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Abstract

We show that there is a generic structure in a finite language such
that the theory is strictly stable and not \omega‐categorical, and has finite
closures.

1 The class  K

It is assumed that the reader is familiar with the basics of generic
structures. For details, see Baldwin‐Shi [1] and Wagner [3].

Let  R,  S be binary relations with irreflexivity, symmetricity and
  R\cap S=\emptyset . Let  L=\{R, S\}.

Definition 1.1 Let  K_{0} be the class of finite  L‐structures  A with the

following properties:

1.  A\models R(a, b) implies that  a,  b are not  S‐connected;

2. If  A\models R(a, b)\wedge R(b, c) , then  a,  c are not  S‐connected;

3. If  A\models R(a, b)\wedge R(b', c) and  b,  b' are  S‐connected, then  a,  c are
not  S‐connected;

4.  A has no  S‐cycles.

Definition 1.2 Let  A\in K_{0}.

 \bullet For  a,  b\in A,  aEb means that  a and  b are  S‐connected.

 \bullet For  a\in A , let  a_{E}=a/E , and let  A_{E}=\{a_{E}:a\in A\}.
 *
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 \bullet A binary relation  R_{E} on  A_{E} is defined as follows: for any  a,   b\in

 A,  A_{E}\models R_{E}(a_{E}, b_{E}) iff there are some  a',  b'\in A with a’Ea, b’Eb
and  A\models R(a', b') . By Definition 1.1, the structure  A_{E}=

 (A_{E}, R_{E}) can be considered as an  R‐structure (or an  R‐graph)
with irreflexivity and symmetricity.

Notation 1.3 Let  A\in K_{0}.

 \bullet Let  s(A) denote the number of the  S‐edges in  A.

 \bullet Let  x(A)=|A|-s(A) .

 \bullet Let  r(A) denote the number of the  R‐edges in  A.

 \bullet For  \alpha with  0<\alpha\leq 1 , let  \delta(A)=x(A)-\alpha\cdot r(A) .

Definition 1.4 Let  A,  B,  C\in K_{0}.

 \bullet Let  \delta(B/A) denote  \delta(BA)-\delta(A) .

 \bullet For  A\subset B,  A is said to be closed in  B , denoted by  A\leq B , if
 \delta(X/A)\geq 0 for any  X\subset B-A.

 \bullet For  A=B\cap C,  B and  C are said to be free over  A , denoted by
 B\perp {}_{A}C , if  R^{B\cup C}=R^{B}\cup R^{C} and  S^{B\cup C}=S^{B}\cup S^{C}.

 \bullet When  B\perp {}_{A}C , we write  B\oplus_{A}C for an  L‐structure  B\cup C.

Lemma 1.5  (K_{0}, \leq) has the free amalgamation property, i.e., when‐
ever  A\leq B\in K_{0},  A\leq C\in K_{0} and  B\perp {}_{A}C then  B\oplus_{A}C\in K_{0}.

Proof. Let  D=B\oplus_{A}C . We have to check that  D satisfies con‐

ditions 1‐4 in Definition 1.1. Here, for simplicity, we see condition 2
in Definition??. Take any  a,  b,  c\in D with  R(a, b)\wedge R(b, c) . If abc
is contained in either  B or  C , then it is clear that  a and  c are not
 S‐connected. So we can assume that  a\in B-A,  b\in A and  c\in C-A.

Suppose for a contradiction that  a and  c are  S‐connected. Then there
is some  d\in A with  R(d, c) . So  \delta(c/A)\leq 1-(\alpha+1)<0 , and hence
 A\not\leq C , a contradiction. Hence  a and  c are not  S‐connected.

Remark 1.6 In [2], Hrushovski proved that there were an  \alpha\in(0,1)
and a function  f :  \mathbb{N}arrow \mathbb{R} such that

1.  f(0)=0,  f(1)=1 ;

2.  f is unbounded and convex;
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3.   f'(n) \leq\min{  r :  r= \frac{p-q\alpha}{m}>0,  m\leq n and  m,p,   q\in\omega } for
each  n\in\omega.

Definition 1.7 For a function  f in Remark 1.6, let  K=\{A\in K_{0} :
 \delta(A')\geq f(x(A')) for any  A'\subset A}.

Lemma 1.8  (K, \leq) has the free amalgamation property.

Proof. Let  A,  B,  C\in K be such that  A\leq B,  A\leq C and  B\perp {}_{A}C.

Let  D=B\oplus_{A}C . We want to show that  D\in K . By Lemma 1.5, we
have  D\in K_{0} . So it is enough to see that  f(|D|)\leq\delta(D) . Without loss
of generality, we can assume that  \delta(C/A)\geq\delta(B/A) . By Remark??,

we have   \frac{\delta(B)-\delta(A)}{|B|-|A|}\geq f'(|B|) . On the other hand, since  B\in K , we

have  \delta(B)\geq f(|B|) . Hence we have  \delta(D)\geq f(|D|) .

Definition 1.9  \bullet Let  \overline{K} denote the class of  L‐structure  A satis‐

fying  A_{0}\in K for every finite  A_{0}\subset A.

 \bullet For  A\subset B\in\overline{K},  A\leq B is defined by  A\cap B_{0}\leq B_{0} for any finite
 B_{0}\subset B.

 \bullet For  A\subset B\in\overline{K} , we write  c1_{B}(A)=\cap\{C:A\subset C\leq B\}.
 \bullet It can be checked that there exists a countable  L‐structure  M

satisfying

1. if  M\in\overline{K} ;

2. if  A\leq B\in K and  A\leq M , then there exists a copy  B' of  B

over  A with  B'\leq M ;

3. if  A\subset finM , then  c1_{M}(A) is finite.

This  M is called  a(K, \leq) ‐generic structure.

2 Theorem

In what follows, let  M be the  (K, \leq) ‐generic structure,  T=Th(M)
and  \mathcal{M} a big model of  T.

Lemma 2.1  T has finite closures, i.e., for any finite  A\subset \mathcal{M},  c1_{\mathcal{M}}(A)
is finite.
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Proof. For each  t\in R , let  H_{t}=\{(x, y) :  x,  r\in\omega,  y=x-\alpha r,   f(x)\leq
 y\leq t\} . Since  f is unbounded, each  H_{t} is finite. Hence any  A\subset fin\mathcal{M}
has finite closures.

Lemma 2.2  T is not  \omega‐categorical.

Proof. Let  a_{0},  a_{1} , be vertices with the relations  S(a_{0}, a_{1}),  S(a_{1}, a_{2}),\ldots.
Since  a_{0}a_{1}  \in\overline{K} , we can assume that  a_{0}a_{1}  \subset \mathcal{M} . It can be checked
that  tp(a_{0}a_{n})\neq tp(a_{0}a_{m}) for each distinct  m,   n\in\omega . Then  S_{2}(T) is

infinite. Hence  T is not  \omega‐categorical.

For  A\subset fin\mathcal{M} and  n\in\omega,  A is said to be  n‐closed, if  \delta(X/A)\geq 0
for any  X\subset \mathcal{M}-A with  |X|\leq n.

Notation 2.3 Let  A\leq fin\mathcal{M} and  n\in\omega.

 \bullet  cltp_{n}(A)=\{X\cong A\}\cup {  X is  n‐closed}
 \bullet cltp  (A)= \bigcup_{i\in\omega}cltp_{i}(A)
 \bullet  E(A)=\{B\in K:A\leq B\}
 \bullet  E^{+}(A)= {  B\in E(A) : there is a copy of  B over  A in  \mathcal{M} }
 \bullet  E^{-}(A)=E(A)-E^{+}(A)
 \bullet  ptp(A)=\{\exists Y(XY\cong AB) : B\in E^{+}(A)\}
 \bullet  ntp(A)=\{\neg\exists Y(XY\cong AB) : B\in E^{-}(A)\}
 \bullet  gtp(A)=cltp(A)\cup ptp(A)\cup ntp(A)
 \bullet  gtp_{n}(A)=cltp_{n}(A)\cup ptp(A)\cup ntp(A)

Definition 2.4 Let  A\subset B\in K_{0} . Then  B_{A} is an  L\cup\{R_{E}, S_{E}\} ‐
structure with the following properties:

1. the universe is  \{b_{E}:b\in B-A\}\cup A ;

2. the restriction of  B on  A is the  L‐structure  A ;

3. for  a\in A and  b\in B-A,  B_{A}\models R_{E}(a, b_{E}) iff there is a  b'\in B-A

with b’Eb and  B\models R(a, b') , and  B_{A}\models R_{E}(b_{E}, a) iff there is a
 b'\in B-A with b’Eb and  B\models R(b', a) ;

4. for  a\in A and  b\in B-A,  B_{A}\models S_{E}(a, b_{E}) iff there is a  b'\in B-A

with b’Eb and  B\models S(a, b') , and  B_{A}\models S_{E}(b_{E}, a) iff there is a
 b'\in B-A with b’Eb and  B\models S(b', a) ;
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5. for  b,  c\in B-A,  B_{A}\models R(b_{E}, c_{E}) iff there are  b',  c'\in B-A with

b’Eb, c’Ec and  B\models R(b', c') .

Note 2.5 By the similar argument as in Definition 1.2, the structure
 B_{A} is canonically considered as an  L‐structure.

Lemma 2.6 Let  A\leq fin\mathcal{M} and   n\in\omega . Then  gtp_{n}(A) is finitely
generated.

Proof. Take a sequence  (S_{i})_{i\in\omega} of finite subsets of  gtp_{n}(A) with
 S_{0}\subset S_{1}\subset. . . and  \cup S_{i}=gtp_{n}(A) . For   i\in\omega , let  \sigma_{i}(X)=\wedge S_{i}.
We can assume that  \models\sigma_{i}(A') implies  A'\cong A . Since  f is unbounded,

 C_{i}=\{C_{A}', : M\models\sigma_{i}(A'), C'=c1_{M}(A')\} is finite. So there is some

  i_{0}\in\omega such that  C_{j}=C_{i_{0}} for every  j>i_{0} . Hence  S_{i_{0}} generates
 gtp_{n}(A) .

Lemma 2.7 If  gtp(A)=gtp(B) and  A\leq C\leq fin\mathcal{M} , then there is a
 D with  gtp(AC)=gtp(BD) .

Proof. Let  \Sigma(XY)=gtp(AC) and let  \Sigma_{n}(XY)=gtp_{n}(AC) for

  n\in\omega . We want to show that  \Sigma(BY) is consistent. To show this, it
is enough to see that  \Sigma_{n} (BY) is consistent for each  n . On the other
hand, by Lemma 2.6,  \Sigma_{n}(XY) can be considered as some formula
 \sigma(XY) . So we want to show that  \sigma(BY) has a realization. For this,
we prove that  \sigma(XY)\wedge\phi(X) has a realization for each  \phi(X)\in tp(B) .
Let  \tau(X)=\sigma(XY)|x . Note that  \tau(X)\wedge\phi(X)\in tp(B) and  \tau(X)\vdash
 gtp_{n}(A)=gtp_{n}(B) . Take   B'\models\tau\wedge\phi in  M . Take   A'C'\models\sigma in  M

with  A'Uc1(A')\cong B'Uc1(B') . Let  DE be such that   DE\cup c1(B')\cong
 C'cl(C')\cup c1(A') . By genericity, we can assume that  E\leq M . Then
we have  \models\sigma(B'D) , and hence  \sigma(XY)\wedge\phi(X) has a realization.

Corollary 2.8 Let  A\leq fin\mathcal{M} . Then  gtp(A)\vdash tp(A) .

Definition 2.9 Let  A,  B,  C\subset \mathcal{M} with  A=B\cap C . Then the notation

 B\downarrow_{A}^{*}C is defined as follows: for each   n\in\omega and  A^{*}B^{*}C^{*}\models gtp_{n}(ABC)
in  M,

1.  c1(B^{*})nc1(C^{*})=c1(A^{*}) ;

2.  c1(B^{*})\perp_{c1(A^{*})}c1(C^{*}) .

Lemma 2.10 Let  A\leq B\leq \mathcal{M},  A\leq E\leq \mathcal{M} and  E\downarrow_{A}^{*}B . Then

gtp  (E/A)\vdash gtp  (E/B) .
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Proof. For simplicity, we assume that  A,  B and  E are finite. Take
any  E_{1}\models gtp(E/A) with  E_{1}\downarrow_{A}^{*}B in  M . Fix any  n . Then there
are realizations  E^{*}A^{*},  E_{1}^{*}A^{*}\models gtp_{n}(EA) in  M with  c1(E^{*})\cong_{c1(A^{*})}
 c1(E_{1}^{*}) . Since  E\downarrow_{A}^{*}B and  E_{1}\downarrow_{A}^{*}B , there is  B^{*}A^{*}\models gtp_{n}(BA) with

 c1(E^{*})\cong_{c1(B^{*})}c1(E_{1}^{*}) . Hence  E_{1}\models gtp(E/B) .

Lemma 2.11  T is strictly stable.

Proof. Let  N\prec \mathcal{M} with  |N|=\lambda . Take any  e\in \mathcal{M}-N . Then there
is a countable  A\leq N with  e\downarrow_{A}^{*}N . Let  E=c1(eA) . We can assume

that  E\cap N=A . We want to show that  gtp(E/A)\vdash gtp(E/N) . Take

any  E_{1},   E_{2}\models gtp  (E/A) with  E_{i}\downarrow_{A}^{*}N . Take any countable  N_{0}\leq N.
Take  E_{i}^{*}A^{*}\subset M such that  E_{1}^{*}A^{*},  E_{2}^{*}A^{*}\models gtp_{n}(EA) and  c1(E_{1}^{*}A^{*})\cong
 c1(E_{2}^{*}A^{*}) . Hence  gtp(E_{1}/N)=gtp(E_{2}/N) . It follows that  |S(N)|\leq
 2^{\omega}\cdot\lambda^{\omega}=\lambda^{\omega} . Hence  T is stable.

Theorem 2.12 There is a generic structure  M with the following
properties:

1. the language is finite;

2. Th(M) is not  \omega‐categorical;

3. Th(M) has finite closures;

4. Th(M) is strictly stable.
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