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1 Introduction

Ran-Reurings’s fixed point theorem [7] is a fixed point theorem in metric spaces with a partial
order. In this paper, we introduce Ran-Reurings’s fixed point theorem and its related results.
In Section 2, we consider an asymptotic generalization of Ran-Reurings’s fixed point theorem.
In Sections 3 and 4, we consider applications of a fixed point theorem in metric spaces with
a partial order. For fixed point theorems in metric spaces, see [1, 3, 4].

2 Asymptotic Generalization

The Banach fixed point theorem is the following: Let (X, d) be a complete metric space and
T a mapping of X into itself. If T" is contractive, i.e., there exists r € [0,1) such that for any
T,y € X,
d(Tz,Ty) < rd(z,y), 1)
then there exists a unique fixed point of 7'
There exists a mapping which is not contractive but its iterate is contractive [1, 4]. In

fact, consider C([0,1],R) which is the set of all continuous functions on [0,1] (R is the set
of all real numbers). This is a Banach space with respect to the norm ||u|| = sup |u(t)| for

i

u € C([0,1],R). Define a mapping of C([0, 1], R) into itself by

70 = [ u(s)ds )
for u € C([0,1],R) and ¢ € [0,1]. Then we have

T = To|| < [lu— ]l
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for all u,v € C([0,1],R). Therefore T is not contractive. Since

mn 1 ¢ n—1
™0 = gy /0 (1 — $)"tu(s)ds
for u € C([0,1],R), t € [0,1] and n € N (N is the set of all positive integers), we have
mn n 1
77~ T < S o

for all u,v € C([0,1],R) and n € N. Hence, if we define real numbers r,, = # for n € N, then
T,, satisfies | T"u — T™|| < ry)|u — v|| for all u,v € C([0,1],R) and n € N. Therefore each
T™ is contractive if n > 2.

Caccioppoli’s fixed point theorem is the following: Let (X, d) be a complete metric space
and T a mapping of X into itself. If there exist nonnegative real numbers {r,,} with 3 >, r, <
oo such that for any z,y € X and n € N,

d(T"z, T"y) < rpd(z,y), (3)

then there exists a unique fixed point of T'.
By Caccioppoli’s fixed point theorem, we obtain a unique fixed point of T defined by
(2). It is noted that Y 0> r, = > o2 & < co. Moreover the Banach fixed point theorem

is deduced from Caccioppoli’s fixed point theorem. In fact, if T" satisfies (1) for all z,y in a
complete metric space X, then we have

d(T"z, T™y) < rd(T™ 'z, T 'y) < r2d(T" %z, T" %) --- < r"d(z,y)

for all ,y € X and n € N. Moreover we have y_° " = &= < 00.

Recently, Ran and Reurings [7] and Nieto and Lépez [5] consider the Banach fixed point
theorem in metric spaces with a partial order. Let (X, <) be a partially ordered set. A pair
of elements z,y € X is comparable if x < y or y < z. Let T be a mapping of X into itself.
We say that T is monotone nondecreasing if for any z,y € X, x < y implies Tx < Ty.

Theorem 1 (Ran and Reurings [7], Nieto and Lépez [5]). Let (X, <) be a partially ordered
set with a metric d such that (X,d) is a complete metric space. Let T be a continuous and
monotone nondecreasing mapping of X into itself. There exists a nonnegative real number
r € [0,1) such that for any z,y € X with x > y, (1) holds. If there exists xy € X with
zg < Txq, then there exists a fixed point of T. Moreover, if for any x,y € X there exists
z € X which is comparable to x and y, then the fixed point of T is unique.

Theorem 2 (Nieto and Lépez [5]). Let (X, <) be a partially ordered set with a metric d
such that (X, d) is a complete metric space. Assume that if a nondecreasing sequence {z,}
converges to x, then z, < x for allm € N. Let T be a monotone nonincreasing mapping of
X into itself. There exists a nonnegative real number r € [0,1) such that for any z,y € X
with x >y, (1) holds. If there exists xo € X with xg < Txo, then there exists a fized point
of T. Moreover, if for any z,y € X there exists z € X which is comparable to x and y, then
the fixed point of T is unique.



In [10], we consider Caccioppoli’s fixed point theorem in metric spaces with a partial
order. Our result is an asymptotic generalization of theorems in [7] and [5]. In fact, Theorem
1 is deduced from Theorem 3. Theorem 2 is deduced from Theorem 4.

Theorem 3 (Toyoda and Watanabe [10]). Let (X, <) be a partially ordered set with a met-
ric d such that (X,d) is a complete metric space. Let T be a continuous and monotone
nondecreasing mapping of X into itself. There exist nonnegative real numbers {r,} with
> Tn < 00 such that for any z,y € X withx > y and n € N, (8) holds. If there ezists
xg € X with xy < Txg, then there exists a fixed point of T. Moreover, if for any x,y € X
there exists z € X which is comparable to x and y, then the fixed point of T is unique.

Theorem 4 (Toyoda and Watanabe [10]). Let (X, <) be a partially ordered set with a metric
d such that (X, d) is a complete metric space. Assume that if a nondecreasing sequence {z,}
converges to x, then x, < = for all n € N. Let T be a monotone nondecreasing mapping of
X into itself. There exist nonnegative real numbers {r,} with Y > r, < co such that for
any z,y € X withx >y and n € N, (3) holds. If there exists zg € X with xg < Txg, then
there exists a fixed point of T. Moreover, if for any x,y € X there exists z € X which is
comparable to x and y, then the fized point of T is unique.

Remark 1. It is a further topic whether we can remove assumptions of monotonicity of T
in Theorems 3 and 4; see [8]. Moreover, it is a further topic how to generalize Theorems 3
and 4 to metic spaces endowed with a graph; see [2].

3 Application I
In [5], Nieto and Lépez consider the existence of solutions for boundary value problems
u(0) = u(a),

where a > 0 and f is a continuous mapping of [0, a] xR into R. A solution of (4) is a function
u € CY([0, a], R) satisfying (4), where C1([0, a],R) is the set of all continuously differentiable
functions on [0, a]. A lower solution for (4) is a function u € C*(I,R) satisfying

{u’(t) < f(t,u(t)),
<u

Using Theorem 2, we obtain the following.

Theorem 5 ([Nieto and Lépez [5]). Let a > 0. Let f be a continuous mapping of [0,a] x R
into R. Assume that there exist A > 0, u > 0 with u < X such that for any v,y € R, y > x,

0< f(ty) + Ay — (f(t,z) + Az) < ply — z).

Then the existence of a lower solution of (4) provides the existence of a unique solution of

(4)-
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In the proof of Theorem 5, we use Theorem 2; see [5]. However, in Theorem 5, an assumption
of the existence of a lower solution is unnecessary. In fact, using the Banach fixed point
theorem, we obtain the following.

Theorem 6. Let a > 0. Let f be a continuous mapping of [0,a] x R into R. Assume that
there exist A > 0, u > 0 with p < A such that for any z,y €R, y > =z,

0<f(ty) + Ay — (f(t,2) + Az) < p(y — 2).
Then the problem (4) has a unique solution.

Proof. Problem (4) is written as

{u’(t) Fu(t) = ft,ut) + Mu(t),
u(0) = u(a).

This problem is equivalent to the integral equation
0 = / Gt 5) (f(s,u(s)) + Muls)) ds,
0

where

Crl0<s<t<a,
G(t,s) = Soon
m,0<t<s<a

Define a mapping T of C([0, a],R) into itself by

(Tw) (1) / G(t,5) (f(s,u(s)) + Mu(s)) ds

for u € C([0,a],R) and t € [0, a].

The set C([0,a],R) is a partially ordered set if we define the following order relation:
u,v € C([0,a],R), u < v if and only if for any t € [0,a], u(t) < v(t). Also C([0,a],R) is
a complete metric space if we choose the metric d(u,v) = sup,cgq [u(t) — v(t)| for u,v €
C([0,a],R).

If z,y € R and ¢ € [0, a], then we have

Lf(t,y) + Ay — f(t,2) = Mx| < ply — z|. (5)

In fact, if y > =z, then 0 < f(t,9) + Ay — f(t,z) — Az < p(y — z). Thus we get (5). If z >y,
then 0 < f(t,z) + Az — f(t,y) — Ay < p(z — y). Thus we get (5).
If u,v € C([0,a],R) and ¢ € [0, al, then, by (5), we have

[(Tu)(t) = (Tv)(®)] < /Oa G(t,5)|f (s, u(s)) + Au(s) = f(s,v(s)) — Av(s)|ds
< /a G(t, s)u|u(s) — v(s)|ds
< pd(u,v) sup/ G(t,s)d

0<t<a

= %d(u, v).



Thus we get
d(Tu, Tv) < %d(u,v)

for all u,v € C([0,a],R). By the Banach fixed point theorem, we obtain the existence and
uniqueness of fixed points of T. O

4 Application 11

In [9], we consider the existence of solutions for boundary value problems

y"() + (¢ y(), ' (1) =0,
y(0) =y(1) = y"(0) = y"(1) =0,
where f is a continuous mapping of [0,1] x R x R into R. A solution of (6) is a function

u € C4(]0,1], R) satisfying (6), where C*([0, 1], R) is the set of all fourth continuously differ-
entiable functions on [0,1]. A lower solution of (6) is a function y € C*4([0, 1], R) satisfying

(6)

y(0) =y(1) =y"(0) =y"(1) = 0.

Using Theorem 2, we obtain the following.

{y""(t) + (¢, y(t), ¥'(t) <0,

Theorem 7 (Toyoda and Watanabe [9]). Let f be a continuous mapping of [0,1] x R x R
into R. Assume that there exists u € (0,8) such that for any y1,ya, u1,us € R with y; < yo,
u > ug and t € [0,1],

0 S f(taylvul) - f(t,y2,U2) S /J,('U.l - U2)~

If there ezists a lower solution y such that y"(0) < fol fot f(s,y(s),y"(s))dsdt, then there
exists a unique solution of (6).

In the proof of Theorem 7, we use Theorem 2; see [9]. However, in Theorem 7, an assumption
of the existence of a lower solution is unnecessary. In fact, using the Banach fixed point
theorem, we obtain the following.

Theorem 8. Let f be a continuous mapping of [0,1] x R x R into R. Assume that there
exists p € (0,8) such that for any y1,y2, u1,u2 € R with y1 < yo, ug > ug and t € [0,1],

0 < f(t,y1,u1) — f(t, yo, u2) < p(ug — up).

Then there ezists a unique solution of (6).
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Proof. Problem (6) is equivalent to the integral equation

= [ Gyt u(s)as
where
y(t) = / G(t, s)u(s)ds (7
and
(I-t)s, 0<s<t<l,
Gt,s) = {(l—s)t, 0<t<s<l.

For all u,v € C([0,1],R), we define u < v by u(t) < v(t) for all ¢t € [0,1]. Then C([0,1],R)
is a partially ordered set. If we define the metric d by d(u,v) = supsg 1) |u(t) — v(t)] for
u,v € C([0,1],R), then C([0,1],R) is a complete metric space.

Let T be a mapping of C([0, 1], R) into itself by

1
Tu(t) =/0 G(t, s)f(s,y(s),u(s))ds

for u € C([0,1],R), where y is defined by (7) using .
If uy, ug € C([0,1],R) and ¢ € [0, 1], then we have

£t 92(8), ua(2)) — f (2, 2(t), ua(8))] < plua (2) — ua(2)], (®)
where y1,y, are defined by (7) using uj,us. In fact, let uy,us € C’([O 1],R) and ¢ € [0,1].
If uy(t) > uo(t), then we have yi(t) = —fo (t, 8)uy(s)ds < fo (t, s)ua(s)ds = yo(t).

Note that G(t,s) > 0 for all (¢,s) € [0,1] x [0 1] Then we have 0 < f(t,4:1(t),u1(t)) —
F(t,y2(t), u2(t)) < plui(t) — ue(t)). Thus we get (8). If uy(t) < ua(t), then we have yo(t) =
—fol G(t, s)ua(s)ds < ——fol G(t, s)ui(s)ds = y1(t). Then we have 0 < f(¢,y2(t), u2(t)) —
f(ya(t), ua(t)) < p(ua(t) — ua(t)). Thus we get (8).

Therefore, for u;,us € C([0,1],R) and t € [0, 1], by (8), we have

|Tui(t) — Tusz(t)] S/O G(t, 8)| f(s,y1(8),u1(s)) — f(s, y2(8), uz(s))|ds
1
< ;L/O G(t,s)|ui(s) — ua(s)|ds

1
Sud(ul,uQ)/ G(t, s)ds
0
< Bd(uy, us).
8
Note that fol G(t,s)ds = 3t(1 —t). Thus we get

d(Tug, Tug) < %d(ul, ug)



for all u;,us € C([0,1],R). By the Banach fixed point theorem, we obtain the existence and
uniqueness of fixed points of 7. O

Remark 2. [t is a further topic whether, as well as Applications I and II, we can remove
conditions of theorems which are applications of fized point theorems in metric spaces with a
partial order; see [6], [8] and [11]
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