A note on strictly stable generic structures

Koichiro Ikeda * Faculty of Business Administration Hosei University

Abstract

We show that there is a generic structure in a finite language such that the theory is strictly stable and not ω -categorical, and has finite closures.

1 The class K

It is assumed that the reader is familiar with the basics of generic structures. For details, see Baldwin-Shi [1] and Wagner [3].

Let R, S be binary relations with irreflexivity, symmetricity and $R \cap S = \emptyset$. Let $L = \{R, S\}$.

Definition 1.1 Let \mathbf{K}_0 be the class of finite *L*-structures *A* with the following properties:

- 1. $A \models R(a, b)$ implies that a, b are not S-connected;
- 2. If $A \models R(a, b) \land R(b, c)$, then a, c are not S-connected;
- 3. If $A \models R(a, b) \land R(b', c)$ and b, b' are S-connected, then a, c are not S-connected;
- 4. A has no S-cycles.

Definition 1.2 Let $A \in \mathbf{K}_0$.

- For $a, b \in A$, aEb means that a and b are S-connected.
- For $a \in A$, let $a_E = a/E$, and let $A_E = \{a_E : a \in A\}$.

^{*}The author is supported by Grants-in-Aid for Scientific Research (No. 17K05350).

• A binary relation R_E on A_E is defined as follows: for any $a, b \in A, A_E \models R_E(a_E, b_E)$ iff there are some $a', b' \in A$ with a'Ea, b'Eb and $A \models R(a', b')$. By Definition 1.1, the structure $A_E = (A_E, R_E)$ can be considered as an *R*-structure (or an *R*-graph) with irreflexivity and symmetricity.

Notation 1.3 Let $A \in \mathbf{K}_0$.

- Let s(A) denote the number of the S-edges in A.
- Let x(A) = |A| s(A).
- Let r(A) denote the number of the *R*-edges in *A*.
- For α with $0 < \alpha \leq 1$, let $\delta(A) = x(A) \alpha \cdot r(A)$.

Definition 1.4 Let $A, B, C \in \mathbf{K}_0$.

- Let $\delta(B/A)$ denote $\delta(BA) \delta(A)$.
- For $A \subset B$, A is said to be closed in B, denoted by $A \leq B$, if $\delta(X/A) \geq 0$ for any $X \subset B A$.
- For $A = B \cap C$, B and C are said to be free over A, denoted by $B \perp_A C$, if $R^{B \cup C} = R^B \cup R^C$ and $S^{B \cup C} = S^B \cup S^C$.
- When $B \perp_A C$, we write $B \oplus_A C$ for an *L*-structure $B \cup C$.

Lemma 1.5 (\mathbf{K}_0, \leq) has the free amalgamation property, i.e., whenever $A \leq B \in \mathbf{K}_0$, $A \leq C \in \mathbf{K}_0$ and $B \perp_A C$ then $B \oplus_A C \in \mathbf{K}_0$.

Proof. Let $D = B \oplus_A C$. We have to check that D satisfies conditions 1-4 in Definition 1.1. Here, for simplicity, we see condition 2 in Definition??. Take any $a, b, c \in D$ with $R(a, b) \wedge R(b, c)$. If abc is contained in either B or C, then it is clear that a and c are not S-connected. So we can assume that $a \in B - A, b \in A$ and $c \in C - A$. Suppose for a contradiction that a and c are S-connected. Then there is some $d \in A$ with R(d, c). So $\delta(c/A) \leq 1 - (\alpha + 1) < 0$, and hence $A \not\leq C$, a contradiction. Hence a and c are not S-connected.

Remark 1.6 In [2], Hrushovski proved that there were an $\alpha \in (0, 1)$ and a function $f : \mathbb{N} \to \mathbb{R}$ such that

- 1. f(0) = 0, f(1) = 1;
- 2. f is unbounded and convex;

3. $f'(n) \leq \min\{r : r = \frac{p - q\alpha}{m} > 0, m \leq n \text{ and } m, p, q \in \omega\}$ for each $n \in \omega$.

Definition 1.7 For a function f in Remark 1.6, let $\mathbf{K} = \{A \in \mathbf{K}_0 : \delta(A') \ge f(x(A')) \text{ for any } A' \subset A\}.$

Lemma 1.8 (\mathbf{K}, \leq) has the free amalgamation property.

Proof. Let $A, B, C \in \mathbf{K}$ be such that $A \leq B, A \leq C$ and $B \perp_A C$. Let $D = B \oplus_A C$. We want to show that $D \in \mathbf{K}$. By Lemma 1.5, we have $D \in \mathbf{K}_0$. So it is enough to see that $f(|D|) \leq \delta(D)$. Without loss of generality, we can assume that $\delta(C/A) \geq \delta(B/A)$. By Remark??, we have $\frac{\delta(B) - \delta(A)}{|B| - |A|} \geq f'(|B|)$. On the other hand, since $B \in \mathbf{K}$, we have $\delta(B) \geq f(|B|)$. Hence we have $\delta(D) \geq f(|D|)$.

- **Definition 1.9** Let $\overline{\mathbf{K}}$ denote the class of *L*-structure *A* satisfying $A_0 \in \mathbf{K}$ for every finite $A_0 \subset A$.
 - For $A \subset B \in \overline{\mathbf{K}}$, $A \leq B$ is defined by $A \cap B_0 \leq B_0$ for any finite $B_0 \subset B$.
 - For $A \subset B \in \overline{\mathbf{K}}$, we write $\operatorname{cl}_B(A) = \bigcap \{ C : A \subset C \leq B \}.$
 - It can be checked that there exists a countable L-structure M satisfying
 - 1. if $M \in \overline{\mathbf{K}}$;
 - 2. if $A \leq B \in \mathbf{K}$ and $A \leq M$, then there exists a copy B' of B over A with $B' \leq M$;
 - 3. if $A \subset_{\text{fin}} M$, then $\operatorname{cl}_M(A)$ is finite.

This M is called a (\mathbf{K}, \leq) -generic structure.

2 Theorem

In what follows, let M be the (\mathbf{K}, \leq) -generic structure, T = Th(M)and \mathcal{M} a big model of T.

Lemma 2.1 T has finite closures, i.e., for any finite $A \subset \mathcal{M}$, $cl_{\mathcal{M}}(A)$ is finite.

Proof. For each $t \in \mathbf{R}$, let $H_t = \{(x, y) : x, r \in \omega, y = x - \alpha r, f(x) \le y \le t\}$. Since f is unbounded, each H_t is finite. Hence any $A \subset_{\text{fin}} \mathcal{M}$ has finite closures.

Lemma 2.2 T is not ω -categorical.

Proof. Let a_0, a_1, \ldots be vertices with the relations $S(a_0, a_1), S(a_1, a_2), \ldots$ Since $a_0a_1 \ldots \in \overline{\mathbf{K}}$, we can assume that $a_0a_1 \ldots \subset \mathcal{M}$. It can be checked that $\operatorname{tp}(a_0a_n) \neq \operatorname{tp}(a_0a_m)$ for each distinct $m, n \in \omega$. Then $S_2(T)$ is infinite. Hence T is not ω -categorical.

For $A \subset_{\text{fin}} \mathcal{M}$ and $n \in \omega$, A is said to be *n*-closed, if $\delta(X/A) \ge 0$ for any $X \subset \mathcal{M} - A$ with $|X| \le n$.

Notation 2.3 Let $A \leq_{\text{fin}} \mathcal{M}$ and $n \in \omega$.

- $\operatorname{cltp}_n(A) = \{X \cong A\} \cup \{X \text{ is } n\text{-closed}\}$
- $\operatorname{cltp}(A) = \bigcup_{i \in \omega} \operatorname{cltp}_i(A)$
- $E(A) = \{B \in \mathbf{K} : A \le B\}$
- $E^+(A) = \{B \in E(A) : \text{there is a copy of } B \text{ over } A \text{ in } \mathcal{M}\}$
- $E^{-}(A) = E(A) E^{+}(A)$
- $ptp(A) = \{ \exists Y(XY \cong AB) : B \in E^+(A) \}$
- $\operatorname{ntp}(A) = \{ \neg \exists Y(XY \cong AB) : B \in E^{-}(A) \}$
- $gtp(A) = cltp(A) \cup ptp(A) \cup ntp(A)$
- $gtp_n(A) = cltp_n(A) \cup ptp(A) \cup ntp(A)$

Definition 2.4 Let $A \subset B \in \mathbf{K}_0$. Then B_A is an $L \cup \{R_E, S_E\}$ -structure with the following properties:

- 1. the universe is $\{b_E : b \in B A\} \cup A;$
- 2. the restriction of B on A is the *L*-structure A;
- 3. for $a \in A$ and $b \in B-A$, $B_A \models R_E(a, b_E)$ iff there is a $b' \in B-A$ with b'Eb and $B \models R(a, b')$, and $B_A \models R_E(b_E, a)$ iff there is a $b' \in B - A$ with b'Eb and $B \models R(b', a)$;
- 4. for $a \in A$ and $b \in B-A$, $B_A \models S_E(a, b_E)$ iff there is a $b' \in B-A$ with b'Eb and $B \models S(a, b')$, and $B_A \models S_E(b_E, a)$ iff there is a $b' \in B - A$ with b'Eb and $B \models S(b', a)$;

5. for $b, c \in B - A$, $B_A \models R(b_E, c_E)$ iff there are $b', c' \in B - A$ with b'Eb, c'Ec and $B \models R(b', c')$.

Note 2.5 By the similar argument as in Definition 1.2, the structure B_A is canonically considered as an *L*-structure.

Lemma 2.6 Let $A \leq_{\text{fin}} \mathcal{M}$ and $n \in \omega$. Then $gtp_n(A)$ is finitely generated.

Proof. Take a sequence $(S_i)_{i\in\omega}$ of finite subsets of $\operatorname{gtp}_n(A)$ with $S_0 \subset S_1 \subset \cdots$ and $\bigcup S_i = \operatorname{gtp}_n(A)$. For $i \in \omega$, let $\sigma_i(X) = \bigwedge S_i$. We can assume that $\models \sigma_i(A')$ implies $A' \cong A$. Since f is unbounded, $\mathcal{C}_i = \{C'_{A'} : M \models \sigma_i(A'), C' = \operatorname{cl}_M(A')\}$ is finite. So there is some $i_0 \in \omega$ such that $\mathcal{C}_j = \mathcal{C}_{i_0}$ for every $j > i_0$. Hence S_{i_0} generates $\operatorname{gtp}_n(A)$.

Lemma 2.7 If gtp(A) = gtp(B) and $A \leq C \leq_{fin} \mathcal{M}$, then there is a D with gtp(AC) = gtp(BD).

Proof. Let $\Sigma(XY) = \operatorname{gtp}(AC)$ and let $\Sigma_n(XY) = \operatorname{gtp}_n(AC)$ for $n \in \omega$. We want to show that $\Sigma(BY)$ is consistent. To show this, it is enough to see that $\Sigma_n(BY)$ is consistent for each n. On the other hand, by Lemma 2.6, $\Sigma_n(XY)$ can be considered as some formula $\sigma(XY)$. So we want to show that $\sigma(BY)$ has a realization. For this, we prove that $\sigma(XY) \wedge \phi(X)$ has a realization for each $\phi(X) \in \operatorname{tp}(B)$. Let $\tau(X) = \sigma(XY)|_X$. Note that $\tau(X) \wedge \phi(X) \in \operatorname{tp}(B)$ and $\tau(X) \vdash \operatorname{gtp}_n(A) = \operatorname{gtp}_n(B)$. Take $B' \models \tau \wedge \phi$ in M. Take $A'C' \models \sigma$ in M with $A' \cup \operatorname{cl}(A') \cong B' \cup \operatorname{cl}(B')$. Let DE be such that $DE \cup \operatorname{cl}(B') \cong C'cl(C') \cup \operatorname{cl}(A')$. By genericity, we can assume that $E \leq M$. Then we have $\models \sigma(B'D)$, and hence $\sigma(XY) \wedge \phi(X)$ has a realization.

Corollary 2.8 Let $A \leq_{\text{fin}} \mathcal{M}$. Then $gtp(A) \vdash tp(A)$.

Definition 2.9 Let $A, B, C \subset \mathcal{M}$ with $A = B \cap C$. Then the notation $B \downarrow_A^* C$ is defined as follows: for each $n \in \omega$ and $A^* B^* C^* \models \operatorname{gtp}_n(ABC)$ in M,

- 1. $cl(B^*) \cap cl(C^*) = cl(A^*);$
- 2. $\operatorname{cl}(B^*) \perp_{\operatorname{cl}(A^*)} \operatorname{cl}(C^*)$.

Lemma 2.10 Let $A \leq B \leq \mathcal{M}, A \leq E \leq \mathcal{M}$ and $E \downarrow_A^* B$. Then $gtp(E/A) \vdash gtp(E/B)$.

Proof. For simplicity, we assume that A, B and E are finite. Take any $E_1 \models \operatorname{gtp}(E/A)$ with $E_1 \downarrow_A^* B$ in M. Fix any n. Then there are realizations $E^*A^*, E_1^*A^* \models \operatorname{gtp}_n(EA)$ in M with $\operatorname{cl}(E^*) \cong_{\operatorname{cl}(A^*)}$ $\operatorname{cl}(E_1^*)$. Since $E \downarrow_A^* B$ and $E_1 \downarrow_A^* B$, there is $B^*A^* \models \operatorname{gtp}_n(BA)$ with $\operatorname{cl}(E^*) \cong_{\operatorname{cl}(B^*)} \operatorname{cl}(E_1^*)$. Hence $E_1 \models \operatorname{gtp}(E/B)$.

Lemma 2.11 T is strictly stable.

Proof. Let $N \prec \mathcal{M}$ with $|N| = \lambda$. Take any $e \in \mathcal{M} - N$. Then there is a countable $A \leq N$ with $e \downarrow_A^* N$. Let $E = \operatorname{cl}(eA)$. We can assume that $E \cap N = A$. We want to show that $\operatorname{gtp}(E/A) \vdash \operatorname{gtp}(E/N)$. Take any $E_1, E_2 \models \operatorname{gtp}(E/A)$ with $E_i \downarrow_A^* N$. Take any countable $N_0 \leq N$. Take $E_i^* A^* \subset M$ such that $E_1^* A^*, E_2^* A^* \models \operatorname{gtp}_n(EA)$ and $\operatorname{cl}(E_1^* A^*) \cong$ $\operatorname{cl}(E_2^* A^*)$. Hence $\operatorname{gtp}(E_1/N) = \operatorname{gtp}(E_2/N)$. It follows that $|S(N)| \leq 2^{\omega} \cdot \lambda^{\omega} = \lambda^{\omega}$. Hence T is stable.

Theorem 2.12 There is a generic structure M with the following properties:

- 1. the language is finite;
- 2. Th(M) is not ω -categorical;
- 3. Th(M) has finite closures;
- 4. Th(M) is strictly stable.

References

- J. T. Baldwin and N. Shi, Stable generic structures. Ann. Pure Appl. Log. 79, 1-35 (1996)
- [2] E. Hrushovski, A stable \aleph_0 -categorical pseudoplane. preprint (1988)
- [3] F. O. Wagner, Relational structures and dimensions. In: Automorphisms of First-Order Structures, 153-181, Clarendon Press, Oxford (1994)

Faculty of Business Administration Hosei University Tokyo 102-8160, Japan E-mail: ikeda@hosei.ac.jp