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APPROXIMATE MINIMALITY 1N SET OPTIMIZATION
(集合最適化における近似最適性)

YUTO OGATA, TAMAKI TANAKA

小形 優人,田中 環

ABSTRACT. This is a reserch note of appriximate minimality for set optimization. We

consider a new concept of approximate efficiency for set optimization in terms of set

order intervals by using Tanaka’s approximate minimality for vector optimization.

1. INTRODUCTION

On optimization theory, necessity of weak solutions is associated with solving problems

in which we cannot reach exact solutions. Seeing vector cases, we usually assume the

pointwise partial ordering given by a convex cone. Loridan [2] introduced \varepsilon‐efficiency in

1984 and it is used as a standard of weak optimality in vector optimization. However,

Loridan’s weakness charactorized by an error toward a specific direction plays strange roles

in particular cases. In other words, the essenciality of this weakness strongly depends on

the shape of given sets. The same can be applied to set cases.

In order to improve it, we apply Tanaka’s approximate minimality [1] to set optimality.

This minimality is dependent on an  \varepsilon‐neighborhood of each point. Under this notion, an

optimal solution has no better points (far away” as opposed to Loridan’s where the set

of better solutions than an given point may not be bounded. If any better solutions exist

nearby, this coincides with Loridan’s efficiency.

We introduce this idea to set optimization by defining several neighborhoods of a set
and contrast it with known idea.

2. PRELIMINARIES

Throughout this paper, we let
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 X : a topological vector space,

 C : a convex solid (i.e., intC  \neq\emptyset ) cone in  X,

 \leq c : the pointwise ordering between two vectors in  X

(  x\leq cy\negarrow y-x\in C for  x,  y\in X ),

 \preceq c a binary relation between two subsets of  X.

Note that  \leq c and  \preceq c are usually denoted by  \leq and  \preceq , respectively.

3. MOTIVATION

Let  S be a nonempty subset of  \mathbb{R}^{n},  \mathbb{R}_{+}^{n} the positive orthant of  \mathbb{R}^{n}.

Definition 3.1 (  \varepsilon‐efficient point (Loridan [2], 1984)).  \overline{x}\in S is an  \varepsilon‐efficient point toward
 d\in \mathbb{R}^{n} iff  (\overline{x}-\mathbb{R}_{+}^{n})\cap(\varepsilon d+S\backslash \{\overline{x}
\})=\emptyset or equivalently,  /\Xi x\in S such that   x+\varepsilon d\leq

 \overline{x} and  x\neq\overline{x}.

Definition 3.2 (  \varepsilon‐approximately efficient point (Tanaka [1], 1996)).  \overline{x}\in S is an  \varepsilon‐

approximately efficient point of  S w.r.t.C iff  (\overline{x}-C)\cap(S\backslash B_{\varepsilon}(\overline{x}))=\emptyset.

Definition 3.1 is a basic concept of weak optimalities in vector optimization. However,

the given error  \varepsilon toward a specific direction plays strange roles in particular cases. In

other words, the essenciality of this weakness strongly depends on the shape of given sets.

In this research, we focused on difference between Definition 3.1 and 3.2. Particularly,

the following cases distinguish the definitions.

Example. Let  S_{1}:=\{x\in \mathbb{R}^{2}|x_{1}^{2}+x_{2}^{2}<1\} and  S_{2}  :=-\mathbb{R}_{++}^{2}=int\mathbb{R}_{+}^{2}.
 (-2/3, -2/3) is  a(1/10)‐effcient point toward (1, 1) of  S_{1} and so is  a(1/10)‐approximately

efficient point with respect to  \mathbb{R}_{+}^{2} . On the other hand, (1/10, 1/10) is  a(1/10) ‐efficient

point toward (1, 1) of  S_{2} while it cannot be an  \varepsilon‐approximately efficient point for any
 \varepsilon>0.

4. MAIN RESEARCH

In this section, our generalized approximate efficiency of set optimization is considered.

We let  X be a topological vector space,  \mathcal{A} a family of bounded subsets of  X,  \preceq c a set

relation defined as  A\preceq cB  :\vec{-}(A\subset B-C)\wedge(B\subset A+C) . This definition called

“set‐less relation” is commonly introduced in recent papers, which is originally used by

Young [3] and Nishnianidze [4], independently.

To begin with, we introduce known weak optimality which is a generalization of Defi‐

nition 3.1.
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Definition 4.1. Let  d\in X,  \varepsilon>0.\overline{A}\in \mathcal{A} is an  \varepsilon‐minimal set with respect to  \preceq toward
 d iff  \varepsilon d+A\preceq\overline{A} for some  A\in \mathcal{A}\Rightarrow\overline{A}\preceq\varepsilon d+A.

Usually, minimality of sets is given in the form of “non‐dominated” optimality. In

set‐to‐set comparison, it is for the most part, too strong that we settled with dominated

solutions even if a convex ordering cone is pointcd. If specification is needed, we denote

 (A\preceq B)\wedge(B\not\leq A) by  A\prec cB.

What we have to consider the most to extend approximate efficiency in Definition 3.2

is idea of neighborhoods for sets. in this paper, we prepare different three types of

neighborhoods and propose new approximate minimalities for set optimization. The first

one describes neighborhoods by the existence of intersection.

Definition 4.2. Let  N(A)  :=\{S\subset X|S\cap A\neq\emptyset\}.\overline{A}\in \mathcal{A} is an approximately minimal

set with respect to  \preceq iff  A\preceq\overline{A} for some  A\in \mathcal{A}\backslash N(A)\Rightarrow\overline{A}\preceq A.

Example. Let  \mathcal{A}_{1}  :=\{A(x)|x\in \mathbb{R}_{++}^{2}\} where  A(x)  :=\{y\in \mathbb{R}^{2}|(y_{{\imath}}-x_{1})^{2}+(y_{2}-x_{2})^{2}\leq 1\}.
In this case,  x'\leq_{R_{+}^{2}}x\Leftrightarrow A(x')\preceq_{\mathbb{R}_{+}^{2}}A(x) . Then,  A(1/10,1/10) is a approximately

minimal set with respect to  \mathbb{R}_{+}^{2} since   A(1/10,1/10)\cap A(x)\neq\emptyset for all  x\leq(1/10,1/10) . In

this case,  A(1/10,1/10) also satisfies the condition of (1/10)‐minimality in Definition 4.1.

Example. Let  \mathcal{A}_{2}  :=\{A(x)|x\in \mathbb{R}_{++}^{2}, x_{1}>0\} . Then, for any  \varepsilon>0 and  x\in \mathbb{R}^{2} satisfying

 x_{1}=\varepsilon,  A(x) is an  \varepsilon‐minimal set toward (1, 1). However,  A(x) is not an approximately

minimal set since  A(y)\preceq A(x) for  y\in\{x\in \mathbb{R}^{2}| (x{\imath}=y_{1})\wedge(y_{2}<x_{2}-2)\} ,which means

 A(y)\not\subset N(A(x)) .

However, we have an example which seems to be strange. Consider  \mathcal{A}'  :=\{A'(\lambda)|\lambda\geq

 0\} where  A'(\lambda)  :=\{y\in \mathbb{R}^{2}|y_{1}+y_{2}\geq-(\lambda+1), y_{2}+y_{1}\leq 1, y_{1}-
y_{2}\geq-1, y_{1}-y_{2}\leq 1\}.
In this case,  \lambda'\leq\lambda\Leftrightarrow A'(\lambda')\preceq_{R_{+}^{2}}A'(\lambda) . Then,  A'(0) is approximately minimal set in

 \mathcal{A}' as opposed to the fact that we can improve solutions by taking far larger  \lambda\geq 0 . This

implies Definition 4.2 may lose sense when dealing with a given family consisting on sets

having infinitely many kinds of shapes.

Next, let us impose the order interval of a convex ordering cone. From a vectorial

point of view, order intervals  [x, y]  :=(x+C)\cap(y-C) form a Hausdorff topology under

some algebraical assumptions ([5]). Note that intervals  [x, y] may not be bounded (but
algebraically bounded) even if  C is pointed. In this paper, an extended form between two

sets  [A, B] is used to define neighborhoods.
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Definition 4.3. Let  C be a convex solid pointed ordering cone,   k\in intC,  \varepsilon>0 , and

 [A, B]  :=(A+C)\cap(B-C) for  A,  B\subset X.  \overline{A}\in \mathcal{A} is an  \varepsilon‐approximately minimal set

toward  k with respect to  \preceq iff  A\backslash [-\varepsilon k+\overline{A}, \varepsilon k+\overline{A}]
\preceq\overline{A} for some   A\in \mathcal{A}\Rightarrow\overline{A}\preceq

 A\backslash [-\varepsilon k+\overline{A}, \varepsilon k+\overline{A}].

Definition 4.3 states getting rid of “near points”’ before considering minimality. Under

this definition,  A'(0) is clearly not  \varepsilon‐approximately minimal for any  \varepsilon>0 in the previous

example.

Example. Let  B  :=\{B_{1}, B_{2}\} where  B_{1}=\mathbb{R}_{+}^{2}\cap((1,1)-\mathbb{R}_{+}^{2}),  B_{2}=((-1, -1)+\mathbb{R}_{+}^{2})\cap(-\mathbb{R}_{+}^{2}) .

These two sets contain only  (0,0) in common and  B_{2}\prec B_{1} , moreover for all  x{\imath}\in B_{1} and

 x_{2}\in B_{2},  x_{2}\leq_{\mathbb{R}_{+}^{2}}x_{1} holds. Then,  B_{1} cannot be  \varepsilon‐approximately minimal toward (1, 1) for

all  \varepsilon\in (  0, ı) while it is approximately minimal by the Definition 4.2.

Finally, we show an abstract idea. Generally in optimization, we cannot fully recognize

how errors come and what it causes. Definition 4.2 and 4.3 provide certain ways of

approximation in ideal cases. However each error bound should be treated more flexibly

in general case.

Definition 4.4. Let  E\subset X satisfying  \theta_{X}\in c1E and  E_{S}  :=E+S.\overline{A}\in \mathcal{A} is an E‐

approximately minimal with respect  to\preceq iffA\backslash E_{\overline{A}}\preceq\overline{A} for some  A\in \mathcal{A}\Rightarrow\overline{A}\preceq A\backslash E_{\overline{A}}.

Example. Let  e  :=\{C_{1}, C_{2}\} where  C_{2}  := {  x\in-\mathbb{R}_{+}^{2}| x2ı  + x22  \leq 1 },  C_{1}  :=\{x\in \mathbb{R}^{2}|
x2ı  + x22  <1\} . Then, Definition 4.3 cannot distinguish these sets due to the existence of
 \varepsilon>0 . On the other hand, if we assume  E\subset \mathbb{R}^{2} , then  C_{1} is  E‐approximate minimal in  e

but  C_{2}.

By Definition 4.4,  E stands for an error bound including the origin at least in the

closure of  E since any error occurs with a little deviation from its ideal point. Note that

this definition does not coincide with the natural non‐dominated minimality induced by

 \preceq c when  E=\{\theta\}.

Example. Let  D  :=\{D_{1}, D_{2}\} where  D_{1}=\{x\in \mathbb{R}^{2}|\Vert x\Vert\geq 1\},  D_{2}=D{\imath}  \cap(-\mathbb{R}_{+}^{2}) . Then,

 D_{2}\prec D_{1} holds while  D_{1} is  \{\theta\} ‐approximately minimal.
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