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We consider random holomorphic dynamical systems. We introduce the notion

“weak mean stability” and show several results of such systems. Also, we show that

in many holomorphic families of rational maps, generic systems are weak mean stable.

We appıy the theory of weak mean stable systems to “random relaxed Newton’s

methods” to find roots of any polynomial. We find many new phenomena in random

holomorphic dynamical systems which cannot hold in deterministic iteration dynamics

of a single holomorphic map on the Riemann sphere.

Definition 1.

(1) Let \hat{\mathbb{C}}  :=\mathbb{C}\cup\{\infty\}\cong S^{2} be the Riemann sphere endowed with the spherical
distance  d.

(2) Let Rat  := {  f :  \hat{\mathbb{C}}arrow\hat{\mathbb{C}}|f is non‐constant and holomorphic} endowed with
the distance  \eta , where   \eta(f, g)=\sup_{z\in\hat{\mathbb{C}}}d(f(z), g(z)) . Note that (Rat,  \eta ) is a
complete separable metric space.

(3) For a metric space  Y , we denote by  \mathfrak{M}_{1}(Y) the space of all Borel probability
measures on  Y.
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(4) For a subset  Y of Rat, we set

 \mathfrak{M}_{1,c}(Y)  := {  \tau\in \mathfrak{M}_{1}(Y)| supp  \tau is a compact subset of  Y}.

(5) For a  \tau\in \mathfrak{M}_{1,c} (Rat), we set  G_{\tau}  :=\{\gamma_{n}0\cdots 0\gamma_{1}|n\in \mathbb{N}, \gamma_{j}\in supp  \tau(\forall i)\} . Note

that this is a semigroup whose product is the composition of maps.

(6) We say that an element  \tau\in \mathfrak{M}_{1,c}(Rat) is weakly mean stable if there exist

an  n\in \mathbb{N} , an  m\in \mathbb{N} , non‐empty open subsets  U_{1} , ,  U_{m} of  \hat{\mathbb{C}} , a non‐empty

compact subset  K of  \hat{\mathbb{C}} with  K \subset\bigcup_{\dot{j}^{=}}^{rn_{1}}U_{j} , and a constant  c with  0<c<1

such that the following (a) (b) (c) hold.

(a) For each  (\gamma_{1}, \ldots, \gamma_{n})\in( supp  \tau)^{n} , we have

 \gamma_{n}0
. . .  0 \gamma_{1}(\bigcup_{j=1}^{m}U_{j})\subset K.

Moreover, for each  j=1,  m , for all  x,  y\in U_{j} and

for each  (\gamma_{1}, \ldots, \gamma_{n})\in(supp  \tau)^{n} , we have

 d (\gamma_{n}0\cdot\cdot\cdot 0\gamma_{1}(x), \gamma_{n}0 0\gamma_{1}(y))\leq 
cd(x, y) .

(b) Let  D_{\tau}  := \bigcap_{h\in G_{\tau}}h^{-1}(\hat{\mathbb{C}}\backslash \bigcup_{j=1}^{7n}
U_{j}) . Then  \# D_{\tau}<\infty.

(c) For each minimal set  L of  \tau with  L\subset D_{\tau} , there exist a  z\in L and an

 \alpha\in G_{\tau} such that  \alpha(z)=z and  |\alpha'(z)|>1 (if   z=\infty , then we consider

 (\varphi 0\alpha 0\varphi^{-1})'(0) instead of  \alpha'(z) where  \varphi(z)=1/z ).

Here, a non‐empty compact subset  L of  \hat{\mathbb{C}} is said to be a

minimal set of  \tau if for each  z\in L,  \overline{\bigcup_{h\in G_{\tau}}\{h(z)\}}=L.
(7) For each  \tau\in \mathfrak{M}_{1},.(Rat) , we define  M_{\tau}^{*} :  \mathfrak{M}_{1}(\hat{\mathbb{C}})arrow \mathfrak{M}_{1}(\hat{\mathbb{C}}) as follows.

 M_{\tau}^{*}( \mu)(A) :=\int\mu(h^{-1}(A))d\tau(h)
for each  \mu\in \mathfrak{M} ı  (\hat{\mathbb{C}}) and for each Borel subset  A of  \hat{\mathbb{C}}.

Theorem 2 ([4]). Let  \tau\in \mathfrak{M}_{1},.(Rat) be weakly mean stable.

Then there exists an  l\in \mathbb{N} such that for each  x\in\hat{\mathbb{C}} , there exists an  (M_{\tau}^{*})^{l} ‐invariant

 \mu_{x}\in \mathfrak{M}_{1}(\hat{\mathbb{C}})\mathcal{S}uch that

 (M_{\tau}^{*})^{nl}(\delta_{x})arrow\mu_{x} as   narrow\infty

in  \mathfrak{M}_{1}(\hat{\mathbb{C}}) with respect to the weak convergence topology.

Here,  \delta_{x} denotes the Dirac measure at  x.
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Theorem 3 ([4]). Let  \tau\in \mathfrak{M}_{1,c}(Rat) be weakly mean  \mathcal{S}table . Let

 J(G_{\tau})  := {  z\in\hat{\mathbb{C}}| for any neighborhood  U of  z in  \hat{\mathbb{C}},  G_{\tau} is not equicontinuous on  U}.

Suppose we have the following (1) and (2).

(1)  \# J(G_{\tau})\geq 3.

(Note: if there exists an element   g\in supp\tau with  \deg(g)\geq 2 , then  \# J(G_{\tau})\geq 3. )

(2) For each minimal set  L of  \tau with  L\subset D_{\tau} , where  D_{\tau} is the set coming from

Definition 1 (6), we have the following (a)(b).

(a) The Lyapunov exponent  \chi(L, \tau) of  (L, \tau) is not zero.

(b) If  \chi(L, \tau)>0 , then for each  z\in L and for each   h\in supp\tau , we have

 Dh_{z}\neq 0.

Then, there exist a subset  \Omega_{\tau} of  \hat{\mathbb{C}} with  \#(\hat{\mathbb{C}}\backslash \Omega_{\tau})\leq\aleph_{0}
and a constant  c_{\tau} with  c_{\tau}<0 such that the following holds.

 e For each  z  \in  \Omega_{\tau} , there exists a Borel subset  B_{\tau,z} of  (Rat)^{\mathbb{N}} with

 (\otimes_{n={\imath}}^{\infty}\tau)(B_{\tau,z})=1 such that for each  (\gamma_{1}, \gamma_{2}\ldots, )\in B_{\tau,z} , we have

  \lim_{narrow}\sup_{\infty}\frac{1}{n}\log\Vert D(\gamma_{n}0\cdots 
0\gamma_{{\imath}})_{z}\Vert\leq c_{\tau}<0.
Remark 4. Statements of Theorems 2 and 3 cannot hold for deterministic dynamics

of a single   f\in Rat with  \deg(f)\geq 2 . In fact, in the Julia set  J(f) of  f , we have a

chaotic phenomenon. See Mafié’s paper (1988)[1] etc.

Theorem 5 ([4]). Let  Y be one of the following (1)  -(4) .

(1) {   f\in Rat  |f is a polynomial with  \deg(f)\geq 2}.

(2) {  \lambda z(1-z)\in Rat  |\lambda\in \mathbb{C}\backslash \{0\} }.

(3) {   z- \lambda\frac{f(z)}{f'(z)}\in Rat  |\lambda\in \mathbb{C},  |\lambda-1|<1 } where  f is a polynomial with  \deg(f)\geq 2.

Note that this family is related to “random relaxed Newton’s methods for  f ”

in which we can find roots of any polynomial  f more easily than deterministic

Newton’s method ([4]).
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(4) {   z+\lambda f(z)\in Rat  |\lambda\in \mathbb{C}\backslash \{0\} } where  f is a polynomial with  \deg(f)\geq 2 such

that for each  z_{0}\in \mathbb{C} with  f(z_{0})=0 , we have  f'(z_{0})\neq 0.

Then there exists an open and dense subset  A of  \mathfrak{M}_{1,c}(Y) such that each  \tau\in A

is weakly mean stable and satisfies the assumptions of Theorems 2 and 3 (thus the

statements of Theorems 2 and 3 hold for  \tau). Here, we endow  \mathfrak{M}_{1,c}(Y) with the

topology such that a sequence  \{\tau_{n}\}_{n\in \mathbb{N}} in  \mathfrak{M}_{1,c}(Y) tends to an element  \tau\in \mathfrak{M}_{1,c}(Y)
if and only if

(a) for each bounded continuous function  \varphi :  Yarrow \mathbb{R} , we have   \int_{Y}\varphi d\tau_{n}arrow\int_{Y}\varphi d\tau
as   narrow\infty , and

(b)   supp\tau_{n}arrow supp\tau as   narrow\infty with respect to the Hausdorff metric

in the space of all non‐empty compact subsets of  Y.

Theorem 6 ([4]). (Random relaxed Newton’s methods)
Let  f be a polynomial with  \deg(f)\geq 2 . Let  1/2<r<1 . Let  \tau be the normalized

Lebesgue measure on

 Y_{0}= {   z- \lambda\frac{f(z)}{f'(z)}\in Rat  |\lambda\in \mathbb{C},  |\lambda-1|\leq r}  \cong\{\lambda\in \mathbb{C}||\lambda-1|\leq r\}.

Then  \tau is weakly mean stable and satisfies the assumptions of Theorems 2 and 3.

Also, for each  z_{0}\in \mathbb{C}\backslash \{z\in \mathbb{C}|f'(z)=0\},

there exists a Borel subset  B_{z_{0}} of  (Y_{0})^{\mathbb{N}} with  (\otimes_{n=1}^{\infty}\tau)(B_{z_{0}})=1
satisfying the following.

 \bullet For each  \gamma=(\gamma_{1}, \gamma_{2}, \ldots)\in B_{z_{0}},
there exists a  x=x(z_{0}, \gamma) with  f(x)=0 such that

 \gamma_{n}0 . . .  0\gamma_{1}(z_{0})arrow x as   narrow\infty exponentially fast.

Remark 7. The statement of Theorem 6 cannot hold for deterministic Newton’s

method.

Idea of Proofs of Theorems 2,3.

(1) Let  \tau\in \mathfrak{M}_{1,c}(Rat) be weakly mean stable and let  n\in \mathbb{N},  \{U_{j}\}_{j},  D_{\tau}=

  \bigcap_{h\in G_{\tau}}h^{-1}(\hat{\mathbb{C}}\backslash \bigcup_{j}U_{j}) be as in the definition of weak mean stability.
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(2) In each  U_{j} , all maps  \gamma_{n}0\cdots 0\gamma_{1}(\forall\gamma, \in supp  \tau) are uniformly contracting. Thus

there are only finitely many minimal sets of  \tau which meet   \bigcup_{j}U_{j} and they are

“attracting”

(3) For each  y\in\hat{\mathbb{C}} , let

 A_{y,1}:=\{\gamma=(\gamma_{1}, \gamma_{2}, \ldots, )\in( supp   \tau)^{\mathbb{N}}|\exists n\in \mathbb{N}s.t.\gamma_{n}0\cdots 0\gamma_{1}(y)
\in\bigcup_{j}U_{j}\}

and let  A_{y,2}  :=(supp  \tau)^{\mathbb{N}}\backslash A_{y,1}.

For elements in  A_{y,1} , we have the nice things (see (2)).

Regarding  A_{y,2} , we show that for  (\otimes_{n={\imath}}^{\infty}\tau)-a.e.  (\gamma_{1}, \gamma_{2}, \ldots, )\in A_{y,2} , we have

 d  (\gamma_{n}0 \cdot\cdot\cdot 0 \gamma{\imath} (y), D_{\tau})arrow 0 as  narrow\infty.

Idea of Proofs of Theorems 5,6.

(1) We use complex analysis, Montel’s theorem (a family of uniformly bounded
holomorphic functions on a domain is equicontinuous on the domain), hyper‐
bolic metric.

(2) We classify minimal sets and analyze the bifurcation of minimal sets. etc. By

using these, enlarging the support of the original  \tau a little bit, we destroy
non‐attracting minimal sets which do not meet  D_{\tau}.

(3) Regarding the proof Theorem 6, by using some technical argument,

we destroy any minimal set which contains an attracting periodic cycle of

 N_{f}(z)=z-f(z)/f'(z) with period  \geq 2.

Summary

(1) We introduce the notion of weak mean stability in i.i.  d . random (holomorphic)
1‐dimensional dynamical systems.

(2) If a random holomorphic dynamical system on  \hat{\mathbb{C}} is weakly mean stable, then
for any  x\in\hat{\mathbb{C}} , the orbit of the Dirac measure at  x under the iterations of the

dual map of the transition operator converges to a periodic cycle of probability
measures.

(3) If a random holomorphic dynamical system on  \hat{\mathbb{C}} is weakly mean stable and

satisfies some mild assumtions, then for all but countably many  z\in\hat{\mathbb{C}} , for
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a.e. orbit starting with  z , the Lyapunov exponent is negative. Note that the

statements of (2) and (3) cannot hold for deterministic dynamics of a single

rational map  f with  \deg(f)\geq 2.

(4) In many holomorphic families of rational maps (including random relaxed New‐

ton’s methods family), generic random dynamical systems satisfy the state‐

ments of (2) and (3). We can apply this to random relaxed Newton’s method

to find a root of any polynomial.
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