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1 Introduction

Let H be a real Hilbert space and let  C be a nonempty subset of  H . Let  T be a mapping of
 C into  H . Then we denote by  F(T) the set of fixed points of  T , i.e.,  F(T)=\{z\in C: Tz=z\}.
A mapping  T:Carrow H is said to be nonexpansive if  \Vert Tx-Ty\Vert\leq\Vert x-y\Vert for all  x,  y\in C.
Baillon [4] proved the first mean convergence theorem for nonexpansive mappings in a Hilbert
space. In 2010, Kocourek, Takahashi and Yao [13] defined a broad class of nonlinear mappings
in a Hilbert space: Let  H be a Hilbert space and let  C be a nonempty subset of  H . A mapping
 T:Carrow H is called generalized hybrid if there exist  \alpha,  \beta\in \mathbb{R} such that

 \alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-
y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2} (1.1)

for all  x,  y\in C . The class of generalized hybrid mappings covers nonexpansive mappings and
hybrid mappings. The mean convergence theorem by Baillon for nonexpansive mappings has
been extended to generalized hybrid mappings in a Hiıbert space by Kocourek, Takahashi
and Yao. Furthermore, Takahashi and Takeuchi [29] proved the following mean convergence
theorem without convexity in a Hilbert space. Let  H be a Hilbert space and let  C be a
nonempty subset of  H . Let  T be a mapping of  C into  H . Then we denote by  A(T) the set
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of attractive points [29] of  T , i.e.,  A(T)=\{z\in H : \Vert Tx-z\Vert\leq\Vert x-z\Vert, \forall x\in C\} . We know
that  A(T) is closed and convex.

Theorem 1.1. Let  H be a Hilbert space and let  C be a nonempty subset of H. Let  T be a
generalized hybrid mapping from  C into itself. Assume that {Tnz} for some  z\in C is bounded
and define  S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k}x for all  x\in C and  n\in \mathbb{N} . Then  \{S_{n}x\} converges weakly to
 u_{0}\in A(T) , where  u_{0}= \lim_{narrow\infty}P_{A(T)}T^{n}x and  P_{A(T)} is the metric projection of  H onto  A(T) .

Maruyama, Takahashi and Yao [23] also defined a more broad class of nonlinear mappings
called 2‐generalized hybrid which covers generalized hybrid mappings in a Hilbert space. Let
 C be a nonempty subset of  H and let  T be a mapping of  C into  H . A mapping  T :  Carrow H

is 2‐generalized hybrid [23] if there exist  \alpha_{1},  \alpha_{2},  \beta_{1},  \beta_{2}\in \mathbb{R} such that

 \alpha_{1}\Vert T^{2}x-Ty\Vert^{2}+\alpha_{2}\Vert Tx-Ty\Vert^{2}+(1-\alpha_{1}
-\alpha_{2})\Vert x-Ty\Vert^{2} (1.2)

 \leq\beta_{1}\Vert T^{2}x-y\Vert^{2}+\beta_{2}\Vert Tx-y\Vert^{2}+(1-\beta_{1}-
\beta_{2})\Vert x-y\Vert^{2}
for all  x,  y\in C.

Recently, Hojo, Takahashi and Takahashi [6] proved an attractive and mean convergence
theorems without convexity for commutative 2‐generalized hybrid mappings in a Hilbert space.
This result generalizes Takahashi and Takeuchi’s theorem [29] and Kohsaka’s theorem [15]
which is a mean convergence theorem for commutative  \lambda‐hybrid mappings in a Hilbert space.

On the other hand, in 1953, Mann [22] introduced the following iteration process. Let  C be
a nonempty, closed and convex subset of a Banach space  E . A mapping  T:Carrow C is called
nonexpansive if  \Vert Tx-Ty\Vert\leq\Vert x-y\Vert for all  x,  y\in C . For an initial guess  x_{1}\in C , an iteration
process  \{x_{n}\} is defined recursively by

 x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}, \forall n\in \mathbb{N},

where  \{\alpha_{n}\} is a sequence in  [0,1] . There are many investigations of Mann iterative process for
finding fixed points of nonexpansive mappings. Iin 1967, Halpern [5] gave an iteration process
as follows: Take  x_{0},  x_{1}\in C arbitrarily and define  \{x_{n}\} recursively by

 x_{n+1}=\alpha_{n}x_{0}+(1-\alpha_{n})Tx_{n}, \forall n\in \mathbb{N},

where  \{\alpha_{n}\} is a sequence in  [0,1] . There are many investigations of Halpern iterative process
for finding fixed points of nonexpansive mappings.

We also know the concept of 2‐generalized nonspreading mappings which was defined in
a Banach space by Takahashi, Wong and Yao [31] and this class covers 2‐generalized hybrid
mappings in a Hilbert space. Furthermore, the concept of attractive points was defined in
a Banach space by Lin and Takahashi [21]: Let  E be a smooth Banach space and let  C be
a nonempty subset of  E . Let  T be a mapping of  C into  E . Then we denote by  A(T) the
set of attractive points of  T , i.e.,  A(T)=\{z\in E : \phi(z, Tx) \leq\phi(z, x), \forall x\in C\} , where
 \phi(x, y)=\Vert x\Vert^{2}-2\{x, Jy\}+\Vert y\Vert^{2} for all  x,  y\in E and  J is the duality mapping on  E.

In this article, we first prove a mean convergence theorem of Bailıon’s type iteration for
finding a common fixed point of commutative 2‐generalized nonspreading mappings in a Ba‐
nach space. Furthermore, we obtain a weak convergence theorem of Mann’s type iteration
for finding a common fixed point of the mappings in a Banach space. We also prove a strong
convergence theorem of Halpern’s type iteration for finding a common fixed point of the map‐
pings in a Banach space. Using these results, we get well‐known and new weak and strong
convergence theorems in a Hilbert space and a Banach space.
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2 Preliminaries

Let  E be a real Banach space with norm  \Vert\cdot\Vert and let  E^{*} be the topological dual space of  E.

We denote the value of  y^{*}\in E^{*} at  x\in E by  \langle x,  y^{*} }. When  \{x_{n}\} is a sequence in  E , we denote
the strong convergence of  \{x_{n}\} to  x\in E by  x_{n}arrow x and the weak convergence by  x_{n}harpoonup x.

The modulus  \delta of convexity of  E is defined by

  \delta(\epsilon)=\inf\{1-\frac{\Vert x+y\Vert}{2} : \Vert x\Vert\leq 1, \Vert 
y\Vert\leq 1, \Vert x-y\Vert\geq\epsilon\}
for every  \epsilon with  0\leq\epsilon\leq 2 . A Banach space  E is said to be uniformly convex if  \delta(\epsilon)>0
for every  \epsilon>0 . A uniformıy convex Banach space is strictly convex and reflexive. Let  C

be a nonempty subset of a Banach space  E . A mapping  T :  Carrow E is nonexpansive if
 \Vert Tx-Ty\Vert\leq\Vert x-y\Vert for alı  x,  y\in C . A mapping  T :  Carrow E is quasi‐nonexpansive if
  F(T)\neq\emptyset and  \Vert Tx-y\Vert\leq\Vert x-y\Vert for all  x\in C and  y\in F(T) , where  F(T) is the set of fixed
points of  T . If  C is a nonempty, closed and convex subset of a strictly convex Banach space
 E and  T:Carrow E is quasi‐nonexpansive, then  F(T) is closed and convex; see [11]. Let  E be
a Banach space. The duality mapping  J from  E into  2^{E^{*}} is defined by

 Jx=\{x^{*}\in E^{*} : \{x, x^{*}\}=\Vert x\Vert^{2}=\Vert x^{*}\Vert^{2}\}

for every  x\in E . Let  U=\{x\in E : \Vert x\Vert=1\} . The norm of  E is said to be Gâteaux
differentiable if for each  x,  y\in U , the limit

  \lim_{tarrow 0}\frac{\Vert x+ty\Vert-\Vert x\Vert}{t} (2.1)

exists. In this case,  E is called smooth. We know that  E is smooth if and only if  J is a single‐
valued mapping of  E into  E^{*} . We also know that  E is reflexive if and only if  J is surjective,
and  E is strictly convex if and only if  J is one‐to‐one. Therefore, if  E is a smooth, strictly
convex and reflexive Banach space, then  J is a single‐valued bijection. Thus  J^{-1} is also a
single‐valued bijection and it is the duality mapping from  E^{*} into  E . The norm of  E is said to
be uniformly Gâteaux differentiable if for each  y\in U , the limit (2.1) is attained uniformly for
 x\in U . It is also said to be Fréchet differentiable if for each  x\in U , the limit (2.1) is attained
uniformly for  y\in U . A Banach space  E is called uniformly smooth if the limit (2.1) is attained
uniformly for  x,  y\in U . It is known that if the norm of  E is uniformly Gâteaux differentiable,
then  J is uniformly norm to weak

 *

continuous on each bounded subset of  E , and if the norm
of  E is Fréchet differentiable, then  J is norm to norm continuous. If  E is uniformly smooth,
 J is uniformly norm to norm continuous on each bounded subset of  E . For more details, see
[25, 26].

Let  E be a smooth Banach space. The function  \phi:E\cross Earrow(-\infty, \infty) is defined by

 \phi(x, y)=\Vert x\Vert^{2}-2\{x, Jy\}+\Vert y\Vert^{2} (2.2)

for  x,  y\in E , where  J is the duality mapping of  E ; see [ı] and [12]. We have from the definition
of  \phi that

 \phi(x, y)=\phi(x, z)+\phi(z, y)+2\langle x-z, Jz-Jy\rangle (2.3)

for all  x,  y,  z\in E . From  (\Vert x\Vert-\Vert y\Vert)^{2}\leq\phi(x, y) for all  x,  y\in E , we can see that  \phi(x, y)\geq 0.
Furthermore, we can obtain the following equality:

 2\{x-y, Jz-Jw\rangle=\phi(x, w)+\phi(y, z)-\phi(x, z)-\phi(y, w) (2.4)
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for  x,  y,  z,  w\backslash \in E . If  E is additionally assumed to be strictly convex, then we have

 \phi(x, y)=0\Leftrightarrow x=y . (2.5)

The following lemma which was by Kamimura and Takahashi [12] is well‐known.

Lemma 2.1 ([12]). Let  E be a smooth and uniformly convex Banach space and let  \{x_{n}\} and
 \{y_{n}\} be sequences in  E such that either  \{x_{n}\} or  \{y_{n}\} is bounded. If   \lim_{narrow\infty}\phi(x_{n}, y_{n})=0,
then   \lim_{narrow\infty}\Vert x_{n}-y_{n}\Vert=0.

The following lemmas are in Xu [34] and Kamimura and Takahashi [12].

Lemma 2.2 ([34]). Let  E be a uniformly convex Banach space and let  r>0 . Then there exists
a strictly increasing, continuous and convex function  g :  [0, \infty )  arrow[0, \infty ) such that  g(0)=0
and

 \Vert\lambda x+(1-\lambda)y\Vert^{2}\leq\lambda\Vert x\Vert^{2}+(1-\lambda)
\Vert y\Vert^{2}-\lambda(1-\lambda)g(\Vert x-y\Vert)

for all  x,  y\in B_{r} and  \lambda with  0\leq\lambda\leq 1 , where  B_{r}=\{z\in E:\Vert z\Vert\leq r\}.

Lemma 2.3 ([12]). Let  E be a smooth and uniformly convex Banach space and let  r>0.

Then there exists a strictly increasing, continuous and convex function  g :  [0,2r]arrow \mathbb{R} such
that  g(0)=0 and  g(\Vert x-y\Vert)\leq\phi(x, y) for all  x,  y\in B_{r} , where  B_{r}=\{z\in E:\Vert z\Vert\leq r\}.

Let  E be a smooth Banach space. Let  C be a nonempty subset of  E and let  T be a mapping
of  C into  E . We denote by  A(T) the set of attractive points of  T , i.e.,  A(T)=\{z\in E :
 \phi  (z, Tx)\leq\phi(z, x) ,  \forall x\in C\} ; see [21].

Lemma 2.4 ([21]). Let  E be a smooth Banach space and let  C be a nonempty subset of  E.

Let  T be a mapping from  C into E. Then  A(T) is a closed and convex subset of  E.

Let  E be a smooth Banach space and let  C be a nonempty subset of  E . Then a mapping
 T :  Carrow E is called generalized nonexpansive [7] if   F(T)\neq\emptyset and  \phi(Tx, y)\leq\phi(x, y) for all
 x\in C and  y\in F(T) ; see also [33]. Let  D be a nonempty subset of a Banach space E.  A

mapping  R:Earrow D is said to be sunny if  R(Rx+t(x-Rx))=Rx for all  x\in E and  t\geq 0.

A mapping  R:Earrow D is said to be a retraction or a projection if  Rx=x for all  x\in D.  A

nonempty subset  D of a smooth Banach space  E is said to be a generalized nonexpansive retract
(resp. sunny generalized nonexpansive retract) of  E if there exists a generalized nonexpansive
retraction (resp. sunny generalized nonexpansive retraction)  R from  E onto  D ; see [7] for
more details. The following results are in Ibaraki and Takahashi [7].

Lemma 2.5 ([7]). Let  C be a nonempty closed sunny generalized nonexpansive retract of
a smooth and strictly convex Banach space E. Then the sunny generalized nonexpansive
retraction from  E onto  C is uniquely determined.

Lemma 2.6 ([7]). Let  C be a nonempty closed subset of a smooth and strictly convex Banach
space  E such that there exists a sunny generalized nonexpansive retraction  R from  E onto  C

and let  (x, z)\in E\cross C. Then the following hold:

(i)  z=Rx if and only if  \langle x-z,  Jy-Jz\rangle\leq 0 for all  y\in C ;
 (i_{i})\phi(Rx, z)+\phi(x, Rx)\leq\phi(x, z) .

In 2007, Kohsaka and Takahashi [17] proved the following results:

Lemma 2.7 ([ı7]). Let  E be a smooth, strictly convex and reflexive Banach space and let  C

be a nonempty closed subset of E. Then the following are equivalent:
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(a)  C is a sunny generalized nonexpansive retract of  E ;
(b)  C is a generalized nonexpansive retract of  E ;
(c)  JC is closed and convex.

Lemma 2.8 ([17]). Let  E be a smooth, strictly convex and reflexive Banach space and let
 C be a nonempty closed sunny generalized nonexpansive retract of E. Let  R be the sunny
generalized nonexpansive retraction from  E onto  C and let  (x, z)\in E\cross C . Then the following
are equivalent:

(i)  z=Rx ;
(ii)   \phi(x, z)=\min_{y\in C}\phi(x, y) .

Ibaraki and Takahashi [10] also obtained the f.ollowing result concerning the set of fixed
points of a generalized nonexpansive mapping.

Lemma 2.9 ([10]). Let  E be a reflexive, strictly convex and smooth Banach space and let  T

be a generalized nonexpansive mapping from  E into itself. Then  F(T) is closed and  JF(T) is
closed and convex.

The following theorem is proved by using Lemmas 2.7 and 2.9.

Lemma 2.10 ([10]). Let  E be a reflexive, strictly convex and smooth Banach space and let  T

be a generalized nonexpansive mapping from  E into itself. Then  F(T) is a sunny generalized
nonexpansive retract of  E.

Using Lemma 2.7, we also have the following result.

Lemma 2.11 ([28]). Let  E be a smooth: strictly convex and reflexive Banach space and let
 \{C_{i} : i\in I\} be a family of sunny generalized nonexpansive retracts of  E such that   \bigcap_{i\in I}C_{i} is
nonempty. Then   \bigcap_{i\in I}C_{\dot{i}} is a sunny generalized nonexpansive retract of  E.

To prove one of our main results, we need the following lemma by Aoyama, Kimura, Taka‐
hashi and Toyoda [3].

Lemma 2.12 ([3]). Let  \{s_{n}\} be a sequence of nonnegative real numbers, let  \{\alpha_{n}\} be a se‐
quence of  [0,1] with   \sum_{n=1}^{\infty}\alpha_{n}=\infty , let  \{\beta_{n}\} be a sequence of nonnegative real numbers with
  \sum_{n=1}^{\infty}\beta_{n}<\infty , and let  \{\gamma_{n}\} be a sequence of real numbers with   \lim\sup_{narrow\infty}\gamma_{n}\leq 0 . Suppose
that  sn+{\imath}\leq(1-\alpha_{n})s_{n}+\alpha_{n}\gamma_{n}+\beta_{n} for all  n=1,2 , Then   \lim_{narrow\infty}s_{n}=0.

Let  E be a smooth Banach space and let  C be a nonempty subset of  E . Then a mapping
 S:Carrow C is called 2‐generalized nonspreading [31] if there exist  \alpha_{1},  \alpha_{2},  \beta_{1},  \beta_{2},  \gamma_{1},  \gamma_{2},  \delta_{1},  \delta_{2}\in

 \mathbb{R} such that

 \alpha_{1}\phi(S^{2}x, Sy)+\alpha_{2}\phi(Sx, Sy)+(1-\alpha_{1}-\alpha_{2})\phi (  x ,  Sy )

 +\gamma_{1}\{\phi(Sy, S^{2}x)-\phi(Sy, x)\}+ î2  \{\phi(Sy, Sx)-\phi(Sy, x)\} (2.6)

 \leq\beta_{1}\phi(S^{2}x, y)+\beta_{2}\phi(Sx, y)+(1-\beta_{1}-\beta_{2})
\phi(x, y)

 +\delta_{1}\{\phi(y, S^{2}x)-\phi(y, x)\}+\delta_{2}\{\phi(y, Sx)-\phi(y, x)\}

for all  x,  y\in C ; see also [32]. Such a mapping is called  (\alpha_{1}, \alpha_{2}, \beta{\imath}, \beta_{2}, \gamma{\imath}, \gamma_{2}, 
\delta_{1}, \delta_{2}) ‐generalized
nonspreading. We know that  a(0, \alpha_{2},0, \beta_{2},0, \gamma_{2},0, \delta_{2}) ‐generalized nonspreading mapping
is generalized nonspreading in the sense of [14]. We also know that  a(0,1,0,1,0,1,0,0)‐
generalized nonspreading mapping is nonspreading in the sense of [19]; see also [18, 27].
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3 Weak Convergence Theorems

In this section, we prove a mean convergence theorem of Baillon’s type iteration and a weak
convergence theorem of Mann’s type iteration for finding an attractive point of commutative
2‐generalized nonspreading mappings in a Banach space.

Lemma 3.1. Let  C be a nonempty subset of a smooth, strictly convex and reflexive Banach
space  E and let  S and  T be commutative 2‐generalized nonspreading mappings of  C into itself.
Let  \{x_{n}\} be a bounded sequence of C. Define

 S_{n}x_{n}= \frac{1}{(1+n)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}S^{k}T^{l}x_{n}
for all  n\in \mathbb{N}\cup\{0\} . Suppose that  \Vert S_{n}x_{n}-x_{n}\Vertarrow 0 . Then every weak cluster point of  \{x_{n}\} is
a point of  A(S)\cap A(T) . Additionally, if  C is closed and convex, then every weak cluster point
of  \{x_{n}\} is a point of  F(S)\cap F(T) .

Let  E be a smooth Banach space. Let  C be a nonempty subset of  E and let  T be a mapping
of  C into  E . We denote by  B(T) the set of skew‐attractive points of  T , i.e.,  B(T)=\{z\in E :
 \phi(Tx, z)\leq\phi(x, z) ,  \forall x\in C\} . The following result is proved by Lin and Takahashi [21].

Lemma 3.2 ([21]). Let  E be a smooth Banach space and let  C be a nonempty subset of  E.

Let  T be a mapping from  C into E. Then  B(T) is closed and  JB(T) is closed and convex.

We prove a mean convergence theorem of Baillon’s type iteration in a Banach space.

Theorem 3.3 ([30]). Let  E be a uniformly convex Banach space with a Fréchet differentiable
norm and let  C be a nonempty subset of E. Let  S,  T:Carrow C be commutative 2‐generalized
nonspreading mappings such that  \{S^{k}T^{\iota}z : k, l\in \mathbb{N}\cup\{0\}\} for some  z\in C is bounded,
 A(S)=B(S) and  A(T)=B(T) . Let  R be the sunny generalized nonexpansive retraction of
 E onto  B(S)\cap B(T) . Then, for any  x\in C,

 S_{n^{X}}= \frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}S^{k}T^{l}x
converges weakly to an element  q of  A(S)\cap A(T) , where  q= \lim_{(k,l)\in D}RS^{k}T^{l}x.

Using Theorem 3.3, we obtain the following theorems.

Theorem 3.4. Let  E be a uniformly convex Banach space with a Fréchet differentiable norm.
Let  S,  T :  Earrow E be commutative  (\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, 
\delta_{1}, \delta_{2}) and  (\alpha_{{\imath}}', \alpha_{2}', \beta_{{\imath}}^{I}, \beta_{2}', 
\gamma_{{\imath}}', \gamma_{2}', \delta_{{\imath}}', \delta_{2}') ‐
generalized nonspreading mappings such that  \alpha_{1}-\beta_{1}=0,  \gamma_{1}\leq\delta_{1},  \gamma_{2}\leq\delta_{2},  \alpha_{2}>\beta_{2} and
 \alpha í —  \betaí  =0 ,  \gammaí  \leq  \deltaí,  \gamma_{2}'\leq\delta_{2}',  \alpha_{2}'>\beta_{2}' , respectively. Assume that  \{S^{k}T^{\iota}z : k, l\in \mathbb{N}\cup\{0\}\}
for some  z\in C is bounded. Let  R be the sunny generalized nonexpansive retraction of  E onto
 F(S)\cap F(T) . Then, for any  x\in E,

 S_{n}x= \frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}S^{k}T^{l}x
converges weakly to an element  q of  F(S)\cap F(T) , where  q= \lim_{(k,l)\in D}RS^{k}T^{l}x.
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Theorem 3.5 ([6]). Let  H be a Hilbert space and let  C be a nonempty subset  ofH . Let  S and  T

be commutative 2‐generalized hybrid mappings  ofC into itself such that  \{S^{k}T^{l}z:k, l\in \mathbb{N}\cup\{0\}\}
for some  z\in C is bounded. Let  P be the metric projection of  H onto  A(S)\cap A(T) . Then, for
any  x\in C,

 S_{n}x= \frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}S^{k}T^{\iota_{X}}
converges weakly to an element  q of  A(S)\cap A(T) , where  q= \lim_{(k,l)\in D}PS^{k}T^{l}x . In particular,
if  C is closed and convex,  \{S_{n}x\} converges weakly to an element  q of  F(S)\cap F(T) .

Using Lemma 3.1 and the technique developed by [9], we can prove the following weak
convergence theorem.

Theorem 3.6 ([2]). Let  E be a uniformly convex Banach space with a Fréchet differentiable
norm and let  C be a nonempty and convex subset of E. Let  S and  T be commutative 2‐
generalized nonspreading mappings of  C into itself such that  A(S)\cap A(T)\neq\emptyset,  A(S)=B(S)
and  A(T)=B(T) . Let  R be the sunny generalized nonexpansive retraction of  E onto   B(S)\cap
 B(T) . Let  \{\alpha_{n}\} be a sequence of real numbers such that  0\leq\alpha_{n}<1 and   \lim\inf_{narrow\infty}\alpha_{n}(1-
 \alpha_{n})>0 . Then, a sequence  \{x_{n}\} generated by  x_{1}=x\in C and

 x_{n+1}= \alpha_{n}x_{n}+(1-\alpha_{n})\frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{1
=0}^{n}S^{k}T協,  \forall n\in \mathbb{N}

converges weakly to  z\in A(S)\cap A(T) , where  z= \lim_{narrow\infty}Rx_{n} . Additionally, if  C is closed,
then  \{x_{n}\} converges weakly to a point of  F(S)\cap F(T) .

Using Theorem 3.6, we can prove the following weak convergence theorem.

Theorem 3.7. Let  E be a uniformly convex Banach space with a Fréchet differentiable norm.
Let  S,  T:Earrow E be commutative  (a_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, \delta_{1}, 
\delta_{2}) and ( \alpha í,  a_{2} ,  \betaí,  \beta_{2}' ,  \gammaí,  \gamma_{2}' ,  \deltaí,  \delta_{2}' )‐
generalized nonspreading mappings such that  \alpha ı  -\beta_{1}=0,  \gamma_{1}\leq\delta_{1},  \gamma_{2}\leq\delta_{2},  \alpha_{2}>\beta_{2} and
 \alpha í  -\beta_{1}'=0,  \gamma_{{\imath}}'\leq  \deltaí,  \gamma_{2}'\leq\delta_{2}',  \alpha_{2}'>\beta_{2}' , respectively. Assume that  \{S^{k}T^{\iota}z : k, l\in \mathbb{N}\cup\{0\}\}
for some  z\in E is bounded. Let  R be the sunny generalized nonexpansive retraction of  E

onto  F(S)\cap F(T) . Let  \{\alpha_{n}\} be a sequence of real numbers such that  0\leq\alpha_{n}<1 and
  \lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0 . Then, a sequence  \{x_{n}\} generated by  x{\imath}=x\in E and

 x_{n+1}= \alpha_{n}x_{n}+(1-\alpha_{n})\frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l
=0}^{n}S^{k}T^{l}x_{n}x_{n}, \forall n\in \mathbb{N}
converges weakly to  z\in F(S)\cap F(T) , where  z= \lim_{narrow\infty}Rx_{n}.

Using Theorem 3.6, we obtain the following result in a Hilbert space.

Theorem 3.8. Let  H be a Hilbert space and let  C be a nonempty, closed and convex subset of
H. Let  S,  T:Carrow C be commutative 2‐generalized hybrid mappings such that  \{S^{k}T^{l}z:k,   l\in

 \mathbb{N}\cup\{0\}\} for some  z\in C is bounded. Let  P be the mertic projection of  H onto  F(S)\cap F(T) .
Let  \{\alpha_{n}\} be a sequence of real numbers such that  0\leq\alpha_{n}<1 and   \lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0.
Then, a sequence  \{x_{n}\} generated by  x_{1}=x\in C and

 x_{n+1}= \alpha_{n}x_{n}+(1-\alpha_{n})\frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l
=0}^{n}S^{k}T^{l}x_{n}x_{n}, \forall n\in \mathbb{N}
converges weakly to  z\in F(S)\cap F(T) , where  z= \lim_{narrow\infty}Px_{n}.
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Remark We do not know whether a weak convergence theorem of Mann’s type iteration for
nonspreading mappings in a Banach space holds or not.

4 Strong Convergence Theorems

Let  E be a smooth, strictly convex and reflexive Banach space. Ibaraki and Takahashi [8]
proved the following lemma.

Lemma 4.1 ([8]). Let  E be a smooth, strictly convex and reflexive Banach space and define
 V(x, x^{*})=\Vert x\Vert^{2}-2\langle x,  x^{*}\}+\Vert x^{*}\Vert^{2} for all  x\in E and  x^{*}\in E^{*} . Then

 V(x, x^{*})+2\langle y, Jx-x^{*}\}\leq V(x+y, x^{*})

for all  x,  y\in E and  x^{*}\in E^{*}.

In this section, using the idea of mean convergence by Shimizu and Takahashi [24] and
Kurokawa and Takahashi [20], we prove the following strong convergence theorem for 2‐
generalized nonspreading mappings in a Banach space.

Theorem 4.2 ([2]). Let  E be a smooth and uniformly convex Banach space such that the
duality mapping  J is weakly sequentially continuous. Let  C be a nonempty and convex subset
of E. Let  S and  T be commutative 2‐generalized nonspreading mappings of  C into itself such
that  A(S)\cap A(T)\neq\emptyset,  A(S)=B(S) and  A(T)=B(T) . Let  u\in C and define a sequence
 \{x_{n}\} in  C as follows:  x{\imath}=x\in C and

 x_{n+1}= \alpha_{n}u+(1-\alpha_{n})\frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{1=0}^
{n}S^{k}T^{l}x_{n}, \forall n\in \mathbb{N},
where  0\leq\alpha_{n}\leq 1,  \alpha_{n}arrow 0 and   \sum_{n=1}^{\infty}\alpha_{n}=\infty . Then  \{x_{n}\} converges strongly to Ru, where
 R is a sunny generalized nonexpansive retraction of  E onto  B(S)\cap B(T) . Additionally, if  C

is closed, then  \{x_{n}\} converges strongly to a point of  F(S)\cap F(T) .

Remark We know that the duality mappings  J on  l^{p},   1<p<\infty and smooth finite dimen‐
sional Banach spaces are weakly sequentially continuous. However, we do not know whether
Theorem 4.2 hoıds or not without assuming that  J is weakly sequentially continuous.

As in the proofs of Theorems 3.7 and 3.8, we can obtain the following strong convergence
theorems from Theorem 4.2.

Theorem 4.3. Let  E be a smooth and uniformly convex Banach space such that the
duality mapping  J is weakly sequentially continuous. Let  S,  T :  Earrow E be commutative
 (\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}, 
\delta_{1}, \delta_{2}) and  (\alpha\'{i}, \alpha_{2}', \beta_{1}', \beta_{2}', \gamma_{{\imath}}', 
\gamma_{2}', \delta_{1}', \delta_{2}') ‐generalized nonspreading map‐
pings such that  \alpha_{1}-\beta_{1}=0,  \gamma_{1}\leq\delta_{1},  \gamma_{2}\leq\delta_{2},  \alpha_{2}>\beta_{2} and  \alpha í—  \beta í  =0 ,  \gammaí  \leq  \deltaí,  \gamma_{2}'\leq\delta_{2}',
 \alpha_{2}'>\beta_{2}' , respectively. Assume that  \{S^{k}T^{l}z : k, l\in \mathbb{N}\cup\{0\}\} for some  z\in C is bounded. Let
 R be the sunny generalized nonexpansive retraction of  E onto  F(S)\cap F(T) . Let  u\in E and
define a sequence  \{x_{n}\} in  E as follows:  x{\imath}=x\in E and

 x_{n+1}= \alpha_{n}u+(1-\alpha_{n})\frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l=0}^
{n}S^{k}T^{l}x_{n}, \forall n\in \mathbb{N},
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where  0\leq\alpha_{n}\leq 1,  \alpha_{n}arrow 0 and   \sum_{n=1}^{\infty}\alpha_{n}=\infty . Then  \{x_{n}\} converges strongly to Ru, where
 R is a sunny generalized nonexpansive retraction of  E onto  F(S)\cap F(T) .

Theorem 4.4. Let  H be a Hilbert space and let  C be a nonempty, closed and convex subset of
H. Let  S,  T be commutative 2‐generalized hybrid mappings of  C into itself such that  \{S^{k}T^{\iota}z :
 k,  l\in \mathbb{N}\cup\{0\}\} for some  z\in C is bounded. Let  u\in C and define a sequence  \{x_{n}\} in  C as
follows:  x_{1}=x\in C and

 x_{n+1}= \alpha_{n}u+(1-\alpha_{n})\frac{1}{(1+n)^{2}}\sum_{k=0}^{n}\sum_{l=0}^
{n}S^{k}T^{l}x_{n}
for all  n\in \mathbb{N} , where  0\leq\alpha_{n}\leq 1,  \alpha_{n}arrow 0 and   \sum_{n={\imath}}^{\infty}\alpha_{n}=\infty . Then  \{x_{n}\} converges strongly
to Pu, where  P is the metric projection of  H onto  F(S)\cap F(T) .
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