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順序距離空間における不動点定理と非線形境界値問題への適用
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1. INTRODUCTION

A coupled fixed point theorem is a combination between fixed point
results for contractive type mappings and the monotone iterative
method proposed by Bhaskar and Lakshmikantham [1]. Several au‐
thors [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] investigated it. It is a strong tool to
study a existence and uniqueness solution of boundary value problems
for several ordinary differential equations, see [1, 4, 11, 12]. Recently
in [12], Jleli et.al extend and generalize several existing results in the
literature. They also show the existence and uniqueness of solutions of
the following fourth‐order two‐point boundary value problem for elastic
beam equations:

\begin{array}{l}
u^{\prime\prime\prime\prime}(t)=f(t, u(t), u(t)) ,
u(0)=u'(0)=u"(1)=u"'(1)=0,
\end{array}
where  f is a continuous mapping of  [0,1]\cross \mathbb{R}\cross \mathbb{R} into  \mathbb{R}.

We are also concerned about higher order boundary value problems.
In particular, for the existence of a solution the use of a fixed point
theorem is a very popular method. So, for instance, we consider the
following problem,

(1)  \begin{array}{l}
u^{\prime\prime\prime\prime}(t)=f(t, u(t), u"(t)) ,
u(0)=u(1)=u"(0)=u"(1)=0,
\end{array}
or, for example, the next one (see [12]):

(2)  \begin{array}{l}
u^{\prime\prime\prime\prime}(t)=f(t, u(t), u"(t)) ,
u(0)=u'(0)=u"(1)=u"'(1)=0,
\end{array}
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where  f is a continuous mapping of  [0,1]\cross \mathbb{R}\cross \mathbb{R} into  \mathbb{R} . We will show
that some coupled fixed point theorems are very useful in order to get
a solution of these boundary value problems.

For the existence and uniqueness of solutions for the fourth‐order
two‐point boundary value problem for (1), many researchers have stud‐
ied, see [13, 14, 15] The proof is carried out using the Leray‐Schauder
fixed point theorem, etc.

In this article, using the method of coupled fixed point theorem in
[1, 4, 5, 7, 12], we show the existence of solutions for (1) and (2).

2. FIXED POINT THEOREM

First of all, we cited the following definitions and preliminary results
will be useful later. Let (X, d) be a metric space endowed with a partial
order  \preceq . We say that a mapping  F :  Xarrow X is nondecreasing if for
any  x,  y\in X,

 x\preceq y\Rightarrow Fx\preceq Fy.

Let  \Phi denote the set of all functions  \varphi :  [0, \infty )  arrow[0, \infty ) satisfying

(a)  \varphi is continuous and nondecreasing;
(b)  \varphi^{-1}(\{0\})=\{0\}.

Let  \Psi denote the set of all functions  \psi :  [0, \infty )  arrow[0, \infty ) satisfying

(c)   \lim_{tarrow r+}\psi(t)>0 (and finite) for all  r>0 ;
(d)   \lim_{tarrow 0+}\psi(t)=0.

Let  \Theta denote the set of all functions  \theta :  [0, \infty )  \cross[0, \infty )  \cross[0, \infty )  \cross

 [0, \infty)arrow[0, \infty) satisfying

(e)  \theta is continuous;
(f)  \theta (  s1 , s2, s3, s4)  =0 if and only if  s1s2s3s4=0.

Examples of functions  \psi of  \Psi are given in [7]; see also [4, 16]. Examples
of functions  \theta in  \Theta are given in [12].

In [12, Theorem 3.1, 3.2], the following fixed point theorem is ob‐
tained. We require an additional assumption to the metric space  X

with a partial order  \preceq : We say that  (X, d, \preceq) is regular if  \{a_{n}\} is a
nondecreasing sequence in  X with respect  to\preceq such that  a_{n}arrow a\in X
as   narrow\infty , then  a_{n}\preceq a for all  n.

Theorem 1. Let (X, d) be a complete metric space endowed with a
partial order  \preceq and  F :  Xarrow X a nondecreasing mapping such that
there exist  \varphi\in\Phi,  \psi\in\Psi and  \theta\in\Theta such that for any  x,  y\in X with
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 x\succeq y,

 \varphi  (d (Fx, Fy))\leq\varphi(d(x, y))-\psi(d(x, y))
 +\theta (  d (  x , Fx),  d(y , Fy) ,  d(x , Fy),  d(y , Fx)).

Suppose also that the following (i) or (ii) hold.
(i)  F is continuous

(ii)  (X, d, \leq) is regular.
Also supose that there exists  x_{0}\in X such that  x_{0}\preceq Fx_{0}  (or x_{0}\succeq Fx_{0}) .
Then  Fadmit_{\mathcal{S}} a fixed point, that  i_{\mathcal{S}} , there exists  \overline{x}\in X such that

 \overline{x}=F\overline{x}.

3. FIXED POINT THEOREM FOR MONOTONE MAPPING

In this section, for mappings  F of  X\cross X into  X , we introduce
a monotone property. Moreover we consider fixed point theorems for
monotone mappings which have this monotone property. We say that a
mapping  F of  X\cross X into  X is mixed monotone if  F is nondecreasing in
its first variable and nonincreasing in its second, that is, for  x,  y,  u,   v\in

 X,

 x\succeq u, y\preceq v\Rightarrow F(u, v)\preceq F(x, y) ,

and a mapping  \tilde{F} of  X\cross X into  X is reverse mixed monotone if  \tilde{F} is
nonincreasing in its first variable and nondecreasing in its second, that
is, for  x,  y,  u,  v\in X,

 x\succeq u, y\preceq v\Rightarrow\tilde{F}(u, v)\succeq\tilde{F}(x, y) .

Let (X, d) be a metric space, Let  F and  \tilde{F} be mappings of  X\cross X into
X. We also consider the mapping  A of  X\cross X into  [0, \infty ) and the
mapping  B of  X\cross X\cross X\cross X into  [0, \infty ) defined by

 A(x, y)= \frac{d(x,F(x,y))+d(y,\tilde{F}(x,y))}{2}, (x, y)\in X\cross X,
  B(x, y, u, v)=\frac{d(x,F(u,v))+d(y,\tilde{F}(u,v))}{2},  (x, y, u, v)\in X\cross X\cross X\cross X.

Definition 2. Mappings  F and  \tilde{F} admit a pre‐coupled fixed point, if
there exists  (a, b)\in X\cross X\mathcal{S}uch that  a=F(a, b) and  b=\tilde{F}(a, b) .

We require additional assumptions to the metric space  X with a
partial order  \preceq :

Definition 3. Let (X, d) be a complete metric space endowed with a
partial order  \preceq . We say that
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1   \int

(i)  (X, d, \preceq) is nondecreasing‐regular ( \uparrow ‐regular) if a nondecreasing
sequence  \{x_{n}\}\subset X converges to  x , then  x_{n}\preceq x for all  n ;

(ii)  (X, d, \preceq) is nonincreasing‐regular ( \downarrow ‐regular) if a nonincreasing
sequence  \{x_{n}\}\subset X converges to  x , then  x_{n}\succeq x for all  n.

Motivated by [12, Theorem 3.4, 3.5], we have the following fixed
point theorem.

Theorem 4. Let (X, d) be a complete metric space endowed with a
partial order  \preceq,  F :  X\cross Xarrow X a mixed monotone mapping and
 \tilde{F} :  X\cross Xarrow X a reverse mixed monotone mapping. We assume that
there exist  \varphi\in\Phi,  \psi\in\Psi and  \theta\in\Theta such that for any  x,  y,  u,  v\in X

with  x\succeq u,  y\preceq v , the following inequality holds:

  \varphi(\frac{d(F(x,y),F(u,v))+d(\tilde{F}(x,y),\tilde{F}(u,v))}{2})
  \leq\varphi(\frac{d(x,u)+d(y,v)}{2})-\psi(\frac{d(x,u)+d(y,v)}{2})
 +\theta (A(x, y), A(u, v), B(x, y, u, v), B(u, v, x, y)) .

Suppose also that the following (i) or (ii) hold.
(i)  F and  \tilde{F} are continuous

(ii)  (X, d, \preceq) is nondecreasing‐regular and nonincreasing‐regular.
If there exist  x_{0},  y_{0}\in X such that

 x_{0}\preceq F  (x_{0}, y_{0}),  y_{0}\succeq\tilde{F}(x_{0}, y_{0}) ,  or

 x_{0}\succeq F(x_{0}, y_{0}), y_{0}\preceq\tilde{F}(x_{0}, y_{0}) ,

then  F and  \tilde{F} admit a pre‐coupled fixed point, that is, there exists
 (a, b)\in X\cross X such that  a=F(a, b) and  b=\tilde{F}(a, b) .

Proof. See, [17]. 口

4. APPLICATIONS

In this section, we study the existence of solutions of two types
fourth‐order two‐point boundary value problems for elastic beam equa‐
tions. As another applications, we can consider two types third‐order
two‐point boundary value problems, see [17]. In particular, the follow‐
ing result is an extension of the result in [12].

(3)  \{\begin{array}{l}
u^{\prime\prime\prime\prime}(t)=f(t, u(t), u"(t)) ,
u(0)=A, u'(0)=B, u"(1)=C, u"'(1)=D,
\end{array}
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with  I=[0,1] and  f\in C(I\cross \mathbb{R}\cross \mathbb{R}, \mathbb{R}) , where  C(I\cross \mathbb{R}\cross \mathbb{R}, \mathbb{R}) is
a set of continuous mappings of  I\cross \mathbb{R}x\mathbb{R} into  \mathbb{R} . Let  \Omega be a set of
functions  \omega of  [0, \infty ) into  [0, \infty ) satisfying

(i)  \omega is nondecreasing;
(ii) there exists  \psi\in\Psi such that   \omega(r)=\frac{r}{2}-\psi(\frac{r}{2}) for all   r\in[0, \infty).

For examples of such functions, see [7].
Next we consider the following assumptions (A1) and (A2).
(A1) There exists  \omega\in\Omega such that for all  t\in I and for all  a,  b,  c,   e\in

 \mathbb{R} , with  a\geq c and  b\leq e,

 0\leq f(t, a, b)-f(t, c, e)\leq\omega(a-c)+\omega(e-b) .

(A2) There exist  \alpha,  \beta\in C(I, \mathbb{R}) which are solutions of

  \alpha(t)\leq\int_{0}^{{\imath}}G(t, s)f(s, \alpha(s), \beta(s))ds, t\in I,
  \beta(t)\geq\int_{0}^{1}H_{1}(t, s)f(s, \alpha(s), \beta(s))ds, t\in I,

where the Green functions  G and  H_{1} are defined by

 G(t, s)=\{\begin{array}{ll}
\frac{1}{6}s^{2}(3t-s) ,   (0\leq s\leq t\leq 1) ,
\frac{1}{6}t^{2}(3s-t) ,   (0\leq t\leq s\leq 1) ,
\end{array}
 H_{1}(t, s)=\{\begin{array}{ll}
0,   (0\leq s\leq t\leq 1) ,
s-t,   (0\leq t\leq s\leq 1) .
\end{array}

Note that

  \int_{0}^{1}G(t, s)f(s, u(s), v(s))ds
 = \int_{0}^{1}H_{2}(t, s)\int_{0}^{1}H_{1}(s, r)f(r, u(r), v(r))drds,

where the green function  H_{2} is defined by

 H_{2}(t, s)=\{\begin{array}{ll}
t-s,   (0\leq s\leq t\leq 1) ,
0,   (0\leq t\leq s\leq 1) .
\end{array}
It is easy to show that

 0 \leq G(t, s)\leq\frac{1}{2}t^{2}s for all  t,  s\in I,

and

 0 \leq H_{1}(t, s)\leq\min\{s, t\} for all  t,  s\in I.
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Now we have the following theorem.

Theorem 5. Under the assumptions (A1) and (A2), the fourth‐order
two‐point boundary value problem (3) has a solution.

Proof. See, [17]. 口

As an application of our results, we also prove the existence of solu‐
tions of the following fourth‐order two‐point boundary value problem,
see [13, 14, 15]:

(4)  \{\begin{array}{l}
u^{\prime\prime\prime\prime}(t)=f(t, u(t), u"(t)) ,
u(0)=A, u(1)=B, u"(0)=C, u"(1)=D,
\end{array}
with  I=[0,1] and  f\in C(I\cross \mathbb{R}\cross \mathbb{R}, \mathbb{R}) . We take the set of functions
 \Omega same way as in former result, and the assumptions  (A1) and  (A2)
are same as those of former result with respect to the following Green
functions  G and  H.

 G(t, s)=\{\begin{array}{ll}
\frac{1}{6}s(1-t)(2t-s^{2}-t^{2}) ,   (0\leq s\leq t\leq 1) ,
\frac{1}{6}t(1-s)(2s-t^{2}-s^{2}) ,   (0\leq t\leq s\leq 1) ,
\end{array}
and

 H(t, s)=\{\begin{array}{l}
s(1-t) (0\leq s\leq t\leq 1) ,
t(1-s) (0\leq t\leq s\leq 1) .
\end{array}
Note that

  \int_{0}^{{\imath}}G(t, s)f(s, u(s), v(s))ds
 = \int_{0}^{1}H(t, s)\int_{0}^{1}H(s, r)f(r, u(r), v(r))drds, t\in I.

It is easy to show that

 0 \leq G(t, s)\leq\frac{1}{3} st for all  t,  s\in I,

and

 0 \leq H(t, s)\leq\min\{s, t\} for all  t,  s\in I.

Theorem 6. Under the assumptions (A1) and (A2), the fourth‐order
two‐point boundary value problem (4) has a solution.

Proof. See, [17] 口
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