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Abstract. In this article, we first prove a mean convergence theorem of Baillon’s type iteration
for finding a common fixed point of commutative 2-generalized nonspreading mappings in a
Banach space. Furthermore, we obtain a weak convergence theorem of Mann’s type iteration
for finding a common fixed point of the mappings in a Banach space. We also prove a strong
convergence theorem of Halpern’s type iteration for finding a common fixed point of the
mappings in a Banach space. Using these results, we get well-known and new weak and
strong convergence theorems in a Hilbert space and a Banach space.
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1 Introduction

Let H be a real Hilbert space and let C' be a nonempty subset of H. Let T be a mapping of
C into H. Then we denote by F(T') the set of fized points of T, i.e., F(T) = {z € C : Tz = z}.
A mapping T : C — H is said to be nonezpansive if |Tx — Ty|| < || — y|| for all z,y € C.
Baillon [4] proved the first mean convergence theorem for nonexpansive mappings in a Hilbert
space. In 2010, Kocourek, Takahashi and Yao [13] defined a broad class of nonlinear mappings
in a Hilbert space: Let H be a Hilbert space and let C be a nonempty subset of H. A mapping
T :C — H is called generalized hybrid if there exist o, 8 € R such that

o[ Tz — Tyl* + (1~ a)llz — Tyll* < BTz — yl* + (1 - B)ll=z — y? (1L.1)

for all z,y € C. The class of generalized hybrid mappings covers nonexpansive mappings and
hybrid mappings. The mean convergence theorem by Baillon for nonexpansive mappings has
been extended to generalized hybrid mappings in a Hilbert space by Kocourek, Takahashi
and Yao. Furthermore, Takahashi and Takeuchi [29] proved the following mean convergence
theorem without convexity in a Hilbert space. Let H be a Hilbert space and let C be a
nonempty subset of H. Let T be a mapping of C into H. Then we denote by A(T) the set



of attractive points [29] of T, i.e., A(T) ={z € H: |Tz — 2| < ||z — 2|, Vz € C}. We know
that A(T) is closed and convex.

Theorem 1.1. Let H be a Hilbert space and let C be a nonempty subset of H. Let T be a
generalized hybrid mapping from C into itself. Assume that {T"z} for some z € C is bounded
and define Spx = %ZZ;& T*z for allz € C and n € N. Then {S,x} converges weakly to
ug € A(T), where ug = limp 00 Pa(r)T™x and Py(r) is the metric projection of H onto A(T).

Maruyama, Takahashi and Yao [23] also defined a more broad class of nonlinear mappings
called 2-generalized hybrid which covers generalized hybrid mappings in a Hilbert space. Let
C be a nonempty subset of H and let T' be a mapping of C into H. A mapping T : C — H
is 2-generalized hybrid [23] if there exist a1, aq, 81,2 € R such that

a1 |[T*z—Ty|* + aa| Tz — Ty|* + (1 — ay — as)llz — Ty||? (1.2)
< BTz — yl? + Bal| Tz — y||® + (1 — By — Ba)l|z — yl|?

for all z,y € C.

Recently, Hojo, Takahashi and Takahashi [6] proved an attractive and mean convergence
theorems without convexity for commutative 2-generalized hybrid mappings in a Hilbert space.
This result generalizes Takahashi and Takeuchi’s theorem [29] and Kohsaka’s theorem [15]
which is a mean convergence theorem for commutative A-hybrid mappings in a Hilbert space.

On the other hand, in 1953, Mann [22] introduced the following iteration process. Let C be
a nonempty, closed and convex subset of a Banach space E. A mapping T : C — C is called
nonexpansive if ||Tz —Ty|| < ||z —y|| for all z,y € C. For an initial guess z; € C, an iteration
process {z,} is defined recursively by

Tnt1 = anZn + (1 —ap)Tz,, VneN,

where {a,,} is a sequence in [0, 1]. There are many investigations of Mann iterative process for
finding fixed points of nonexpansive mappings. Iin 1967, Halpern [5] gave an iteration process
as follows: Take zo,z; € C arbitrarily and define {z,} recursively by

Tnt1 = anZo + (1 — an)Tz,, Vn €N,

where {a,,} is a sequence in [0, 1]. There are many investigations of Halpern iterative process
for finding fixed points of nonexpansive mappings.

We also know the concept of 2-generalized nonspreading mappings which was defined in
a Banach space by Takahashi, Wong and Yao [31] and this class covers 2-generalized hybrid
mappings in a Hilbert space. Furthermore, the concept of attractive points was defined in
a Banach space by Lin and Takahashi [21]: Let E be a smooth Banach space and let C be
a nonempty subset of E. Let T' be a mapping of C into E. Then we denote by A(T) the
set of attractive points of T', i.e., A(T) = {z € E : ¢(2,Tz) < ¢(z,z), Vz € C}, where
#(z,y) = ||z||* — 2(z, Jy) + ||y for all z,y € E and J is the duality mapping on E.

In this article, we first prove a mean convergence theorem of Baillon’s type iteration for
finding a common fixed point of commutative 2-generalized nonspreading mappings in a Ba-
nach space. Furthermore, we obtain a weak convergence theorem of Mann’s type iteration
for finding a common fixed point of the mappings in a Banach space. We also prove a strong
convergence theorem of Halpern’s type iteration for finding a common fixed point of the map-
pings in a Banach space. Using these results, we get well-known and new weak and strong
convergence theorems in a Hilbert space and a Banach space.
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2 Preliminaries

Let E be a real Banach space with norm || - || and let E* be the topological dual space of E.
We denote the value of y* € E* at = € E by (z,y*). When {z,} is a sequence in F, we denote
the strong convergence of {z,} to z € E by z, — z and the weak convergence by =, — .
The modulus § of convexity of E is defined by

o9 =nt {1- M oy < 1yl < 1,01 > )

for every € with 0 < ¢ < 2. A Banach space E is said to be uniformly convez if §(e) > 0
for every € > 0. A uniformly convex Banach space is strictly convex and reflexive. Let C
be a nonempty subset of a Banach space E. A mapping T' : C — E is nonezpansive if
Tz — Ty|| < ||z — y|| for all z,y € C. A mapping T : C — E is quasi-nonezpansive if
F(T)# 0and [Tz —y|| < ||z —y|| for all z € C and y € F(T), where F(T') is the set of fixed
points of T. If C is a nonempty, closed and convex subset of a strictly convex Banach space
E and T': C — E is quasi-nonexpansive, then F(T) is closed and convex; see [11]. Let E be
a Banach space. The duality mapping J from E into 2E" is defined by

Jo={z* € B*: (z,2%) = al|* = |="[|*}

for every x € E. Let U = {& € E : ||z|| = 1}. The norm of E is said to be Gdteaux
differentiable if for each x,y € U, the limit

t —
o Nz tyl ~

t—0 t (2.1)

exists. In this case, E is called smooth. We know that E is smooth if and only if J is a single-
valued mapping of FE into E*. We also know that FE is reflexive if and only if J is surjective,
and F is strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly
convex and reflexive Banach space, then J is a single-valued bijection. Thus J~! is also a
single-valued bijection and it is the duality mapping from E* into E. The norm of E is said to
be uniformly Gateauz differentiable if for each y € U, the limit (2.1) is attained uniformly for
z € U. It is also said to be Fréchet differentiable if for each x € U, the limit (2.1) is attained
uniformly for y € U. A Banach space FE is called uniformly smooth if the limit (2.1) is attained
uniformly for z,y € U. It is known that if the norm of E is uniformly Géateaux differentiable,
then J is uniformly norm to weak* continuous on each bounded subset of E, and if the norm
of E is Fréchet differentiable, then J is norm to norm continuous. If E' is uniformly smooth,
J is uniformly norm to norm continuous on each bounded subset of E. For more details, see
25, 26].
Let E be a smooth Banach space. The function ¢: E X E — (—o00,00) is defined by

¢(z,y) = llell® - 2(z, Jy) + llyl* (2.2)

for z,y € E, where J is the duality mapping of E; see [1] and [12]. We have from the definition
of ¢ that

o(z,y) = ¢(z,2) + ¢(2,y) +2(z — 2,Jz — Jy) (2.3)
for all z,y,z € E. From (||lz| — |lyl)? < ¢(z,y) for all =,y € E, we can see that ¢(z,y) > 0.
Furthermore, we can obtain the following equality:

2z —y,Jz = Jw) = ¢(z, w) + $(y, 2) — d(2, 2) — Py, w) (2.4)



for z,y,z,w € E. If E is additionally assumed to be strictly convex, then we have
o(z,y) =0<=z=y. (2.5)

The following lemma which was by Kamimura and Takahashi [12] is well-known.

Lemma 2.1 ([12]). Let E be a smooth and uniformly convex Banach space and let {z,} and
{yn} be sequences in E such that either {x,} or {yn} is bounded. If limy, o0 ¢(zn,yn) =0,
then limp o0 || Zn — ynll = 0.

The following lemmas are in Xu [34] and Kamimura and Takahashi [12].

Lemma 2.2 ([34]). Let E be a uniformly convex Banach space and let > 0. Then there exists
a strictly increasing, continuous and convez function g : [0,00) — [0,00) such that g(0) =0
and

[Az + (1 = Nyl < Mzl + (1 = Nllyl> = A2 = Vg(lle - yl)

for all z,y € B, and X\ with 0 < X\ <1, where B, ={z € E: ||z|| <r}.

Lemma 2.3 ([12]). Let E be a smooth and uniformly convexr Banach space and let r > 0.
Then there exists a strictly increasing, continuous and convezr function g : [0,2r] — R such
that g(0) =0 and g(||lz — y||) < ¢(z,y) for all z,y € B,, where B, ={z € E : ||z|| <r}.

Let E be a smooth Banach space. Let C be a nonempty subset of E and let T be a mapping
of C into E. We denote by A(T) the set of attractive points of T, i.e., A(T) = {z € E :
o(z,Tx) < ¢(z,z), V€ C}; see [21].

Lemma 2.4 ([21]). Let E be a smooth Banach space and let C be a nonempty subset of E.
Let T' be a mapping from C into E. Then A(T) is a closed and convexr subset of E.

Let E be a smooth Banach space and let C be a nonempty subset of E. Then a mapping
T :C — E is called generalized nonezpansive [7] if F(T) # 0 and ¢(Tz,y) < ¢(z,y) for all
x € C and y € F(T); see also [33]. Let D be a nonempty subset of a Banach space E. A
mapping R : E — D is said to be sunny if R(Rz + t(z — Rz)) = Rz for all z € E and ¢t > 0.
A mapping R: E — D is said to be a retraction or a projection if Rx = x for all x € D. A
nonempty subset D of a smooth Banach space E is said to be a generalized nonexpansive retract
(resp. sunny generalized nonezpansive retract) of E if there exists a generalized nonexpansive
retraction (resp. sunny generalized nonexpansive retraction) R from E onto D; see [7] for
more details. The following results are in Ibaraki and Takahashi [7].

Lemma 2.5 ([7]). Let C be a nonempty closed sunny generalized nonerpansive retract of
a smooth and strictly conver Banach space E. Then the sunny generalized monezpansive
retraction from E onto C is uniquely determined.

Lemma 2.6 ([7]). Let C be a nonempty closed subset of a smooth and strictly convez Banach
space E such that there exists a sunny generalized nonexpansive retraction R from E onto C
and let (z,z) € E x C. Then the following hold:

(i) z = Rz if and only if (x — z,Jy — Jz) <0 for ally € C,

(i) (R, 2) + ¢(x, Rz) < ¢(z, 2).

In 2007, Kohsaka and Takahashi [17] proved the following results:

Lemma 2.7 ([17]). Let E be a smooth, strictly convex and reflezive Banach space and let C
be a nonempty closed subset of E. Then the following are equivalent:
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(a) C is a sunny generalized nonexpansive retract of E;
(b) C is a generalized nonexpansive retract of E;
(c) JC is closed and convez.

Lemma 2.8 ([17]). Let E be a smooth, strictly convex and reflexive Banach space and let
C be a nonempty closed sunny generalized nonexpansive retract of E. Let R be the sunny
generalized nonexpansive retraction from E onto C and let (z,z) € E x C. Then the following
are equivalent:

(i) z = Rx;
(it) ¢(x,2z) = mingec ¢z, y).

Ibaraki and Takahashi [10] also obtained the following result concerning the set of fixed
points of a generalized nonexpansive mapping.

Lemma 2.9 ([10]). Let E be a reflezive, strictly convex and smooth Banach space and let T
be a generalized nonexpansive mapping from E into itself. Then F(T) is closed and JF(T) is
closed and convez.

The following theorem is proved by using Lemmas 2.7 and 2.9.

Lemma 2.10 ([10]). Let E be a reflezive, strictly convex and smooth Banach space and let T
be a generalized nonexpansive mapping from E into itself. Then F(T) is a sunny generalized
nonexpansive retract of E.

Using Lemma 2.7, we also have the following result.

Lemma 2.11 ([28]). Let E be a smooth, strictly conver and reflexive Banach space and let
{C; : i € I} be a family of sunny generalized nonexpansive retracts of E such that Nie1C; is
nonempty. Then N;c1C; is a sunny generalized nonexpansive retract of E.

To prove one of our main results, we need the following lemma by Aoyama, Kimura, Taka-
hashi and Toyoda [3].

Lemma 2.12 ([3]). Let {sn} be a sequence of nonnegative real numbers, let {an} be a se-
quence of [0,1] with 3 o> | o, = 00, let {B,} be a sequence of nonnegative real numbers with
S 1 Bn <00, and let {y,} be a sequence of real numbers with limsup,,_, o, ¥» < 0. Suppose
that sp+1 < (1 — an)sn + anyn + Bn for alln =1,2,.... Then lim,_,o $n, = 0.

Let E be a smooth Banach space and let C' be a nonempty subset of E. Then a mapping
S : C — C is called 2-generalized nonspreading [31] if there exist oy, ag, B1, B2, 11,72, 01,02 €
R such that

a16(5%z, Sy) + a2¢(Sz, Sy) + (1 — a1 — az)¢(x, Sy)
+11{¢(Sy, $%z) — ¢(Sy,2)} + 12{4(Sy, Sz) — $(Sy,z)} (2:6)
< B19(S%x, y) + B2¢(Sx,y) + (1 = B1 — B2)p(,y)
+ 0u{o(y, $°z) — ¢y, x)} + 62{4(y, Sz) — ¢(y,2)}
for all z,y € C; see also [32]. Such a mapping is called (a1, az, 51, B2, 71,72, 01, 02)-generalized
nonspreading. We know that a (0, ag,0, B2, 0,72,0, d2)-generalized nonspreading mapping

is generalized nonspreading in the sense of [14]. We also know that a (0,1,0,1,0,1,0,0)-
generalized nonspreading mapping is nonspreading in the sense of [19]; see also [18, 27].
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3 Weak Convergence Theorems

In this section, we prove a mean convergence theorem of Baillon’s type iteration and a weak
convergence theorem of Mann’s type iteration for finding an attractive point of commutative
2-generalized nonspreading mappings in a Banach space.

Lemma 3.1. Let C' be a nonempty subset of a smooth, strictly convex and reflezive Banach
space E and let S and T be commutative 2-generalized nonspreading mappings of C into itself.
Let {z,} be a bounded sequence of C. Define

1 n n
Snxn = (I—-ftn—)z Z Z Sle(L'n

k=0 1=0

for alln € NU{0}. Suppose that ||Spzrn — zn|| — 0. Then every weak cluster point of {x,} is
a point of A(S)NA(T). Additionally, if C is closed and convez, then every weak cluster point
of {zn} is a point of F(S)N F(T).

Let E be a smooth Banach space. Let C be a nonempty subset of E and let T' be a mapping
of C into E. We denote by B(T') the set of skew-attractive points of T, i.e., B(T) = {z € E :
¢(Tz,2) < ¢(x,2z), Vz € C}. The following result is proved by Lin and Takahashi [21].

Lemma 3.2 ([21]). Let E be a smooth Banach space and let C be a nonempty subset of E.
Let T be a mapping from C into E. Then B(T) is closed and JB(T) is closed and convez.

We prove a mean convergence theorem of Baillon’s type iteration in a Banach space.

Theorem 3.3 ([30]). Let E be a uniformly convex Banach space with a Fréchet differentiable
norm and let C be a nonempty subset of E. Let S,T : C — C be commutative 2-generalized
nonspreading mappings such that {S*T'z : k,1 € NU {0}} for some z € C is bounded,
A(S) = B(S) and A(T) = B(T). Let R be the sunny generalized nonezpansive retraction of
E onto B(S) N B(T). Then, for any z € C,

1 n n
Snx = CFSE ZZS’“T%‘

k=0 =0

converges weakly to an element q of A(S) N A(T), where q = lim ;yep RS*T'x.
Using Theorem 3.3, we obtain the following theorems.

Theorem 3.4. Let E be a uniformly conver Banach space with a Fréchet differentiable norm.
Let Sv T : E — E be commutative (a17a27 ﬂla 62; V1,72, 617 62) and (a’h a/2a :617 ﬁ&a ’717’}/5? ’17 dé)-
generalized nonspreading mappings such that a; — /1 = 0, 71 < 91, y2 < 2, ag > B2 and
oy — Bl =0, <&, b < 8, ay > Bh, respectively. Assume that {S*T'z : k,1 € NU{0}}
for some z € C is bounded. Let R be the sunny generalized nonexpansive retraction of E onto
F(S)NF(T). Then, for any z € E,

1 n n

k=0 1=0

converges weakly to an element q of F(S) N F(T), where ¢ = lim,ep RS*T'x.
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Theorem 3.5 ([6]). Let H be a Hilbert space and let C be a nonempty subset of H. Let S and T
be commutative 2-generalized hybrid mappings of C into itself such that {S*T'z : k,1 € NU{0}}
for some z € C is bounded. Let P be the metric projection of H onto A(S)N A(T). Then, for

any x € C,
n n
n+1 3 ZZS’“T%

k=0 1=0

Spx

converges weakly to an element q of A(S)NA(T), where ¢ = lim, e p PS*T'x. In particular,
if C is closed and convez, {Spz} converges weakly to an element q of F(S) N F(T).

Using Lemma 3.1 and the technique developed by [9], we can prove the following weak
convergence theorem.

Theorem 3.6 ([2]). Let E be a uniformly convex Banach space with a Fréchet differentiable
norm and let C' be a nonempty and conver subset of E. Let S and T be commutative 2-
generalized nonspreading mappings of C into itself such that A(S) N A(T) # 0, A(S) = B(S)
and A(T) = B(T). Let R be the sunny generalized nonezpansive retraction of E onto B(S) N
B(T). Let {an} be a sequence of real numbers such that 0 < a, < 1 and liminf, o an(l —
an) > 0. Then, a sequence {x,} generated by v =z € C and

1
Tnt1 = QpTy + (1 an)( +1zzZSlea:n, Vn €N
k=0 1=0

converges weakly to z € A(S) N A(T), where z = lim,,_, o Rz,. Additionally, if C is closed,
then {z,} converges weakly to a point of F(S)NF(T).

Using Theorem 3.6, we can prove the following weak convergence theorem.

Theorem 3.7. Let E be a uniformly convex Banach space with a Fréchet differentiable norm.
Let S, T : E — E be commutative (a1, a2, 1, B2, 71,72, 01,02) and (o, ab, B, B V1, V5, 61, 05)-
generalized nonspreading mappings such that oy — 1 = 0, 11 < 61, 12 < 82, ag > B2 and

- B =0, <8, v < 8y, af > Bh, respectively. Assume that {S*T'z : k,l € NU{0}}
for some z € E is bounded. Let R be the sunny generalized nonexpansive retraction of E
onto F(S) N F(T). Let {an} be a sequence of real numbers such that 0 < a, < 1 and
liminf, o0 an(1 — @) > 0. Then, a sequence {z,} generated by T, =z € E and

p—ry 1)2 ZZSleasnmn, Vn eN

k=0 1=0

Tpt1 = QnTn + (1 —

converges weakly to z € F(S) N F(T), where z = lim,,_, 0 RTy,.
Using Theorem 3.6, we obtain the following result in a Hilbert space.

Theorem 3.8. Let H be a Hilbert space and let C be a nonempty, closed and convezx subset of
H. Let S,T : C — C be commutative 2-generalized hybrid mappings such that {S*T'z : k,l €
NU{0}} for some z € C is bounded. Let P be the mertic projection of H onto F(S) N F(T).
Let {an} be a sequence of real numbers such that 0 < oy, < 1 and iminf, 00 an (1 — ) > 0.
Then, a sequence {x,} generated by z; =z € C and

1 kil
m +12ZZS T'zpxn, VYneN
k=0 1=0

Tntl = QnZn + (1 — ay)

converges weakly to z € F(S) N F(T), where z = limy_, 00 Pxy,.



Remark We do not know whether a weak convergence theorem of Mann’s type iteration for
nonspreading mappings in a Banach space holds or not.

4  Strong Convergence Theorems

Let E be a smooth, strictly convex and reflexive Banach space. Ibaraki and Takahashi (8]
proved the following lemma.

Lemma 4.1 ([8]). Let E be a smooth, strictly convex and reflexive Banach space and define
V(z,z*) = ||z||? — 2(x,z*) + ||z*||? for all z € E and z* € E*. Then

V(z,z*) + 2{y, Jx — z*) < V(z +y,z*)
forallz,y € E and x* € E*.

In this section, using the idea of mean convergence by Shimizu and Takahashi [24] and
Kurokawa and Takahashi [20], we prove the following strong convergence theorem for 2-
generalized nonspreading mappings in a Banach space.

Theorem 4.2 ([2]). Let E be a smooth and uniformly convex Banach space such that the
duality mapping J is weakly sequentially continuous. Let C be a nonempty and convex subset
of E. Let S and T be commutative 2-generalized nonspreading mappings of C into itself such
that A(S) N A(T) # 0, A(S) = B(S) and A(T) = B(T). Let u € C and define a sequence
{zn} in C as follows: 1 =z € C and

1 n n
Tnt1 = anu+ (1 — an)(—nﬁ)—2 ZZSlezn, Vn € N,
k=0 1=0

where 0 < o, < 1, ap, — 0 and Y07 o, = co. Then {z,} converges strongly to Ru, where
R is a sunny generalized nonezpansive retraction of E onto B(S) N B(T). Additionally, if C
is closed, then {x,} converges strongly to a point of F(S) N F(T).

Remark We know that the duality mappings J on I?,1 < p < oo and smooth finite dimen-
sional Banach spaces are weakly sequentially continuous. However, we do not know whether
Theorem 4.2 holds or not without assuming that J is weakly sequentially continuous.

As in the proofs of Theorems 3.7 and 3.8, we can obtain the following strong convergence
theorems from Theorem 4.2.

Theorem 4.3. Let E be a smooth and uniformly convex Banach space such that the
duality mapping J is weakly sequentially continuous. Let S,T : E — E be commutative
(01, a2, B1, B2, 71,72, 01, 82) and (o, 0, By, By, M, 73, 61, 82 )-generalized nonspreading map-
pings such that an — 1 =0, 1 < 01, 72 < 2, ag > B2 and of — B =0, v < &7, v4 < 8,
oy > B4, respectively. Assume that {S*T'z : k,1 € NU{0}} for some z € C is bounded. Let
R be the sunny generalized nonezpansive retraction of E onto F(S)N F(T). Let u € E and
define a sequence {,} in E as follows: 1 =z € E and

1 n o n
Tn+1 =anu+(1—an)mZZSle$n, Vn EN,
k=0 1=0
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where 0 < ap < 1, ap — 0 and 3 oo an = 00. Then {z,} converges strongly to Ru, where
R is a sunny generalized nonezpansive retraction of E onto F(S) N F(T).

Theorem 4.4. Let H be a Hilbert space and let C be a nonempty, closed and convezx subset of
H. Let S,T be commutative 2-generalized hybrid mappings of C into itself such that {S*T'z
k,1 € NU{0}} for some z € C is bounded. Let u € C and define a sequence {z,} in C as
follows: x1 = x € C and

Tyl = apu+ (1 — ar )2 ZZSlexn

k=01=0

for alln € N, where 0 < o, < 1, ap — 0 and Y oo | a = 00. Then {z,} converges strongly
to Pu, where P is the metric projection of H onto F(S)NF(T).
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