obviously, T is linear and isometry.
Therefore, T € (N) C (¢-N) because F(T) # 0. However, T ¢ (Fq-N) from (3.4)
because

|ITz|| = ||z|| and ||z —Tz| >0 for z(#0) e C.
Remark 4.11. Example 4.10 asserts the strictness of “(F¢-N) & (¢-N)” in (3.7).
Note also that T € (N) \ (FN).

Now let us investigate an example of T € (¢-N) \ [(ronS) U (N)] due to Kim
[24].

Example 4.12. ([24]) Let C = [-m,n] C X :=R. Let a mapping T : C — C be
defined by
Tx=xcosz, VzeC.

Then T € (g-N) \ [(nonS) U (N)].



96

NONLINEAR MAPPINGS

Proof. Clearly, F(T) = {0}. Since |Tz — 0| = |zcosz| < |z — 0| for all z € C,
it results T € (¢-N). However, if we take = m and y = 7, then [Tz — Ty| =

|Tcosm — Fcosf| =7 > 5 = [z —y|; so, T ¢ (N). Also, if we take z = m,
y=-7m€C,since Te =—7,Ty=m,
[Tz — Ty| = |z — y| = 27 and 2(z — Tx,y — Ty) = 2(27, —27) = —87?,
we have
Tz — Ty||* = 47> > —4n® = |lo ~ y|* + 2(z — Tz,y - Ty),

thus, T ¢ (nonS) by (3.9). O

Here consider an example of T' € (nonS) \ (C) due to [21]; hence T € (nonS) \
[(FN)U(N)U(L)U(UL)u (UQC)] from (2.4).

Example 4.13. ([21]) Let B, :={z € H : ||z|| <7} forr >0 and C := Bs C H
and define a mapping T : C — C by

o x, .TGBQ,'
Tz = { PB1w7 .’L'EC\BQ,

where Py is the metric projection of H onto A. Then T € (nonS) \ (C).

Proof. Obviously, F(T) = Bz. Let z,y € C. It suffices to check out the case
z € C\ By, y € By. Then, since Pp, is nonexpansive and y — Ty = 0, it results
that

Tz - Ty|* = ||Ps,2 —yl*=Psz — Ppyl?
< lz = yl? = llz - yl* + 2(z — Tz,y — Ty);

hence T € (nonS). Clearly, T ¢ (C). In fact, fix zg € 0Bs, yo € 0C. Consider
zn = (1—2)zo+ Lyo € C for each n > 1. Then z, — o but Tz, = Pp,z, A
Tzo = xo because ||Pp,z,|| =1 and ||zo| = 2. a

Remark 4.14. Note that T ¢ (C) in Example 4.13; hence T ¢ (U), in other words,
T € (nonS) is generally not Lipschitzian.

Finally, we give two examples of T € (¢-N) \ (C) while (N) ¢ (UC).

Example 4.15. ([47]; see Example 2.11) The mapping T : [0,1] — [0,1] s defined
by

Tr — £, z€l0,3],
zsinmz, z € (3,1].

Then T € (g-N) \ (O).
Proof. Obviously, F(T') = {0}. For any z € [0, 1], we have
Te -0 =[5 -0 < |z —0],
and for any z € (3, 1], we have
|Tz — 0| = |zsinmz — 0] < |z — 0.

Thus T € (¢-N). Obviously, T is continuous at 3. a
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Example 4.16. ([45]; see Example 2) Let C = [0,3] C R and define T : C — C by

[0, z#3;
Tz = { 2, z=3.
Then it is obvious that F(T) = {0} and T € (¢-N) \ (C).

Question 4.17. Find an example of a nonlinear mapping T € (Ag-N) \ (¢-N).

5. CLASS OF OPERATORS OF PSEUDO-CONTRACTIVE TYPE

Definition 5.1. A mapping/an operator T : C — C is said to be

(a) pseudocontractive [5] if f is increasing on [0,1], where f(s) = ||[(z — y) +
s[(I=T)x— (I —T)y]|| of Lemma 2.2 withu=z—yandv=(I-T)z— (I -T)y;
equivalently,

le—yll < l@-y)+s(I-T)z—(-T)ll

= [A+s)(z—y)-s(Tz-Ty)l, Yz,yeC s>0;
equivalently, for each z,y € C, there exist j(z — y) € J(z — y) such that

(Tz - Ty, j(z - y)) < |z —y|*. (5.1)
Especially, in case when X € (H), the inequality (5.1) becomes
(T.’II - Ty7$ - y> < ”J" - y“2a V"an € C; (52)

equivalently,
1Tz = Ty|* < |l -yl + |(I - T)e — (I - T)yl*, Vz,yeC.  (5.3)
(b) quasi-pseudocontractive if F(T) # @ and for each (z,q) € C x F(T), there
exist j(z — q) € J(x — q) such that
(Tz —q,j(z — q)) < [z —q|/?, (5.4)
equivalently,
lz—qll <l(z—q)+s(z—-Tz)|, Vs>0.
In particular, in case when X € (H), the inequality (5.4) becomes
(Tz —q,z —q) < |z —q||?>, V(z,y) € C x F(T); (5.5)
equivalently,
1Tz - q|* < [z - q|® + |z — Tz||?, V(z,9) € C x F(T). (5.6)
(c) asymptotically pseudocontractive, with a sequence {k,} C [1,00), lim, o0 kn
=1, [43] if each f, is increasing on [0, 1], where
1 n 1 n .
= e -w et e (1 7))
by Lemma 2.2, which is equivalent to the following: for each z,y € C and n > 1,
there exist j(z — y) € J(z — y) such that

(T"z — Ty, j(z — y)) < knllz —yl*. (5.7)
Especially, in case when X € (H), the inequality (5.7) becomes
(T"x — Ty, —y) < knllz —y|?, Vaz,y€C; (5.8)

equivalently, for all (z,q) € C x F(T) and n > 1,
1Tz — T"y|* < (2kn — Dile =yl + |1 = T™)z — (I = T")y|*.

o7
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(d) asymptotically hemicontractive, with a sequence {k,} C [1, 00), limy 00 kpn, =
1 [39, 35, 37] if F(T) # 0 and for each (z,q) € C x F(T) and n > 1, there exist
j(z — q) € J(z — q) such that

(T"z ~ q,j(z — q)) < knllz —ql* (5.9)
In particular, in case when X € (H), the inequality (5.9) becomes
(T"z —q,x — ) < kallz — q||; (5.10)
equivalently, for all (z,q) € C x F(T) and n > 1,
IT"z - q|* < (2kn = 1)l|lz — q|* + |z — T"z|%.

Notation 5.2. Denote the classes of mappings/operators which are pseudocontrac-
tive, quasi-pseudocontractive, asymptotically pseudocontractive, and asymptotically
hemicontractive by (P), (¢-P), (AP) and (AH) in order.

Recall that an operator T is said to be accretive [4, 23] if for all z,y € D(T),
(Tz —Ty,j(z —y)) 20, Vj(z-y) eJ(z-y).
Remark 5.3. (a) Note that T € (P) iff
(I-T)x - (I -T)y,j(x—y)) 20, Vj(z-y)eJ(z-y)

by (5.1), in other words, the operator I — T is accretive; see [4, 23].

(b) Every asymptotically hemicontractive mapping/operator is sometimes called
asymptotically quasi-pseudocontractive; see [11, 22]. If we denote by (Ag-P) the
class of asymptotically quasi-pseudocontractive mappings/operators, then (Ag-P) =
(AH).

(c) Note also that

(N) & (P) and (AN) ¢ (AP); (5.11)

see [5, 43] or Example 7.8 for a mapping T € [(P) N (AP)]\ (L). Furthermore, it is
obvious that if F(T) # 0, then

(P) & (¢-P) and (AP) & (AH) = (Ag-P). (5.12)

6. CLASS OF OPERATORS OF STRICTLY PSEUDO-CONTRACTIVE TYPE

Definition 6.1. An operator A with domain D(A) and range R(R) is said to be
(a) a-strongly accretive if for each z,y € D(A), there exist j(z — y) € J(z — y)
and o > 0 such that

(Az — Ay, j(z —v)) 2 allz — y[I*;

(b) a-inverse strongly accretive (in brief, a-isa) [16] if for each z,y € D(A), there
exist j(z —y) € J(z — y) and a > 0 such that

(Az — Ay, j(z — y)) > allAz — Ay||*;

(in X € (H), note that o-isa is exactly a-inverse strongly monotone (in brief,
a-ism)).
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Recall that T € (P) iff I — T is accretive, where f(s) = ||u + sv| in Lemma
22 withu=z—yand v= (I —T)z — (I —T)y; see (a) of Definition 5.1. From
now on, consider (i) v=(I —aT)z — (I —aT)y or (ii) v=(al —T)z — (ol = T)y
for any (fixed) a > 0. We say that T is said to be a-strongly pseudocontractive if
the convex function f(s) = |lu+ sv|| = |[(z —y) + s[(I — aT)z — (I — aT)y]|| is
increasing, by Lemma 2.2, for each z,y € D(T'), there exist j(z —y) € J(z—y) and
a > 1 such that

(I-aT)z — (I —aT)y,j(z—-y)) >0
& (Tz-Ty,jle - y) < <o - ul?

a—1
«a

& (I-Tz—-(I-Ty,jz-y)) =

a—1

= =yl

& I-Tis

-strongly accretive;

equivalently,
lz—yll < l(z-y)+s[I-aT)z—(I—-al)yl|
(1 + s)(z —y) — sa(Tz — Ty)||.
Similarly, we say that T is said to be a-generalized pseudocontraction [46] if the
convex function f(s) = |u+sv|| = |[(z—y)+s[(al —=T)z — (aI —T)y]|| is increasing,

by Lemma 2.2, for each z,y € D(T), there exist j(z —y) € J(z —y) and @ > 0
such that

((al =T)z — (oI = T)y,j(z —y)) 20
& (Tz-Ty,j(z-y)) < alz -yl

& (I-Tz-(I-Ty,jx-y)>1-a)z-y|?
= I —Tis (1 — a)-strongly accretive if o < 1;

equivalently,

A\

le—yll < ll(z—y)+sl(el =T)z—(al = T)yl|
(1 + sa)(z —y) — s(Tz — Ty)||.
Finally, consider the case I — T is a-isa, i.e., for each z,y € D(T), there exist
j(z —y) € J(z —y) and a > 0 such that
(I-T)z—(I-T)y,jlx—-y)) > al|(I -T)z—(I-T)yl|?
& (T -Ty,j@-y) <lz—-yl|* el -T)z— (I -T)y|?

Definition 6.2. A mapping/an operator T : C — C is said to be

(a) asymptotically k-strictly pseudocontractive, with sequence {k,} C [1,00),
limp, o0 kn = 1 [39, 35, 37, 38, 31] if for each z,y € C and n > 1, there exist
jx—y) € J(z —y) and k € (—o0,1) such that

1+k,
2

(b) asymptotically k-demicontractive, with sequence {k,} C [1,00), lim, 00 kn, =
1 (37] if F(T) # 0 and for each (z,q) € C x F(T) and n > 1, there exist

(T~ Ty, (@ —9) < o — gl — 25T = T2 — (-l (6.)
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j(xz —q) € J(x —q) and k € (—00,1) such that
1+ ky,
2

(c) s-strictly pseudocontractive [5, 36] if for each z,y € C, there exist j(z —y) €
J(z —y) and k € (—o0,1) such that

(T"z—q,j(z —q)) <

1-k
|z — gl - 7 llz ~ T"z|.

. 1—-&
(Tz - Ty, j(z —y)) < ||lz —ylI* -

(I =Tz~ (I-Tyl?

& ((I-Te-(I-Ty,j(z-y) =
< [-Tisa-isa, wherea=(1—-k)/2>0.

(d) k-demicontractive if F(T) # @ and for each (z,q) € C x F(T), there exist
j(z —q) € J(z — ¢q) and k € (—o0,1) such that

(I =Tyl (6.2)

1-—

(Tz - q,j(z — q)) < ||z — g = —— || — Tz|*. (6.3)

Remark 6.3. Note that many authors [39, 35, 37, 38] call k-strictly asymptotically
pseudocontractive and k-asymptotically demicontractive in place of “asymptotically
k-strictly pseudocontractive” in (a) and “asymptotically x-demicontractive” in (c),
respectively.

Notation 6.4. Denote the classes of mappings which are asymptotically k-strictly
pseudocontractive, asymptotically k-demicontractive, k-strictly pseudocontractive,
and k-demicontractive by (Ak-SP), (Ak-D), (k-SP) and (k-D) in order.

Remark 6.5. (a) Note that, since A =1 — > 0, it suffices to only choose x € [0, 1)
in place of k € (—o0,1) in (a)-(d) of Definition 6.2.
(b) From (6.2), we note that

1-k 1-k
lz =yl 2 ——I(I =T)z = (I =Tyl 2 ——(ITz = Ty| - llz — yl)
& [Tz - Ty| < Lijz —yll,
where L := 3=%. Thus, T € (L), showing that (k-SP) ¢ (L); see [36] and also

1-k"

Proposmon 2.1 of [34] for X € (H).
(c) Similarly, it easily follows from (6.1) that
=Rl =Tz~ (I =Ty
< AU -TMz - (I =Ty, j(x —y)) + (ka — Dz -y
< 2 =Tz~ (I =Ty| - e~ yll + (kn = D)llz -yl
which is a quadratic equation of ¢t := ||(I — T™)x — (I — T™)y||; hence it quickly
follows that
[Tz = T"y|| = lz —yll < (T =T™)x — (I = T")y||
1+ 14+ (1 —k)(k, - 1)
< Levirdo I~
& [Tz - T"yll < Lallz - yll,

where L, 1= "5V 1+(1 Rl ; hence T' € (UL), which says that (As-SP) &
(UL); see a.lso Proposmon 2.6 (a) in [31] for X € (H).
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As a special case that X € (H), since J = I and
2<'LL - 0,7 = y) = ”.’II - yH2 + ||u - vHZ - ”(‘1’. - u) - (y - 1})”2, V«’C,y,U,U € Ha
(a)-(d) in Definition 6.2 will be rewritten as follows:

Definition 6.6. Let X € (H). Given a mapping/an operator T : C — C, we call
(a) T € (Ak-SP) [39, 31] if there exist a sequence {k,} C [1,00), lim,, o0 kp, =1
and x € (—oo, 1) such that, for all z,y € C,

AT e =T y,z —y) < (L+ka)|z -yl = 1 = R)|(I =Tz — (I = T™)y%
equivalently,
IT"z = T"y|? < kalle — yl* + &I = Tz — (I - T™)y)|?, Va,yeC.

(b) T € (Ak-D) [34] if F(T) # 0 and there exist a sequence {k,} C [1,00),
lim,,_yo0 kn = 1 and & € (—00,1) such that

1-k

1+k
(T"z - g,z —q) < — |z —qll* - lz — T z||?;

equivalently,
1T - qlf* < knllz - qlf* + k]| = T"2)|?, V (z,9) € C x F(T).
(¢c) T € (k-SP) [5] if there exist k € (—o0, 1) such that

(= T)z ~ (I~ T)y,z —) > =55~ Thz - (I~ TP, Va,yeC; (6.4)
equivalently,
ITz = Tyl < llz —yl® + &[|(I = T)z — (I =T)y)|?, Vz,yeC.
(d) T € (k-D) [5] if the exists a constant k € (—00, 1) such that
1Tz — ql* < llz — ql® + &lle = Tz||?, V(z,q) € C x F(T); (6.5)
equivalently,

1—

(¢ -T2, —q) > =~z ~Te|?, V(z,g)cCxF(T).  (66)
Remark 6.7. (a) Note that it suffices to choose « € [0,1) instead of k € (—o0,1) in
(a)-(d) of Definition 6.6. Note also that

(k-SP) G (P) and (Ax-SP) G (AP) (6.7)

but note that two classes (P) and (AP) are also independent as well as two classes
(k-SP) and (Ak-SP) are independent; see (b) of Remark 7.4.
(b) Note also that if F(T') # 0, then

(k-SP) G (k-D) G (¢-P) and (Ax-SP) G (Ax-D) G (AH) = (Ag-P).  (6.8)

(c¢) Furthermore, if X € (H), there hold the following properties:

i) Every metric projection Pc is directed; see (3.4).

ii) (AN) = (A0-SP) G (Ak-SP), (Ag-N) = (A0-D) G (Ax-D), (N) = (0-SP) &
(k-SP) and (¢-N) = (0-D) & (k-D).

iii) If K < 0, (k-D) & (¢-N) by noticing that T € (¢-N) \ (k-D) in Example 4.4
for k < 0.

iv) ((=1)-D) = (Fg-N), which is exactly the class of directed operators [11])

v) (¢-N) ¢ (k-D) for k € (0,1) and (Ag-N) & (AH) = (Ag-P).
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7. EXAMPLES OF OPERATORS OF PSEUDO—/STRICTLY PSEUDO-CONTRACTIVE
TYPE

First, let us invoke the following two examples due to [38], showing that classes
(P) and (AP) in (5.12) are independent. Also, (k-SP) and (Ax-SP) in (6.7) are
independent.

Example 7.1. ([38]; Example 1) Let C =R and define T : C — C by
Tx=-2x, VzxeC.

Then F(T) = {0} and T € (k-SP) \ (AH) for k € [},1).

Proof. Obviously, F(T) = {0}. Since |(I — T)z — (I — T)y|?> = 9]z — y|? and

1
(I-T)e—(I-T)y,x~y) =3l —y|*= I -T)z (I - T)y|?
1-k
>
- 2
it follows from (6.4) that T € (x-SP) for k € [§,1). However, note that for even
n>1,

(I-T)e~(I-T)P & 3<u<1,

(T"z,z) = 2"z* > 22°.
Since k, — 1, there exists K € N such that k, < 2 for all k > K. Therefore, for
even n > K, we have
(T"z,z) = 2"x? > 222 > ky|z|?,
which implies that T ¢ (AH) by (5.10). O

Remark 7.2. Note that if T is defined as in Example 7.1, since (k-SP) C (k-D)N(P)
and (Ax-SP) U (AP) C (AH) in (5.12) and (6.8), we have T € [(k-D) N (P)] \
[((Au-SP) U (AP)] for all k € [3,1) and p € (—o0,1).

Example 7.3. ([38]; Example 2) If T : X — X is defined as in Ezample 4.1, then
T € (Ak-SP) \ (¢-P) for k € (0,1).
Proof. Taking k, :=2 (3 ._,) 1 1, we easily see that
IT"z = T"y|* < knllz — y]*
< kalle =yl + &I =Tz — (I =Ty
for k € (0,1), n > 2 and z,y € X. Therefore, T € (Ax-SP) for k € (0,1). However,
if we take z = (3,3,3,0,---) and ay = 3, since F(T) = {0}, it follows that
10 1

(Tz,2) =((0,1/9,1,a3/3,0,--+),(1/3,1/3,1/3,0,---)) = 55 > 3 = (]2,

which asserts that T ¢ (¢-P) by (5.5). O

Remark 7.4. (a) Note that if T is defined as in Example 7.3, since (k-SP) &
(P) ¢ (¢-P) and (Ak-SP) ¢ (AP) ¢ (AH) in (5.12), (6.7) and (6.8), we have
T € [(AP)N (AH)]\ [(P) U (s-SP)).

(b) Combined Remark 7.2, Example 7.1 and 7.3, we conclude that the classes
(P) and (AP) in (5.12) are also independent as well as (Ax-SP) and (k-SP) in
(6.8) are independent; moreover, (k-D) and (Ax-SP) are independent, too.

Next, let us introduce a Lipschitzian mapping T € (¢-P) \ (P), which asserts
strictness of “(P) & (¢-P)” in (5.12).
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Example 7.5. ([3]) Let C =[0,3]| CR=H. Let T : C — C be defined by.
{0 4 el
Then, F(T) = {0} and T € (¢-P) \ (P).
Proof. Obviously, F(T) = {0}. In view of (5.6), we observe that T' € (q-P) if and
only if
[Tz — 0] < |z|? + |z - Tz|* & (Tz,2) < |z|?
& z(2z-4)<2* e ze(0,4].
On the other hand, if we take x = 3,y = 2, then we see
(Tz —Ty,z —y) =2 £ 1=z —yl,
which asserts that T' ¢ (P). O

Recall the (normalized) duality mapping in the P space, p > 1, is given by
Jz = ||z||*7P(|lz1 [P sgnzy, |22 [P Tsgnxa, - --), Vo = (21,20,---) € P,

by combining Corollary 4.10 and Proposition 4.7 (f) in [10]; see also Example 10.2
in [14]. Now consider an example of T € (k-D) \ (¢-N) in the ¢P space, which
ensures strictness of “(¢-N) & (k-D) for k € (0,1)” in (v) of Remark 6.7 (c); see

also Example 2.5 of [47] and Example 2.5 of [9] with k = 2 in the £2 space,

Example 7.6. Let C=X =P, p>1and k> 1. Let T : X — X be defined by
Tz = —kz for allz € X. Then F(T) = {0} and T € [(k-L)N (k-D)]\ (¢-N), where

k-1
mﬁﬂ<1.

Proof. Tt is obvious that F(T) = {0} and T € (k-L). For each z € X, since
|z — Tz||? = (1 + k)?||z||? and (T'z — 0, J(z — 0)) = —k||z||?, a simple observation
gives

1—&k

(Tz,J2) < |l2|* = ——l= - Ta||*
— 2 -
= —kgl—(l k)1 + k) @k 1§n<1.
2 1+k
Therefore, T € (k-D) for ’fﬁ < k <1 by (6.3). On the other hand, since k£ > 1
and ||Tz| = k||z|| > ||z|| for all z € C, which asserts T & (¢-N). O

Now let us review the mapping T € (x-D) \ (s-SP) in Example 4.8, assuring
strictness of “(k-SP) & (k-D)” in (6.8).

Example 7.7. ([18]; Example 1) Let H;=R and C = [-1,1]. DefineT :C — C
by

n

zsinl, zeC\{0};

s z=0.
Then T € (k-D)\ (P) for k € [=5,1); hence, T & (k-SP) for k < 1.

Proof. Obviously, F(T) = {0}. Since §|z|?> < |z — Tz|> < 2|z|?, we observe

Tr=4 3

(=]

2 112 4
ITz|> = ‘gmsin;| < §|ac|2 < |z + g|a:|2

(

INA

|z|? + &|Tx — z?) & & € [-5,1),
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which quickly implies that T € (k-D) for k € [-5,1) by (6.5). However, if we take
xz% andyz%,then

256
— 2 = —_——
Tz — Ty| 1
16 16 160
2 _ (T 2_ 10 1o 16U
> -y + U =Tz~ (I =T =55+ 57,2 = g2’
which proves that T ¢ (P) by (5.3); hence, T ¢ (k-SP) for k < 1 by (6.7). O

Now we shall introduce an example in [41] of T € [(P) N (AP)]\ [(x-D) U (L)],
guaranteeing strictness of “(k-D) & (¢-P)” in (6.8), “(N) & (P) and (AN) ¢ (AP)”
in (5.11).

Example 7.8. ([41]) Let H =R and C = [0,1] C R. Let an operator T : C — C
be defined by

Tz=(1-23%)% zeC,
Then:

(a) F(T) = {%} and T € (P) N (AP); hence, T € (¢-P) N (AH).

(b) T & (L); hence T ¢ (UL).

(¢c) T & (k-D) forr <1 - ¥Z.

Proof. (a) Obviously, F(T) = {%} and T? = I. Observing T'(z) = —(1 —
z?/3)Y/2(1/Yx) < 0 for z € (0,1), it follows that T is monotone decreasing and so
(Tz ~Ty,z —y) = (Tz —Ty)(z —y) <O < o —yf?

<T2n‘1" - T2ny> = (.’E - YT — y) = II - y|2a
(T?" 1 — T Yy) = (Tx — Ty,z —y) < |z — y|?
for z,y € C and n > 1, which claims that both T € (P) by (5.2) and T € (AP)
with &k, =1 by (5.8); hence T' € (¢-P) N (AH) by (5.12).
(b) Since T'(z) - o0 asz — 0+, T ¢ (L); hence T ¢ (UL) by “(UL) & (L)” in
(2.4).
(c) We show that T ¢ (k-D) for k < 1— 3? In fact, if we take =0 and ¢ = %
in (6.6), then |z — Tz| =1 and

V2, V2 1-&
(z—Tz,z—q) = (O—I,O—T)——4—< 3
1—k 2 \/5
= 2 |z — Tz ©n<1—7,
which insists that T ¢ (k-D) for k < 1 — \/75 by (6.6). O

Here, we give an example of T' € (AH) \ (Ag-N), which assures strictness of
“(Ag-N) ¢ (AH) = (Ag-P)” in (v) of Remark 6.7 (c).

Example 7.9. ([26]). Let H := R, C := [—,1], where 1 < k < 2. Define a
mapping T : C — C by

Then:
(a) F(T) = {0} and T? = I; hence, T>*" 1 =T for alln > 1;
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(b) T € (k-L); hence T € (UL) by (a);
(¢c) T € (AH) \ (Ag-N).
Proof. (b) For proving the Lipschitz of T, it suffices to see that if —% <z <0and
0<y<1,then
[Tz — Tyl |(—kz) — (=1/k)y| = [1/k(y — ) + (1/k — k)z|
1/klz — y[ + (k — 1/k)|=|
1/klz —y| + (k= 1/k)|lz — y| = klz — y|.

In view of (a), since T? = I, it is also uniformly k-Lipschitzian.
(c) Since F(T) = {0}, we observe

(T%"z,2) = (z,2) = |aI’,
(T g, 2) = (Tx,z) = 2(Tz) <0< |z[%

it follows from (5.10) that T € (AH) for k, = 1. However, if —% <z <0, since
k > 1, we have

INIA

(Tt = [Taf? = Rlaf? > [P,
which concludes that 7" ¢ (Aqg-N). d

8. CLASSES OF NONLINEAR MAPPINGS OF ASYMPTOTICALLY NONEXPANSIVE
TYPE

Definition 8.1. A mapping T : C — C is said to be
(a) asymptotically nonexpansive type (in brief, ANT) [32]; if TV is continuous
for some N > 1 and satisfies the following property of ANT: for each z € C,

timsup sup |77z ~ Ty ~ [la ~ y[) <. (8.1)

n— oo ye
(b) asymptotically nonexpansive in the intermediate sense (in brief, ANis) [6] if
T is uniformly continuous and satisfies the following property of ANis:

limsup sup (|T"z —T"y| - [z —yll) < 0. (8.2)

n—oo x,yeC

(c) totally asymptotically nonexpansive (in brief, TAN) ([1]) if there exist two
nonnegative real sequences {ay,} and {8,} with a,,8, = 0,7 € T(R;) and ng € N
such that

IT"z - T"y|| < llz —yll + an7(lz = yl) + Bn, Vaz,y€C,n>ng,  (83)
where 7 € I'(R,) iff 7 is strictly increasing, continuous on Ry and 7(0) = 0.

(d) square totally asymptotically nonexpansive (in brief, sSTAN) if (8.3) in (c) can

be replaced by
1T = T"y||* < |lz ~ y|I* + @nF(lz ~ y|*) + B,
for all z,y € C and n > mg, where mgy € N, Ein,ﬁn — 0 and 7 € T'(RY).

As analogous concepts defined in sections 5 and 6, we can define as follows:

Definition 8.2. Let X € (H). A mapping T : C — C is said to be
(a) asymptotically k-strictly pseudocontractive in the intermediate sense (in brief,
AkSPis) [42] if there exist a constant € [0,1) and a sequence {k,}, k, — 1, such
that
lim sup sup_ (1T — T y|* = kallz —yl* = & (I = T™)z = (I - T™)y||*] < 0. (84)

n—oo z,yeC

65
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(c) asymptotically pseudocontractive in the intermediate sense (in brief, APis) if
there exists a sequence {k,}, k, — 1, such that

limsup sup [|T"z — T"y||* — knllz — y|* — (I = T™)z ~ (I = T™)y|*] <0. (8.5)

n—oo z,yeC

(b) asymptotically k-demicontractive in the intermediate sense (in brief, ADis)
[42] if F(T) # 0 and there exist a constant « € [0,1) and a sequence {ky}, kn — 1,
such that

limsup  sup  [|T"z — q|* — knllz — ql* — &llz — T"z|?] <O. (8.6)
00 £€C,qeF(T)

(c) asymptotically hemicontractive in the intermediate sense (in brief, AHis) [42]
if F(T) # 0 and there exists a sequence {k,}, k, — 1, such that

limsup  sup [|T"z — q|* — knlle — q|f* — o - T"=*] <0.  (8.7)
n—oo zeC,qeF(T)

Recall that {f,} converges uniformly to f on C if
1 = fII = sup [ fn(z) — f(2)]| = O

as n — oo, where f,, f: C(C X) — C. We say that the mapping T satisfies the
uniform convergence to a point on C if {T"z} converges uniformly to p on C, i.e.,

sup [|[T"z —p|| =0 as n — oo.
zeC

Notation 8.3. We denote classes of mappings of ANT, ANis, TAN, sTAN, Ak-
SPis, APis, Ak-Dis, and AHis, in turns, by (ANT), (ANis), (TAN), and (sTAN),
(Ak-SPis), (APis), (Ak-Dis), and (AHis),

Also, we denote by (pUC) the class of mappings satisfying the uniform conver-
gence to a point on C, by (pANT) the class of mappings satisfying the property of
ANT (8.1) and by (pANis) the class of mappings satisfying the property of ANis
(8.2).

Remark 8.4. (a) Note that if we define

cn = sup ([[T"z — T"y| - |lz — yl)) VO,
z,yeC

where a V b := max{a, b}, then (8.2) ensures that ¢, — 0 and
[Tz — T"y|| < |z -yl + cn (8.8)

for all z,y € C and n > 1. Obviously, (8.8) implies (8.2) in case ¢, — 0. Therefore,
we conclude that T € (p-ANis) iff (8.8) holds for some sequence {c,} with ¢, — 0.
(b) Similarly, if we define

d = sup ([T"z — T y||* ~ knllz — y|* — sl|(I = T")z — (I - T")y|I*) VO,

z,YyEe
then (8.4) ensures that d,, — 0 and
IT"z — T"y|1? < kallz = yl* + &l(I = T™)z — (I = T™)y||* + dn (8.9)

for all z,y € C and n > 1. Obviously, (8.9) implies (8.4) in case d,, — 0. Therefore,
we conclude that T € (Ak-SPis) iff (8.9) holds for some sequence {d, } with d,, — 0;
see also [42].
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(c) Note that the property (8.3) with a, = 0 for all n > 1 reduces to (8.8) with
Bn = ¢n; moreover, if we take 7(t) =t forallt > 0 and 8, =0 for alln > 1in (8.3),
the class (TAN) is consistent with the class (AN) by (2.1) with k, =14+ @, — 1.

(d) Note that the following strict inclusions hold:

[(pANis) U (AN)] G (TAN), (ANis) = (UC)n (pANis), (8.10)

[(pANis) U (Ax-SP)] ¢ (Ak-SPis) & (APis), (8.11)

(Ak-Dis) & (AHis). (8.12)
(e) Assume 0 := diam(C) < co and T € (TAN). Then

1Tz =Tl < llz =yl +an sup 7(|e=yll)+ Fn
z,Y

lz =yl + anT(8) + Bn
lz =yl +ecn, Va,yeC n2>1,
where ¢, := @, 7(6)+ 8,0 — 0. Hence we conclude: if C is bounded, then (TAN) C
(ANis).
(f) If C is bounded, then (TAN) = (sTAN).

Proposition 8.5. (pUC) & (pANis) N (Ak-SPis).

IA

Il

Proof. Let ¢y, (d,) in (a), (b) of Remark 8.4 and assume T € (pUC), i.e., supycc | T z—
p|| for some p € C. Then we observe

0<c,Vd, < sup | T"z — T"y|| < sup | T"z — p|| + sup ||]p — T"y| — 0.
z,y€ zeC yeC

From constructions of ¢, and d,, (8.8) and (8.9) are immediately obtained. There-
fore, T € (pANis) N (Ax-SPis). For strict inclusion, see Example 9.7. O

9. EXAMPLES OF NONLINEAR MAPPINGS OF ASYMPTOTICALLY NONEXPANSIVE
TYPE

As immediate consequences of Proposition 8.5, we introduce examples of map-
pings T € [(UC) n (pUC)]\ (L) & (ANis) = (UC) N (pANis) by Proposition
8.5.

Example 9.1. ([25]). Let C := [—%,%] and 0 < |k| < 1. For each z € C, let
T :C — C be defined by

1 .
T ::{ kxsinz, =zeC\{0};
0, z = 0.

Then F(T) = {0} and T € [(UC) N (pUC)] \ (L).

Proof. Obviously, F(T) = {0} and {T"z} converges uniformly to 0 on C; hence
T € (pUC) and T € (UC) is clear. However, T ¢ (L); see Example 4.3 of [25] for
detailed proof. O

Example 9.2. ([29]). Let X =R and C =[0,1]. For eachz € C,letT:C — C
be defined by
Ta::{ a,a z € [0,q];

A=Vli-z, z€al],
where a € (0,1). Then F(T) # 0 and T € [(UC) N (pUC)] \ (L).
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Proof. Clearly, F(T) = {a}. Since Tz = \/—1‘1——&-\/1 —z < a &> a, it results
that 7"z = « for all z € C, n > 2; hence T' € (pUC) N (UC) as in Example9.1.
However, T ¢ (L); see Example 3.9 of [29] for detailed proof. O
Example 9.3. ([19]; Example 1.2 with k = 1/4). Let X = R, C = [0,1] and
0<k<+v2-1). Foreachz € C, let T : C — C be defined by

rr—d B3+, 0<z<1/2;
Jz, 1/2<z<1.
Then F(T) # 0 and T € [(UC) N (pUC)] \ (L).
Proof. Obviously, F(T) = {1}. Since Tz € [1/v/2,1] and T"z = (Tz)/?" " for
all z € C, it follows that {T"z} converges uniformly to 1 on C; hence T € (pUQ).

It is clear that T € (U) = (UC). However, T ¢ (L); see Example 1.2 of [19] for
more details. O

Now consider an example of discontinuous mapping T € (pUC) due to Sahu et
al. [42].
Example 9.4. ([42]; Example 1.6.) Let X =R, C = [0,1], and k € (0,1). Define

_ [ kz, z€[0,1/2];
Te= { o,w ie (1/2,1].
Then F(T) = {0} and T € (pUC) \ (C).

Proof. Since sup,cc |T™x| = k™ — 0, {T™x} converges uniformly to 0 on C; hence
T € (pUC). Obviously, T is not continuous at 1/2. O

Here consider an interesting example of a mapping T' € [(pUC)N(UL)]\(Ax-SP)
due to Hu and Gai [19].

Example 9.5. ([19]; Example 1.3 with k = 4). For any k > 1, let {a,} be a
sequence of positive numbers such that ay € (0,1], an 1 0, and [[_,(1 +an) =k
(for an example, consider a,, = ;17 by (c) of Remark 4.2). Set

by = =
L 2n+1(1 + a,,)

Let T : C — C be defined by
To = { (1+a)z+1/2, ze€[0,bi];

<1l, Vn>1.

1/2+1/4, z € [b1,1/2]
and
. { (Uta)(z-T5 ) + T g v €[S #5054 +bul;
i 3% ze[yin g0+ bn, Y0 3], n22

and T1 = 1. Then F(T) = {1}, T € (pUC)N (UL) & (ANis) & (Ak-SPis), but
T ¢ (Ak-SP).
Proof. Noticing that, for each = € C, there exists j := j(z) € N such that

n+j n+j+1

1) 2<Tre< Y 251,
=1 =1
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it follows that {T™z} converges uniformly to 1 on C; hence T € (pUC). Now we
claim: |T"z — T™y| < k|z — y| for all z,y € C. Indeed, for given n > 1, firstly,
consider the case of z,y € [0,Z], where Z := [[\_; b; < b for 1 < k < n. Since

for all k =1,2,...,n — 1, it follows that

n n
"z =[[(1+a)z + Z 2l
=1 =1

hence,

|[T"z — T™y| =H(1 +a;)|lz —yl, (9.1)
=1
which implies that |T"z — T"y| < k|z — y| for all z,y € [0,Z] by [, (1+a;) T k.
Next, if we take z € [0,Z] and y € (Z, b;] satisfying the following property:

1 1 1
Ty = (1 ->-4+bh &
Y (+a1)y+2>2+1 y>1+a1’
since T™y = Z?:ll 51;, g_nl-!-‘r = bn(1 +an), and
by, 1 1 by

r<ZT<

M +a) 207 Lo(0+a)  (1+a1)?22 1+a Y

n
o [0 +a)>2" 228 > (1+a1)2), Vn>2,
=2
it follows that
n n+1

|[T"z — T'y| = ‘H1+a1)x+z Z?

i=1

I H(l +a1)r - 2"1+1l = ‘ H(l +a1)z —by(l+ay)
i=1 i=1

[]1(1 +a1)\z - H—TH—)’ H 1+a)le —yl,

which implies [T"z — T™y < k|z — y| for z € [0, m] and such a y € (Z,b;1]. Since
the remaining cases are obvious or similar to two previous cases, T' € (UL) with its
Lipschitz constant Lt = k > 1. Finally, we claim that T ¢ (Ax-SP); for this end,
assume T' € (Ak-SP), i.e., there exist k < 1 and a sequence {k,}, k, — 1 satisfying
(6.6). Choosing two different z,y € (0,Z], (9.1) is obviously satisfied, and if we set
c:=[I,(1+a;) > 1, since L%’—“—'L — 1, for e = c— 1 > 0, there exists K € N such

that
1+k,

5 <G Vn> K. (9.2)

Observing
(I =Tz = (I -T"yl* =|(1 - )@ -y)I* = 1 )|z — yI%,
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we have

Tz — T y|* = Ple —y[* < kalz -yl +&|(I - Tz — (I - T")y|?
= [kn+r(l1-c)z -y
-k

o >
A

>1, Vn>K,
by (9.2), which contradicts to x < 1. This contradiction proves T ¢ (Ax-SP). O

Remark 9.6. Since (AN) = (A0-SP), it follows T' ¢ (AN); hence T' € (UL) \ (AC)
asserts strictness of “(AN) ¢ (UL)” in (2.4). Also, T € (Ax-SPis) \ (Ax-SP)
ensures strictness of “(Ak-SP) ¢ (Axk-SPis) ” in (8.11).

As a slight modification of Example 9.5, we shall give an example of T € [(UL)N
(pANis)]\ (pUC), defined on a nonempty closed convex and unbounded subset C.

Example 9.7. Consider C :=[0,00) C R. Let T be defined on [0,1] as in Example
9.5 and define Tz =z on [1,00). Then T € (pANis) \ (pUC).

Proof. Note that {T"z} converges uniformly to 1 on [0,1] by Example 9.5. Now
let ¢, in (a) of Remark 8.4. Since k,, € [1,00) L 1 and T' =T on [1,00), it follows
that

cn= sup [[[T"z—T"y| — [z —yl]VO,
z,y€[0,1]
and so ¢, — 0 by the similar proof of Proposition 8.5. From constructions of c,,
(8.8) is quickly derived; hence T’ € (pANis). However, it is obvious that T ¢ (pUC)
because T = I on [1,00). Since T is k-Lipschitzian on [0,1]] by Example 9.5
and T = I on [1,00), it easily follows that " € (UL) with its Lipschitz constant
Lr=k+1. O

Finally we recall Example 7.9, which is also a mapping of T € (UL) \ (TAN).

Example 9.8. ([26]). Let T be defined as in Example 7.9. Then T does not
satisfy (8.1); hence T ¢ (ANT).

Proof. For z(=0) € C, since T? = I, we have

limsup sup{|T?" 'z — T*""1y| — |z — y|}

n—oo yeC
sup{|Ty| - |y| : y € [-1/k, 1]}

sup{(k —1)|y| : -1/k <y < 0}

1 1

and so T' does not satisfy (8.1); hence T ¢ (ANT). O
Finally, we raise a question as follows.

Question 9.9. Find either uniformly Lipschitzian or non-Lipschitzian mappings
of T € (TAN)\ (pANis).
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