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A MULTI‐VARIABLE VERSION OF THE COMPLETED RIEMANN ZETA

FUNCTION AND OTHER L‐FUNCTIONS

FRANCIS BROWN

1. INTRODUCTION

This is the continuation of my talk at Professor Ihara’s birthday conference, but for the most
part, is logically independent from it. It is an attempt to find a general definition of multiple
 L‐fUnctions. The hope is to obtain certain periods of algebraic varieties by combining the data
of the traces of Frobenius (or point counts over finite fields) into an analytic function of several
complex variables. With this distant goal in mind, we define a tentative class of multiple motivic
 L‐fUnctions which are meromorphic functions of several variables satisfying a functional equation
and multiplicative shuffle identities. In the simplest case of the trivial motive  \mathbb{Q}=H^{0}({\rm Spec} \mathbb{Q}) ,
this yields a multi‐variable version  \xi(s_{1}, \ldots, s_{r}) of the Riemann  \xi‐function:

 \xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) .

The general theory, in this particular case, yields the following theorem.

Theorem 1.1. The function  \xi(s_{1}, \ldots, s_{r}) is meromorphic on  \mathbb{C}^{r} , and satisfies a functional equa‐
tion:

 \xi (s_{1} , s_{r})=\xi(1-s_{r} , 1-s_{1})

and shuffle product identities:

  \xi(s_{1}, \ldots, s_{p})\xi(s_{p+1}, \ldots, s_{p+q})=
\sum_{\sigma\in\Sigma_{pq}},\xi(s_{\sigma(1)}, \ldots, s_{\sigma(p+q)})
It has simple poles along the hyperplanes

 s_{1}+\ldots+s_{k}=k  s_{k}+\ldots+s_{r}=0 for all  1\leq k\leq r ,

and its residues have the recursive structure:

 {\rm Res}_{s_{k}+\ldots+s_{r}=0} \xi(s_{1}, \ldots, s_{r})=(-1)^{r-k+1}
\frac{\xi.(s_{1},\ldots.'.s_{k-1})}{(s_{k+1}+..+s_{r}).(s_{r-1}+s_{r})s_{r}}
The functions  \xi(s_{1}, \ldots, s_{r}) are not obviously related to multiple zeta functions, for which no

functional equation is presently known to exist. Furthermore, the double  \xi‐values  \xi(2\ell_{1},2\ell_{2}) for
even integers  2\ell_{1},2\ell_{2}>0 are related to periods of simple extensions of symmetric powers of the
cohomology of the elliptic curve  \mathbb{C}/\mathbb{Z}\oplus \mathbb{Z}i which has complex multiplication.

We provide some evidence in support of the philosophy outlined above by proving that all
periods of mixed Tate motives over  \mathbb{Z} can be expressed as totally critical values of some simple
multiple motivic  L‐fUnctions, and furthermore by showing that totally holomorphic multiple
modular values (periods of the relative completions of modular groups) can also be subsumed
into this framework. It therefore seems, at least in some simple cases, that values of multiple L‐
functions can indeed predict the periods of mixed motives which are beyond the reach of existing
conjectures on special values of ordinary  L‐functions.
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2.  L‐FUNCTIONS AND MELLIN TRANSFORMS

We briefly and informally recall the main properties of motivic  L‐functions and their associated
theta functions [11]. See [9, 1S] for further details. We shall use the word ‘motive’ loosely, as is
customary in this area, since the  L‐fUnction of a motive depends only upon its realisations, and
its properties are largely conjectural. In any case, most of our examples concern situations where
the  L‐function is completely classical.

2.1. Motivic  L‐functions. To a pure motive  M over  \mathbb{Q} of weight  m\geq 0 , one attaches

 e a Dirichlet series, defined as an Euler product

 L(M;s)= \prod_{ppr\dot{{\imath}}me}L_{p}(M;s)=\sum_{n\geq 1}\frac{a_{n}}{n^{s}}
,
which is assumed to converge for  {\rm Re}(s) sufficiently large.

 e a completed  L‐function, defined by [21]

 L^{*}(M;s)=L_{\infty}(M;s)L(M;s) ,

where  L_{\infty}(M;s) is a finite product of factors  \Gamma_{\mathbb{R}/\mathbb{C}}(s-n) where  n is an integer, and

 \Gamma_{\mathbb{R}}(s)=\pi^{-s/2}\Gamma(s/2), \Gamma_{\mathbb{C}}(s)=(2\pi)^{-
s}\Gamma(s) .

 e One hopes that  L^{*}(M;s) admits a meromorphic continuation to the complex plane and
satisfies a functional equation of the form

 L^{*}(M;s)=\epsilon(M;s)L^{*}(M^{\vee}(1);-s) ,

for  \epsilon(M;s) of the form  aN^{s} , where  N>0 is an integer.

From now on, we shall restrict to the case when  M is self‐dual, i.e.,  M^{\vee}=M(m) , for then the
expected functional equation reduces to:

 L^{*}(M;s)=\epsilon(M;s)L^{*}(M;m+1-s) .

This restriction is by no means necessary, but simplifies the exposition.

Example 2.1. Let  M=H^{m}(X;\mathbb{Q}) where  X is a smooth projective variety over  \mathbb{Q} . Then

 L_{p}(M;s)=\det(1-F_{p}p^{-s}|M_{\ell}^{I_{p}})^{-1}
for some prime  \ell\neq p , where  M_{\ell}=H_{et}^{m}(X\otimes_{\mathbb{Q}}\overline{\mathbb{Q}};\mathbb{Q}
_{\ell}),  F_{p} is the geometric Frobenius, and   I_{p}\leq
 Ga1(\overline{@}/\mathbb{Q}) the inertia subgroup. It is assumed to be independent of  \ell at primes of bad reduction.
By Deligne,  L(M;s) converges for  {\rm Re}(s)>1+m/2 . Serre [21] (15) defines  L_{\infty}(M;s) in terms of
the real Hodge structure of  M . Note that the motive  M is self‐dual.

One can consider motives over more general number fields, but by restriction of scalars, one
can always reduce to the field of rationals  \mathbb{Q}.

Recall the duplication formula:

(2.1)  2 \Gamma_{\mathbb{C}}(s)=\Gamma_{\mathbb{R}}(s)\Gamma_{\mathbb{R}}(s+1) .

The values of  \Gamma_{\mathbb{R}/\mathbb{C}}(s) at positive integers are integer powers of  \pi times a rational number.
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2.2. Reformulation. Let us fix a self‐dual motive  M . It is convenient to simplify the functional
equation by rescaling the completed  L‐function as follows:

 \Lambda(M;s)=(\sqrt{N})^{-s}L^{*}(M;s)
where  \sqrt{N} is the positive root of  N . Set  \varepsilon_{M}=a(\sqrt{N})^{m+1} . Following the notations of [11], one
can write this function in the form

 \Lambda(M;s)=A^{s}\gamma(s)L(M;s)

where the product of gamma factors occuring in  L_{\infty}(M;s) is denoted by   \gamma(s)=\prod_{i=1}^{d}\Gamma(\frac{s+\lambda_{i}}{2})
for some integers  \lambda_{i}\in \mathbb{Z} which only depend on the Hodge numbers of  M and the action of the real
Frobenius (complex conjugation) on its Betti realisation. The integer  d is equal to the rank of  M.

The number  A is positive and real, and absorbs both the powers of  \pi and the exponential factors
occuring in  \epsilon(M;s) . This partitioning into  A^{S} and  \gamma(s) is arbitrary; for example, one could
demand that  \gamma be a product of functions  \Gamma_{\mathbb{R}}(s) without substantively affecting the following
discussion.

In order to define the theta function [11] of  M one only needs the fact that  L(M;s) converges
for  {\rm Re}(s) sufficiently large, together with the following assumptions:

 e That  \Lambda(M;s) admits a meromorphic continuation to  \mathbb{C} and is bounded in vertical strips.
It has finitely many poles, all of which are simple.

 e That, for some  \varepsilon_{M}\in \mathbb{C} , necessarily  \pm 1 , it admits a functional equation

(2.2)  \Lambda(M;s)=\varepsilon_{M}\Lambda(M;m+1-s) .

This equation is equivalent to the functional equation for  L^{*}(M;s) .

The Euler product will play very little role. We shall also assume that the poles of  \Lambda(M;s) are
integers. This requirement is not essential and can easily be relaxed.

2.3. Theta functions. In [11] Dokchister defines a continuous function  \phi(t) on the positive real
axis to be the inverse Mellin transform of  \gamma(s) , i.e.,

  \gamma(s)=\int_{0}^{\infty}\phi(t)t^{s}\frac{dt}{t}
It depends only on the  \lambda_{i}\in \mathbb{Z} and tends to zero exponentially fast as   tarrow\infty . It can be expressed
in terms of hypergeometric functions and can be computed once and for all for any given class of
motives. He then defines the associated theta function

 \theta_{M}(t)=\theta_{M}^{\infty}(t)+\theta_{M}^{0}(t)
where  \theta_{M}^{\infty}(t)\in \mathbb{C}[t] is a polynomial in  t and

(2.3)   \theta_{M}^{0}(t)=\sum_{n\geq 1}a_{n}\phi(\frac{nt}{A})
is a generalised theta function which converges exponentially fast as   tarrow\infty . The  a_{n} are the
coefficients in the Dirichlet series  L(M;s) and were assumed to have polynomial growth. The
completed  L‐function is then the Mellin transform of  \theta_{M}^{0}(t) :

  \Lambda(M;s)=\int_{0}^{\infty}\theta_{M}^{0}(t)t^{s}\frac{dt}{t}
The polynomial  \theta_{M}^{\infty}(t) is determined from the poles of  \Lambda(M;s) and its residues. In particular, it
vanishes whenever  \Lambda(M;s) has no poles. That it is a polynomial is equivalent to the fact that
 \Lambda(M;s) has poles only at integer points: were  \Lambda(M;s) to have poles in  \mathbb{Z}[1/n] for some  n , the
function  \theta_{M}^{\infty} would need to be replaced with a polynomial in  t^{1/n}.
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The functional equation of  \Lambda(M;s) is then equivalent to the inversion formula

(2.4)  \theta_{M}(t^{-1})=\varepsilon_{M}t^{m+1}\theta_{M}(t) .

Since  m\geq 0 , one checks that this equation uniquely determines  \theta_{M}^{\infty}(t) from  \theta_{M}^{0}(t) .

Example 2.2. (Riemann zeta function). Let  X={\rm Spec} \mathbb{Q} be a point. Then  M=H^{0}(X)=\mathbb{Q} is
the trivial motive. Its  L‐function is the Riemann zeta function

  \zeta(s)=\prod_{pprime}(1-p^{-s})^{-1}=\sum_{n\geq 1}\frac{1}{n^{s}},
for all  {\rm Re}(s)>1 . Its completed version  \xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) admits a meromorphic continua‐
tion to  \mathbb{C} with simple poles at  s=0,1 and satisfies  \xi(s)=\xi(1-s) . Let

(2.5)   \theta_{\mathbb{Q}}(t)=\sum_{n\in \mathbb{Z}}e^{-\pi n^{2}t^{2}}
denote its inverse Mellin transform. It is essentially the restriction of the Jacobi theta function
to the imaginary axis. It can be written as a sum  \theta_{\mathbb{Q}}=\theta_{Q}^{\infty}+\theta_{Q}^{0} , where

 \theta_{\mathbb{Q}}^{\infty}(t)=1 and   \theta_{\mathbb{Q}}^{0}(t)=2\sum_{n\geq 1}e^{-\pi n^{2}t^{2}}
Since

  \pi^{-s/2}\Gamma(s/2)=2\int_{0}^{\infty}e^{-\pi t^{2}}t^{s}\frac{dt}{t}
we deduce that for all  {\rm Re}(s)>1 :

  \xi(s)=\int_{0}^{\infty}(\theta_{\mathbb{Q}}(t)-1)t^{s}\frac{dt}{t}
The functional equation of  \xi is equivalent to  \theta_{\mathbb{Q}}(t^{-1})=t\theta_{\mathbb{Q}}(t) . The formula for  \xi(s) looks strange
at first sight: one integrates the truncated function  \theta_{\mathbb{Q}}^{\infty}(t)=\theta_{\mathbb{Q}}(t)-1 , although it is  \theta_{\mathbb{Q}} which
satisfies the inversion formula. Using tangential base points, we shall interpret  \xi as a regularised
Mellin transform of the full function  \theta_{\mathbb{Q}} , which will make the functional equation obvious.

Example 2.3. (Cusp forms of level 1). Let  f( \tau)=\sum_{n>1}a_{n}e^{2\pi in\tau} be a cusp form of weight  2k

for the full modular group  SL_{2}(\mathbb{Z}) , and an eigenfunction  \overline{f}or Hecke operators with  a_{1}=1 . Scholl
[19] has shown how to associate a pure motive  M_{f} to  f , which has coefficients in the field  K_{f}
generated by the  a_{n} . It has weight  2k-1 and is of Hodge type  (2k-1,0) and  (0,2k-1) . The
associated  L‐function is

 L(f;s)= \prod_{p}(1-a_{p}p^{-s}+p^{2k-1-2s})^{-1}=\sum_{n\geq 1}\frac{a_{n}}{n^
{s}},
and converges for  {\rm Re}(s)>k+1 . The completed  L‐function, defined by Hecke, is

 \Lambda(f;s)=(2\pi)^{-s}\Gamma(s)L(f;s) .

It extends to an entire function on  \mathbb{C} satisfying  \Lambda(f;s)=(-1)^{k}\Lambda(f;2k-s) . Its inverse Mellin
transform is the restriction of  f to the positive imaginary axis:

  \theta_{f}(t)=\theta_{f}^{0}(t)=\sum_{n\geq 1}a_{n}e^{-2\pi t}
Here we have  \theta_{f}^{\infty}(t)=0 . The inversion formula is  \theta_{f}(t^{-1})=(-1)^{k}t^{2k}\theta_{f}(t) . One has

  \Lambda(f;s)=\int_{0}^{\infty}\theta_{f}(t)t^{s}\frac{dt}{t}
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2.4. Conjectures on special values of  L‐functions. This is a vast subject originating from
Euler’s formula for  \zeta(2n) , and is based on a huge range of examples which have been gathered
over the intervening two and a half centuries. We shall be extremely brief and deliberately vague,
and refer instead to [18] for a recent survey.

A key definition [9] is that of a critical point. For  M as above, Deligne defines an integer  n to
be critical if neither  L_{\infty}(M;s) nor  L_{\infty}(M^{\vee}(1);s) has a pole at  s=n.

 e For critical  n , Deligne’s conjecture predicts that  L(M;n) should be related to a period of
the motive  M (or rather, Tate twists of its dual).

 0 For non‐critical  n , Beilinson’s conjecture [1] predicts in most cases that  L(M;n) should
be related to periods not of (Tate twists of)  M.

For certain exceptional values of  s , Beilinson’s conjecture relates  L(M;s) to a biextension of
 \mathbb{Q},  \mathbb{Q}(1) and  M(n) , but this case will not play any further role in this write‐up.

In summary, these conjectures and their generalisations provide an interpretation for the special
values of  L(M;s) at integers as periods of mixed motives of a very simple kind. Viewed upside
down, these conjectures give a formula for certain periods of pure motives (in the case of Deligne’s
conjecture), and for certain periods of simple extensions (in the case of Beilinson’s conjecture) in
terms of  L‐values.

2.5. Speculation. It is tempting to wonder if this might be part of a larger picture relating
periods of more general mixed motives and values of ‘mixed  L‐functions’:

{Periods of mixed motives}  arrow^{?} {Mixed  L‐values}

Such a formalism would interpret certain periods of an iterated extension of pure motives as
values of analytic functions constructed out of the action of the Frobenius operators on the  \ell‐adic
realisations of its constituent motives.

3. ITERATED MELLIN TRANSFORMS

Consider a set of functions  \theta_{1},  \theta_{r} which are continuous on the positive real axis, and have
the following properties:

(1) The existence of a functional equation for all  i :

 \theta_{i}(t^{-1})=\varepsilon_{i}t^{w_{i}}\theta_{i}(t)

(2) The existence of a decomposition of the form:

 \theta_{i}=\theta_{i}^{\infty}+\theta_{i}^{0}

for all  i , where  \theta_{i}^{\infty}\in \mathbb{C}[t] and  \theta_{i}^{0} tends to zero exponentially fast as  tarrow\infty.

These conditions are satisfied for the inverse Mellin transform of a motivic  L‐function which

satisfies the assumptions detailed in the previous paragraph, and has at most simple poles at
integers. We shall enlarge the class of  \theta functions that we wish to consider in §5.4.

We presently explain how to define a multiple  \Lambda‐function:

 \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r})

and prove its basic properties, which are summarised in the following theorem.

Theorem 3.1. The functions  \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r}) are meromorphic on  \mathbb{C}^{r} with at most simple
poles along hyperplanes which depend only on the polynomials  \theta_{i}^{\infty} . They have no poles when the
 \theta_{i}^{\infty} vanish for all  1\leq i\leq r . They satisfy a functional equation:

 \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r})=\varepsilon_{1}
\ldots\varepsilon_{r}\Lambda(\theta_{r}, \ldots, \theta_{1};w_{r}-s_{r}, \ldots,
w_{1}-s_{1})
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(note the reversed order of the arguments) and shuffle product formula

 \Lambda(\theta_{1}, \ldots, \theta_{p};s_{1}, \ldots, s_{p})\Lambda(\theta_{p+
1}, \ldots, \theta_{p+q};s_{p+1}, \ldots, s_{p+q})

 = \sum_{\sigma\in\Sigma_{pq}},\Lambda(\theta_{\sigma(1)}, \ldots, 
\theta_{\sigma(p+q)}, s_{\sigma(1)}, \ldots, s_{\sigma(p+q)})
where  \Sigma_{p,q} denotes the set of  (p, q) ‐shuffies.

One can rescale this multi‐variable  L‐function by defining

(3.1)  L^{*}(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r})=N_{1}^{\mathcal{S}
_{1/2}}\ldots N_{r}^{s_{r}/2}\Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, 
\ldots s_{r}) ,

where  N_{i} is the exponential factor in  \epsilon(M_{i};s) and  M_{i} is the motive corresponding to  \theta_{i} . This
function has similar properties to  \Lambda , but with a slightly more complicated functional equation
(replace every  \varepsilon_{i} in the above with  \epsilon(M_{i};s) ). For  r=1 it reduces to the definition of §2.

We first consider the simpler situation where all  \theta_{i}^{\infty} vanish, in which case the previous theorem
is an immediate consequence of the theory of iterated integrals. The main issue in the general
case is to regularise divergences correctly. For this we use a modification ([4], §4) of Deligne’s
theory of tangential base points ([8], §15).

3.1. Multiple Mellin transforms in the case with no poles. For  s_{i}\in \mathbb{C} , let us write

 \underline{\theta}_{i}\cdot(s_{i})=\theta_{i}\cdot(t)t^{s_{i}-1}dt for  \bullet=\emptyset,  0,  \infty

to denote the one‐forms associated to the  \theta_{i} . For levity of notation, we shall sometimes simply
write  \underline{\theta}_{i}^{e} for  \underline{\theta}_{i}^{e}(s_{i}) . We first assume all  \theta_{i}^{\infty} vanish.

Definition 3.2. Suppose that  \underline{\theta}_{i}^{\infty}=0 for all  i=1,  r . Define

 \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r})  =   \int_{0}^{\infty}\underline{\theta}_{1}(s_{1})  \underline{\theta}_{r}(s_{r}) (Iterated integral)

(3.2)  =  \int_{0\leq t_{1}\leq t_{2}\leq\ldots\leq t_{r}\leq\infty}\theta_{1}(t_{1})
t_{1}^{s_{1}-1}dt_{1}\ldots\theta_{r}(t_{r})t_{r}^{s_{r}-1}dt_{r}
The integral converges for all  s_{i}\in \mathbb{C} . This follows from the exponential decay of the functions  \theta_{i}
at infinity and at  0 , which follows from the inversion formula.

Proposition 3.3. The functions  \Lambda satisfy the formula:

(3.3)  \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r})=

  \sum_{k=0}^{r}\varepsilon_{1}\ldots\varepsilon_{k}R(\theta_{k}, \ldots, 
\theta_{1;w_{k}-s_{k}}, \ldots, w_{1}-s_{1})R(\theta_{k+1}, \ldots, \theta_{r};
s_{k+1}, \ldots, s_{r})
where the functions  R are defined by the iterated integrals

 R( \theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r}) = \int_{1}^{\infty}
\underline{\theta}_{1}(s_{1})\ldots\underline{\theta}_{r}(s_{r})
 =  \int_{1\leq t_{1}\leq\ldots\leq t_{r}\leq\infty}\theta_{1}(t_{1})t_{1}
^{s_{1}-1}dt_{1}\ldots\theta_{r}(t_{r})t_{r}^{s_{r}-1}dt_{r}

which converge, and are holomorphic, for all  s_{1},  s_{r}\in \mathbb{C} . If  r=0 then  R is defined to be 1. In
particular,  \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r}) is analytic on  \mathbb{C}^{r} . The shuffie product formula and functional
equations stated in theorem 3.1 hold.

Proof. For sufficiently large  {\rm Re}(s_{i}) , apply the composition of paths formula [7]

  \int_{0}^{\infty}\underline{\theta}_{1}\ldots\underline{\theta}_{r}=\sum_{k=0}
^{r}\int_{0}^{1}\underline{\theta}_{1}\ldots\underline{\theta}_{k}\int_{1}
^{\infty}\underline{\theta}_{k+1}\ldots\underline{\theta}_{r}
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to the definition of  \Lambda . Apply the change of variables  t\mapsto t^{-1} to the left‐hand integrals from
 0 to 1 on the right of the equality sign and invoke the inversion formula for the  \theta_{i} . Now write
 \underline{\tilde{\theta}}_{i}=\theta_{i}t^{w_{i}-s_{l^{-1}dt}} and apply the reversal of paths formula [7]

 (-1)^{k} \int_{\infty}^{1}\underline{\tilde{\theta}}_{1}\ldots\underline{\tilde
{\theta}}_{k}=\int_{1}^{\infty}\underline{\tilde{\theta}}_{k}
\ldots\underline{\tilde{\theta}}_{1}
to obtain formula (3.3). The functional equation follows immediately. The shuffle product formula
follows from the standard shuffle product for iterated integrals [7].  \square 

When each  \theta_{i}=\theta_{f_{i}} is associated to a cusp form, the iterated Mellin transforms were previously
considered by Manin in [16].

3.2. The case with simple poles.

Definition 3.4. Let  \theta_{1},  \theta_{r} be as in the beginning of the section. Define the iterated regularised
Mellin transform to be the iterated integral

  \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r})=\int_{0}^{\vec{1}
_{\infty}}\underline{\theta}_{1}(s_{1})\cdots\underline{\theta}_{r}(s_{r}) ,

where  \vec{1}_{\infty} denotes a tangent vector of length 1 at infinity1. The definition is spelled out below.
The integral converges for  {\rm Re}(s_{i}) sufficiently large.

The iterated integral in this case can be written using a regularisation operator  \mathcal{R}

  \int_{0}^{\vec{1}_{\infty}}\underline{\theta}_{1}(s_{1})
\cdots\underline{\theta}_{r}(s_{r})=\int_{0}^{\infty}\mathcal{R}
(\underline{\theta}_{1}(s_{1})\cdots\underline{\theta}_{r}(s_{r}))
which was defined in [4], §4.6. The right‐hand side of the previous formula is a linear combination
of iterated integrals in the  \underline{\theta}_{i}^{0} and  \underline{\theta}_{i}^{\infty} . Formally, the operator  \mathcal{R} satisfies

  \mathcal{R}(\underline{\theta}_{1}\ldots\underline{\theta}_{r})=\sum_{i=1}^{r}
(-1)^{r-i}((\underline{\theta}_{1}\underline{\theta}_{2}\ldots\underline{\theta}
_{i-1})m(\underline{\theta}_{r}^{\infty}\underline{\theta}_{r-1}^{\infty}
\ldots\underline{\theta}_{\dot{i}+1}^{\infty})).\underline{\theta}_{i}^{0}
where  m denotes the shuffle product and . denotes concatenation. To make sense of this, one
should work in a tensor algebra of differential forms ([4], §4.6).

Example 3.5. The regularisation operator satisfies

(3.4)  \mathcal{R}(\underline{\theta}_{1}) = \underline{\theta}_{1}^{0}
 \mathcal{R}(\underline{\theta}_{1}\underline{\theta}_{2}) = \underline{\theta}_
{1}\underline{\theta}_{2}^{0}-\underline{\theta}_{2}^{\infty}\underline{\theta}_
{1}^{0}

 \mathcal{R}(\underline{\theta}_{1}\underline{\theta}_{2}\underline{\theta}_{3})
= (\underline{\theta}_{3}^{\infty}\underline{\theta}_{2}^{\infty})
\underline{\theta}_{1}^{0}-(\underline{\theta}_{1}m\underline{\theta}_{3}
^{\infty})\underline{\theta}_{2}^{0}+(\underline{\theta}_{1}\underline{\theta}
_{2})\underline{\theta}_{3}^{0}
 = \underline{\theta}_{1}\underline{\theta}_{2}\underline{\theta}_{3}^{0}-
\underline{\theta}_{1}\underline{\theta}_{3}^{\infty}\underline{\theta}_{2}^{0}-
\underline{\theta}_{3}^{\infty}\underline{\theta}_{1}\underline{\theta}_{2}^{0}+
\underline{\theta}_{3}^{\infty}\underline{\theta}_{2}^{\infty}\underline{\theta}
_{1}^{0}

One has the recursive formula ([4], proof of lemma 4.8)

 \mathcal{R}(\underline{\theta}_{1}\underline{\theta}_{2}
\ldots\underline{\theta}_{n})=\underline{\theta}_{1}\mathcal{R}
(\underline{\theta}_{2}\underline{\theta}_{3}\ldots\underline{\theta}_{n})-
\underline{\theta}_{n}^{\infty}\mathcal{R}(\underline{\theta}_{1}
\underline{\theta}_{2}\ldots\underline{\theta}_{n-1}) .

Proposition 3.3 has the following variant in the case of poles.

lthis notation was used in [4], §4 with respect to a coordinate which is  i times the coordinate used here: i.e.,
the definitions agree after identifying  \mathbb{R}>0 with the imaginary axis  i\mathbb{R}>0 in the upper‐half plane. In section §9 we
use both conventions‐ the meaning will be clear from the context.
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Theorem 3.6. The formula (3.3) holds, where we now define

 R( \theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r})=\int_{1}^{\vec{1}
_{\infty}}\underline{\theta}_{1}(s_{1})\ldots\underline{\theta}_{r}(s_{r})
The right‐hand side is the regularised iterated integral

(3.5)   \int_{1}^{\vec{1}_{\infty}}\underline{\theta}_{1}\ldots\underline{\theta}_{r}=
\sum_{i=0}^{r}(-1)^{r-i}\int_{1}^{\infty}\mathcal{R}(\underline{\theta}_{1}
\ldots\underline{\theta}_{i})\int_{0}^{1}\underline{\theta}_{r}^{\infty}
\underline{\theta}_{r-1}^{\infty}\ldots\underline{\theta}_{i+1}^{\infty}
The integrals of  \mathcal{R}(\underline{\theta}_{1}\ldots\underline{\theta}_{i}) from 1 to  \infty in the right‐hand side of this formula converge for all

 s_{i}\in \mathbb{C} and are holomorphic. The iterated integrals

  \int_{0}^{1}\underline{\theta}_{r}^{\infty}\underline{\theta}_{r-1}^{\infty}
\ldots\underline{\theta}_{i+1}^{\infty}
can be interpreted geometrically as integrals in the tangent space at the point  \infty of Riemann
sphere [4], §4. They can be computed explicitly since the  \theta_{i}^{\infty} are polynomials in  t . In particular,
they define rational functions in the  s_{i} with simple poles along finitely many hyperplanes of the
following type:

(3.6)  s_{i}+\ldots+s_{r-1}+s_{r} = \alpha_{i}

where  \alpha_{i}\in \mathbb{C} . It follows that  \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r}) admits a meromorphic continuation to  \mathbb{C}^{r}

with poles along (3.6) and their images under the transformation

 s_{i}\mapsto w_{r+1-i}-s_{r+1-i} i=1, , r .

The functional equation holds by the symmetry of equation (3.3).

Proof. As for proposition 3.3, using the properties of tangential base points at infinity, which are
similar to those of ordinary iterated integrals (see [4], §4).  \square 

Remark 3.7. Using the above formulae, one can express the residues of  \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r}) in
terms of functions of the same type, but with smaller values of  r.

Because of the exponential decay of  \theta^{\infty} at infinity, the formulae above converge extremely fast,
and can be highly effective for numerical computations.

3.3. General case. The above definitions are easily modified to encompass the case of motives
 M which are not self‐dual. One replaces the functional equation for  \theta=\theta_{M} by

  \theta(\frac{1}{t})=\varepsilon t^{w}\check{\theta}(t)
where  \check{\theta}=\theta_{M}\vee is associated to the dual motive. The functional equation becomes

 \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r})=\varepsilon_{1}
\ldots\varepsilon_{r}\Lambda(\check{\theta}_{r}, \ldots,\check{\theta}_{1};w_{r}
-s_{r}, \ldots, w_{1}-s_{1}) .

In this manner, one can define, for example, mixed Dirichlet  L‐functions, and so on.

4. EXAMPLES

4.1. Length 1. By definition,

  \Lambda(\theta;s)=\int_{0}^{\vec{1}_{\infty}}\underline{\theta}(s)=\int_{0}
^{\infty}\mathcal{R}\underline{\theta}(s) .

Substituting equation (3.4), we find that

(4.1)   \Lambda(\theta;s)=\int_{0}^{\infty}\theta^{0}(t)t^{s-1}dt=\int_{0}^{\infty}
(\theta(t)-\theta^{\infty}(t))t^{s}\frac{dt}{t}
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which coincides for  \theta=\theta_{f} with Hecke’s formula for the  L‐fUnction of a modular form. Further‐

more, if   \theta(\frac{1}{t})=\varepsilon t^{w}\theta(t) , then equation (3.3) reads:

 \Lambda(\theta;s)=R(\theta;s)+\varepsilon R(\theta;w-s)

where, by (3.5),

 R( \theta;s)=\int_{1}^{\infty}\mathcal{R}\underline{\theta}(s)-\int_{0}^{1}
\underline{\theta}^{\infty}(s)=\int_{1}^{\infty}\theta^{0}(t)t^{s}\frac{dt}{t}-
\int_{0}^{1}\theta^{\infty}(t)t^{s}\frac{dt}{t}
Example 4.1. For the motive  \mathbb{Q} , we have  \theta_{\mathbb{Q}}^{\infty}=1,  \varepsilon=1 , and hence

 R( \theta_{\mathbb{Q}};s)=\int_{1}^{\infty}(\theta_{\mathbb{Q}}(t)-1)t^{s}\frac
{dt}{t}-\frac{1}{s}
In this way we obtain the classical formula for Riemann’s  \xi‐function:

  \xi(s)=\Lambda(\theta_{\mathbb{Q}};s)=\int_{1}^{\infty}(\theta_{\mathbb{Q}}(t)
-1)t^{s}\frac{dt}{t}+\int_{1}^{\infty}(\theta_{\mathbb{Q}}(t)-1)t^{1-s}\frac{dt}
{t}-\frac{1}{s}-\frac{1}{1-s}
4.2. Length two. We have

  \Lambda(\theta_{1}, \theta_{2};s_{1}, s_{2})=\int^{\vec{1}_{\infty}}\underline
{\theta}_{1}(s_{1})\underline{\theta}_{2}(s_{2})=\int^{\infty}\theta(s_{1})
\underline{\theta}_{2}(s_{2}))
Substituting (3.4) into this definition, we find that

(4.2)   \Lambda(\theta_{1}, \theta_{2};s_{1}, s_{2})=\int_{0\leq t_{1}\leq t_{2}
\leq\infty}\theta_{1}(t_{1})t_{1}^{\mathcal{S}_{1}-1}\theta_{2}^{0}(t_{2})t_{2}^
{\mathcal{S}_{2}-1}dt_{1}dt_{2}
 - \int_{0\leq t_{1}\leq t_{2}\leq\infty}\theta_{2}^{\infty}(t_{1})t_{1}^{s_{2}-
1}\theta_{1}^{0}(t_{2})t_{2}^{s_{1}-1}dt_{i}dt_{2}

In order to compute this function, use formula (3.3) which reads

 \Lambda(\theta_{1}, \theta_{2};s_{1}, s_{2})=R(\theta_{1}, \theta_{2};s_{1}, s_
{2})+\varepsilon_{1}R(\theta_{1};w_{1}-s_{1})R(\theta_{2};s_{2})+\varepsilon_{1}
\varepsilon_{2}R(\theta_{2}, \theta_{1};w_{2}-s_{2}, w_{1}-s_{1})
and where

 R( \theta_{1}, \theta_{2};s_{1}, s_{2})=\int_{1}^{\infty}\mathcal{R}(\underline
{\theta}_{1}\underline{\theta}_{2})-\int_{1}^{\infty}\mathcal{R}
(\underline{\theta}_{1})\int_{0}^{1}\underline{\theta}_{2}^{\infty}+\int_{0}^{1}
\underline{\theta}_{2}^{\infty}\underline{\theta}_{1}^{\infty}
The first integral on the right‐hand side is the same as the right‐hand side of (4.2) except that
both lower limits of integration  0 are replaced by 1. The integral

  \int_{0}^{1}\underline{\theta}_{2}^{\infty}\underline{\theta}_{1}^{\infty}=
\int_{0\leq t_{1}\leq t_{2}\leq 1}\theta_{2}^{\infty}(t_{1})t_{1}^{s_{2}-1}
dt_{1}\theta_{1}^{\infty}(t_{2})t_{2}^{s_{1}-1}dt_{2}
is easy to compute since  \theta_{1}^{\infty},  \theta_{2}^{\infty} are simply polynomials.

Example 4.2. Consider the function  \xi(s_{1}, s_{2})=\Lambda(\theta_{\mathbb{Q}}, \theta_{\mathbb{Q}};s_{1}, s_{2}
) which we shall call the double
Riemann  \xi‐fUnction. It is studied in more detail in §9. We have

  \int_{0}^{1}\underline{\theta}_{2}^{\infty}\underline{\theta}_{1}^{\infty}=
\int_{0\leq t_{1}\leq t_{2}\leq 1}t_{1}^{s_{2}-1}t_{2}^{s_{1}-1}dt_{1}dt_{2}=
\frac{1}{s_{2}(s_{1}+s_{2})},
where  \theta_{1}=\theta_{2}=\theta_{\mathbb{Q}} . Putting the pieces together, we find that

 R( \theta_{\mathbb{Q}}, \theta_{\mathbb{Q}};s_{1}, s_{2})=\int_{1}^{\infty}
\mathcal{R}(\underline{\theta}_{1}\underline{\theta}_{2})-\frac{1}{s_{2}}
\int_{1}^{\infty}\mathcal{R}(\underline{\theta}_{1})+\frac{1}{s_{2}(s_{1}+s_{2})
}
We deduce from this that  \Lambda(\theta_{\mathbb{Q}}, \theta_{\mathbb{Q}};s_{1}, s_{2}) has poles along

 s_{1}=1 , s_{2}=0 , s_{1}+s_{2}=0 , s_{1}+s_{2}=2 .
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One can easily compute its residues, e.g.

 {\rm Res}_{s_{1}+s_{2}=0}\Lambda(\theta_{\mathbb{Q}}, \theta_{\mathbb{Q}};s_{1}
, s_{2}) = s_{2}^{-1}
 {\rm Res}_{s_{2}=0}\Lambda(\theta_{\mathbb{Q}}, \theta_{\mathbb{Q}};s_{1}, 
s_{2}) = -\Lambda(\theta_{\mathbb{Q}};s_{1}) .

4.3. Relation to Dirichlet series. It is important to note that multiple  A‐functions are not
expressible as Dirichlet series in general. Consider the case where  r=2 and  f_{1},  f_{2} are modular
forms with Fourier expansions

 f_{1}= \sum_{n\geq 0}a_{n}q^{n} f_{2}=\sum_{n\geq 0}b_{n}q^{n}
For the time being, let us assume that  a_{0}=b_{0}=0 for simplicity. Then by making the change of
variables  t_{1}=xy,  t_{2}=y in the definition

  \Lambda(\theta_{f_{1}}, \theta_{f_{2}};s_{1}, s_{2})=\int_{0\leq t_{1}\leq 
t_{2}\leq\infty}f_{1}(it_{1})f_{2}(it_{2})t_{1}^{s_{1}-1}t_{2}^{s_{2}-1}dt_{1}
dt_{2}
and expanding, we obtain (for  {\rm Re}(s_{1}),  {\rm Re}(s_{2}) sufficiently large)

  \Lambda(\theta_{f_{1}}, \theta_{f_{2}};s_{1}, s_{2})=\sum_{m,n\geq 1}a_{m}
b_{n}\int_{0\leq x\leq 1}x^{s_{1}-1}dx\int_{0}^{\infty}e^{-2\pi(mx+n)y}y^{s_{1}+
s_{2}-1}dy
The right‐hand integral is a simple Mellin transform:

  \int_{0}^{\infty}e^{-2\pi(mx+n)y}y^{s_{1}+s_{2}-1}dy = (2\pi)^{-s_{1}-s_{2}}
\Gamma(s_{1}+s_{2})\frac{1}{(mx+n)^{s_{1}+s_{2}}}
It follows that

(4.3)   \Lambda(\theta_{1}, \theta_{2};s_{1}, s_{2})=(2\pi)^{-s_{1}-s_{2}}\Gamma(s_{1}
+s_{2})\sum_{m,n\geq 1}a_{m}b_{n}\int_{0}^{1}\frac{x^{s_{1}}}{(mx+n)^{s_{1}+
s_{2}}}\frac{dx}{x}
The hypergeometric integrals

  \int_{0}^{1}\frac{x^{s_{1}}}{(mx+n)^{s_{1}+s_{2}}}\frac{dx}{x}
reduce to rational functions in  m,  n when  s_{1},  s_{2} are integers, but not otherwise.

Lemma 4.3. If  p,  m,  n>0 are integers, then

  \frac{\Gamma(s+p)}{(p-1)!}\int_{0}^{1}\frac{x^{p}}{(mx+n)^{p+s}}\frac{dx}{x}=
\frac{\Gamma(s)}{m^{p}n^{s}}-\sum_{r=0}^{p-1}\frac{1}{r!}\frac{\Gamma(s+r)}{m^{p
-r}(m+n)^{s+r}}
Therefore, consider the Dirichlet series

 D(f, g;k, s)= \sum_{m,n\geq 1}\frac{a_{m}b_{n}}{m^{k}(m+n)^{s}}
which arose (in the case of cusp forms) in a similar form in [16], §3 and write

 \mathbb{D}(f, g;k, s)=(2\pi)^{-k-s}\Gamma(k)\Gamma(s)D(f, g;k, s)
When the first argument is a fixed integer, the double  \Lambda‐function  \Lambda(\theta_{f}, \theta_{g}) is a linear combination
of Dirichlet series, but this is not true in general:

Lemma 4.4. Let  p\geq 1 be an integer, and let  f,  g be modular forms for the full modular group
which are not necessarily cuspidal. Then

  \Lambda(f, g;p, s)=\Lambda(f,p)\Lambda(g, s)+\frac{a_{0}}{p}\Lambda(g, s+p)-
\frac{b_{0}}{s}\Lambda(f, s+p)-\sum_{r=0}^{p-1}  (\begin{array}{l}
p-1
r
\end{array})  \mathbb{D}(f, g;p-r, s+r)
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Proof. Use the definition of the double  \Lambda‐functions as an iterated integral

  \Lambda(f, g;p, s)=\int_{0}^{\infty}\theta_{f}^{0}\theta_{g}^{0}+\theta_{f}
^{\infty}\theta_{g}^{0}-\theta_{g}^{\infty}\theta_{f}^{0},
expand as above and apply the previous lemma.  \square 

By varying  p in the previous lemma we can express each  \mathbb{D}(f, g;p, s) as a linear combination of
products of two single  A‐functions, and double  A‐functions in which the first argument is constant.
It follows that  \mathbb{D}(f, g;p, s) admits a memorphic continuation to  \mathbb{C}.

5. VARIANTS

Some naturally occurring Dirichlet series require a slight modification of §2.3.

5.1. Examples.

Example 5.1. One can apply the definition of an  L‐fUnction to mixed motives. For instance,
for a direct sum  M\oplus N , the definitions give

 L(M\oplus N;s)=L(M;s)L(N;s) .

We are thus led to consider products of Dirichlet series. We require that their completed L‐
functions have distinct poles and that their product satisfies a functional equation (this happens,
for example: if  M,  N are pure and have the same weight, or if  N\cong M^{\vee}(n) for some  n\in \mathbb{Z} ).

Example 5.2. If one considers motives  M over rings of integers, it can happen that  L(M;s) and
 L(gr^{W}M;s) differ by a finite number of Euler factors [20].

For  p prime, consider  M=H^{1}(\mathbb{P}^{1}\backslash \{0, \infty\}, \{1,p\}) which is an extension

 0arrow \mathbb{Q}arrow Marrow \mathbb{Q}(-1)arrow 0

(e.g., in the category  \mathcal{M}T(\mathbb{Z}[1/p]) of mixed Tate motives over  \mathbb{Q} ramified only at  p). One of its
periods is  \log p . Its  L‐fUnction is

 L(M;s)=(1-p^{-s})\zeta(s)\zeta(s-1)

which differs from  \zeta(s)\zeta(s-1)=L(\mathbb{Q}\oplus \mathbb{Q}(-1);s) by a single Euler factor.
Similar examples include Dirichlet’s  \lambda and  \eta functions:

(5.1)  L_{\lambda}(s) = (1-2^{-s}) \zeta(s)=\sum_{n\geq 1}\frac{1}{(2n+1)^{s}}
 L_{\eta}(s) = (1-2^{1-s}) \zeta(s)=\sum_{n\geq 1}\frac{(-1)^{n}}{n^{s}}

The values of  L_{\eta}(s) at positive integers are called Euler sums, and are periods of simple extensions
of mixed Tate motives over   \mathbb{Z}[\frac{1}{2}] , i.e., ramified at the prime 2.

Example 5.3. (Eisenstein series.) Hecke’s formula for  L‐fUnctions applies to all modular forms,
not just cusp forms. Consider the Eisenstein series

  \mathbb{G}_{2k}=-\frac{b_{2k}}{4k}+\sum_{n\geq 1}\sigma_{2k-1}(n)q^{n}
where  \sigma denotes the divisor function. It definesa modular form of weight  2k and level one, for
all  k\geq 2 . Let   \mathbb{G}_{2k}^{0}=\mathbb{G}_{2k}+\frac{b_{2k}}{4k} denote the Eisenstein series with its zeroth Fourier coefficient

removed. Following Hecke, one defines

  \Lambda(\mathbb{G}_{2k};s)=\int_{0}^{\infty}\mathbb{G}_{2k}^{0}(\tau)\tau^{s}
\frac{d\tau}{\tau}
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which converges for  {\rm Re}(s)>2k . It coincides with our definition (4.1). It admits a meromorphic
continuation to  \mathbb{C} and satisfies the functional equation

 \Lambda(\mathbb{G}_{2k};s)=(-1)^{k}\Lambda(\mathbb{G}_{2k};2k-s) .

It can be written  \Lambda(\mathbb{G}_{2k};s)=(2\pi)^{-s}\Gamma(s)L(\mathbb{G}_{2k};s) where the  L‐series

 L( \mathbb{G}_{2k};s)=\sum_{n\geq 1}\frac{\sigma_{2k-1}(n)}{n^{s}}=\zeta(s)
\zeta(s-2k+1)
factorises as a product of zeta functions. One might think that the associated motive is  \mathbb{Q}(0)\oplus
 \mathbb{Q}(1-2k) but the gamma factors do not agree. Indeed, the completed  L‐function of the latter is
 \xi(s)\xi(s-2k+1) but in fact the completed  L‐function of the Eisenstein series is different:

(5.2)   \Lambda(\mathbb{G}_{2k};s)=(\frac{(s-1)(s-3)\ldots(s-2k+1)}{2(2\pi)^{k}})
\xi(s)\xi(s-2k+1) .

The polynomial prefactor in brackets plays an important role. The critical values of  \Lambda(\mathbb{G}_{2k};s)
will be defined to be the integers  s=1,  2k-1 . In this example it is not the  L‐fUnction which
has changed but rather the completed  L‐function.

5.2. Reminder on Mellin transforms. Recall that the Mellin transform

  \mathfrak{M}(f)(s)=\int_{0}^{\infty}f(t)t^{s}\frac{dt}{t}
for a suitable continuous function  f , satisfies the formal properties:

(5.3)  \mathfrak{M}(tf)(s) = \mathfrak{M}(f)(s+1)
 \mathfrak{M} (  f (tn))  =  n^{-s}\mathfrak{M}(f(t))

 s\mathfrak{M}(f) = -\mathfrak{M}(f't)
 \mathfrak{M}(f_{1}\star f_{2}) = \mathfrak{M}(f_{1})\mathfrak{M}(f_{2})

where the convolution is defined by

 (f_{1} \star f_{2})(t)=\int_{0}^{\infty}f_{1}(\frac{t}{x})f_{2}(x)\frac{dx}{x}
and all integrals are assumed to converge. We shall apply these operations to the functions  \theta^{0}

where  \theta satisfies §3, (1) and (2). They do not necessarily preserve these properties.

Remark 5.4. Since the gamma factor of a motivic  L‐fUnction is a product of gamma functions

  \frac{1}{2}\Gamma(\frac{s}{2}) , its inverse Mellin transform can be generated from a single function  e^{-t^{2}} using the opera‐
tions (5.3). Computing the expansions of multiple  L‐fUnctions (as in §4.3, for example), requires
us to study the larger class of functions generated by  e^{-t^{2}} under these operations together with
the extra operation of taking indefinite iterated integrals.

5.3. Operations on theta functions. The previous examples suggest the following natural
operations on  L‐functions of motives.

(L1) (Tate twists). Replacing  M by  M(n) shifts the argument:

 \Lambda (M(n), s) =\Lambda(M, s+n)

(L2) (Local factors). Changing one or more Euler factors amounts to multiplying  \Lambda(M;s) by
a polynomial in  n^{-s} , for some  n\in \mathbb{N}.

(L3) (Gamma factors). Modifying the gamma factors, via  \Gamma(s+1)=s\Gamma(s) , can be encoded
by multiplying  \Lambda(M;s) by a polynomial in  s.
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(L4) (Direct sums). Taking direct sums corresponds to multiplication:

 \Lambda(M\oplus M';s)=\Lambda(M;s)\Lambda(M';s)
Operations  (L1)-(L3) preserve the rank of  \gamma(s) , but (L4) does not.

We wish to apply the above operations in such a manner that our initial assumptions on the
 L‐fUnctions and, most importantly, their functional equations are respected.

By (5.3), these operations are generated on inverse Mellin transforms by:

(T1) (Multiplication by  t^{\pm} ) .  \theta(t)\mapsto t^{\pm}\theta(t) .

(T2) (Rescaling).  \theta(t)\mapsto\theta(nt) .

(T3) (Differentiating).  \theta(t)\mapsto-t\theta'(t) .

(T4) (Convolution product).  \theta_{1},  \theta_{2}\mapsto\theta_{1}\star\theta_{2}

5.4. New theta functions from old. Starting with the inverse Mellin transforms of a set of
motives §2.3, we shall allow ourselves to generate new theta functions using  (T1)-(T4) , provided
that they preserve the properties (1) and (2) of §3. For (T4) this means that  (\theta_{1}\star\theta_{2})^{0}=\theta_{1}^{0}\star\theta_{2}^{0}
will be a convolution integral, and  (\theta_{1}\star\theta_{2})^{\infty} must be a polynomial. It is uniquely determined
from  (\theta_{1}\star\theta_{2})^{0} by the inversion formula.

For example, one might multiply by  t^{-1} in (T1) but only on condition that  t^{-1}\theta^{0}(t) is still a
polynomial. Similarly, operation (T3) does not in general respect the inversion relation, but can
do when combined with the other operations. For example, combining (T1) and (T3) yields a
differential operator

 D_{w}\theta=-(w+1)t\theta'-t^{2}\theta"
which preserves the inversion formula  \theta(t^{-1})=\pm t^{w}\theta(t) in degree  w . By Mellin transform it
corresponds to multiplication by the factor  s(w-s) .

The operations described above can be codified by working in the  (\mathbb{N}\cross \mathbb{Z}/2\mathbb{Z}) ‐graded vector
space  \Theta(S) whose elements in degree  (w, \varepsilon) satisfy the inversion and growth properties §3, (1),
(2), and which is generated by the inverse Mellin transforms of a set  S of motives. The space
 \Theta(S) is stable under certain combinations of operators  (T1)-(T4) .

Remark 5.5. (Multiplicative structure). There is another operation on the graded space of theta
functions, which is multiplication. Its counterpart for  L‐functions is a convolution operation
which is quite alien from an arithmetic perspective.

Nonetheless, iterated integrals essentially subsume multiplication, since

  \int\theta_{1}'dt\theta_{2}dt=\int(\theta_{1}\theta_{2})dt
where the integral on the left is a double iterated integral, and the one on the right is a single
integral of the product of  \theta_{1} and  \theta_{2} . This gives a first hint as to why one can find unexpected
periods arising out of multiple  L‐fUnctions associated to motives.

6. MULTIPLE  A‐VALUES AND PERIODS

6.1. Totally critical values. Starting from a finite collection of motives and their inverse Mellin
transforms, we can generate a space of theta functions following §5.4, and consider the asso‐
ciated multiple  L‐fUnctions of §3. The next two paragraphs give examples where the values
 \Lambda(\theta_{1}, \ldots, \theta_{r};n_{1}, \ldots, n_{r}) are related to interesting periods. In all these examples, the values of  n_{i}

are integers of the following form.

Definition 6.1. Call  n_{1},  n_{r}\in \mathbb{Z} totally critical for  \theta_{1},  \theta_{r} if, for each  i,  n_{i} is critical for  \theta_{i}.
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Since we have not defined critical values for arbitrary theta functions, this definition has limited
value. However, when  \theta_{M} is the inverse Mellin transform of a simple motive  M , the standard
definition §2.4 applies. When  \theta=\theta_{f} is associated to a modular form  f of weight  w\in \mathbb{N} , we say
that the critical values of  \theta_{f} are  1\leq n\leq w-1 . This agrees with the usual definition for cusp
forms, but, strictly speaking, falls outside its scope when  f is an Eisenstein series (example 5.3).

Example 6.2. Suppose that  \theta_{i}=\theta_{f_{\dot{i}}} , where  f_{i} are modular forms of integer weight  w_{i}\geq 2 for a
congruence subgroup of  SL_{2}(\mathbb{Z}) . The totally critical values

 \Lambda(\theta_{1}, \ldots, \theta_{r};n_{1}, \ldots, n_{r}) for  0<n_{i}<w_{i} ,

are called totally holomorphic multiple modular values and can be interpreted as periods of
the relative completion [12] of the fundamental groupoid of the underlying modular curve, with
possible tangential base points. Examples of level one were given in the first half of this talk [2]
and illustrate some of the phenomena which can arise.

6.2. Remarks. It is tempting to ask if every totally critical value of a multiple  L‐fUnction
 \Lambda(\theta_{1}, \ldots, \theta_{r};n_{1}, \ldots, n_{r}) is a period. Considerable caution is required in the case where the  \theta_{i}
are associated to motives of higher rank  >2 (or have varying ranks), since I currently know of
no examples where this is either true or false for  r\geq 2.

In low ranks, examples suggest that if each  \theta_{i} is the theta function associated to a simple mo‐
tive, then the totally critical values  \Lambda(\theta_{1}, \ldots, \theta_{r};n_{1}, \ldots, n_{r}) are non‐effective periods of coradical
(unipotency) filtration  \leq r-1 (see for example, theorem 22.2 of [4]). If true, this would be con‐
sistent with Deligne’s conjecture in the classical case  r=1 , since a period of coradical filtration
zero is a pure period [6]. Note that the  L‐fUnction of an Eisenstein series, as in example 5.3, has
a critical value which is an odd zeta value and hence has coradical filtration 1.

One might think that  \Lambda(\theta_{1}, \ldots, \theta_{r};n_{1}, \ldots, n_{r}) is a period of an iterated extension of tensor
products of the motives one intially starts with. This is not quite the case because of the appear‐
ance of secondary or ‘convolution’ periods which are not unrelated to the multiplicative structure
on theta functions (remark 5.5). However, [2] gives many examples where, by taking appropriate
linear combinations of totally critical values, it is possible to remove these additional periods.
The Ihara‐Takao equation and its variants are examples of this phenomenon.

If we allow ourselves to speculate even further, then we might hope that a certain class of
periods (defined using the Hodge filtration) of all possible iterated extensions of motives of a
given type would be expressible in terms of multiple  L‐values (see theorem 8.1 for an example).
A simple situation where this could potentially occur is captured by the following:

Conjecture 1. Let  \mathcal{E} be an extension of  \mathbb{Q} by  M in a suitable category of realisations of motives2
over  \mathbb{Q} , where  M is of rank 2 and has weight  m\leq-2 , i.e.,

 0arrow Marrow \mathcal{E}arrow \mathbb{Q}arrow 0 .

Assume  M_{dR} is not of type  (m, m) , so  F^{m}\mathcal{E}_{dR} is two‐dimensional. We conjecture that

 comp_{B,dR}(\wedge^{2}F^{m}\mathcal{E}_{dR}) \subseteq \wedge^{2}\mathcal{E}
_{B}\otimes_{\mathbb{Q}}R
where  R is the vector space over  \overline{\mathbb{Q}}[2\pi i] generated by the multiple  \Lambda‐values of length at most two
generated from the theta functions of the objects  \mathbb{Q} and  M.

In suitable bases of  \mathcal{E}_{B} and  \mathcal{E}_{dR} , the comparison isomorphism has the period matrix

 (\begin{array}{lll}
\eta^{+}   \omega^{+}   \alpha
 i\eta^{-}   i\omega^{-}   i\beta
 0   0   1
\end{array})
 2_{for} instance the Tannakian category generated by the Betti and de Rham realisations of  H^{n}(X\backslash A, B\backslash (A\cap B)) ,

where  X is smooth projective over  \mathbb{Q} , and  A,  B are a simple normal crossing divisor with no common components.
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where the top left hand  2\cross 2 square matrix is a period matrix for  M and  \eta^{\pm},  \omega^{\pm},  \alpha,  \beta are real. The
image of the subspace  F^{m}\mathcal{E}_{dR}\subset \mathcal{E}_{dR} is spanned by the right‐most two columns. The conjecture
states that  i(\omega^{+}\beta-\alpha\omega^{-}),  \omega^{+},  i\omega^{-} are expressible in terms of single or double  A‐values (for the
latter two numbers, this is Deligne’s conjecture). Note that Beilinson’s conjecture already relates
the quantity   i\beta to the  L‐function of  M . The content of the above conjecture is to explain  \alpha,

which is only well‐defined up to addition of a rational (since in the above period matrix, one can
add a rational multiple of the third row to the first). See [2], §7 for an example.

6.3. Multiple Dirichlet series. It is important to point out that the integer values of multiple
 L‐functions are in general different from values of ‘multiple Dirichlet series’, e.g.,

  \sum_{n_{1},\ldots,n_{r}\geq 1}\frac{a_{n_{1}}^{(1)}..\cdot.\cdot\cdot 
a_{n_{r}}^{(r)}}{n_{1}^{k_{1}}(n_{1}+n_{2})^{k_{2}}(n_{1}+}. . .  +n_{r})^{k_{r}}

(i)where  a_{m} are the coefficients of Dirichlet series. Multiple  L‐values are linear combinations of

  \sum_{n_{1},\ldots,n_{r}\geq 1}a_{n_{1}}^{(1)}\ldots a_{n_{r}}^{(r)}H(n_{1}, 
\ldots, n_{r})
for some ‘binding functions’  H which are hypergeometric. However, there exist examples where
multiple Dirichlet series are in fact totally critical values of multiple  L‐fUnctions (see, for example,
theorem 8.1). Similarly, Horozov has defined multiple Dedekind zeta values associated to number
fields [13]. They do not appear to be related to the multiple  L‐functions defined in §6, but this
does not rule out a connection between the two kinds of objects.

7. EXAMPLE: MODULAR FORMS OF WEIGHT TWO

Let  N\geq 1 and let  f_{1},  f_{r} be modular forms of weight two for  \Gamma\leq\Gamma_{0}(N) of finite index.
For simplicity, suppose that they have no poles at the cusps  \tau=\{0, i\infty\} . We can assume that
the  f_{\dot{i}} are eigenfunctions for the involution   \tau\mapsto-\frac{1}{N\tau} , i.e.,

 f_{i}(- \frac{1}{N\tau})=-\varepsilon_{i}N\tau^{2}f_{i}(\tau) for all  1\leq i\leq r .

The associated theta functions are  \theta_{i}(t)=f(itN^{-1/2}) and satisfy  \theta_{i}(t^{-1})=\varepsilon_{i}t^{2}\theta_{i}(t) . By assump‐
tion, the  \theta_{i}^{\infty} vanish for all  i , so there will be no need to regularise any integrals. Note that the
 f_{\dot{i}} are allowed to have poles at other cusps besides  0,   i\infty . The construction of §3 gives rise to
multiple  \Lambda‐functions satisfying

 \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r})=\varepsilon_{1}
\ldots\varepsilon_{r}\Lambda(\theta_{r}, \ldots, \theta_{1};2-s_{r}, \ldots, 2-
s_{1}) ,

and which have a unique totally critical (central’) value

 \Lambda(\theta_{1}, \ldots, \theta_{r};1, \ldots, 1) .

It is related to periods as follows. Let  \overline{X}_{\Gamma} denote the corresponding compactified modular curve.
It is convenient to work over a number field  k\subset \mathbb{C} which contains  \sqrt{N} , such that  \overline{X}_{\Gamma} , its cusps,
and we assume,  f_{1},  f_{r} are all defined over  k . Let  X_{\Gamma}=\overline{X}_{\Gamma}\backslash D where  D is the union of all
cusps except those corresponding to  \tau=\{0, i\infty\} . When the  f_{i} are Hecke eigenforms, the  \theta_{i} are
the inverse Mellin transforms of the  L‐fUnctions of the associated submotives  M_{f_{i}}\subset H^{1}(X_{\Gamma};k)
which are eigenspaces for the action of Hecke operators [19] and have rank 1 or 2.

Theorem 7.1. The central values  \pi^{r}\Lambda(\theta_{1}, \ldots, \theta_{r};1, \ldots, 1) are periods of a subquotient of the
affine ring of the unipotent fundamental groupoid of  X_{\Gamma}/k with basepoints given by the image of  0

and   i\infty . More precisely, they are effective periods of weight and Hodge filtration  r of an iterated
extension of Tate twists of the pure objects  H^{1}(\overline{X}_{\Gamma};k)^{\otimes j} , where  0\leq j\leq r.
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Proof. Since all  \theta_{i}^{\infty} vanish, we have the convergent iterated integral representation

 (2 \pi)^{r}\Lambda(\theta_{1}, \ldots, \theta_{r};1, \ldots, 1)=(2\pi)^{r}\int_
{0}^{\infty}f_{1}(iN^{-1/2}t)dt\ldots f_{r}(iN^{-1/2}t)dt.
By changing variables  \tau=iN^{-1/2}t , this equals the iterated integral

 (- \sqrt{N})^{r}\int_{0}^{i\infty}(2\pi if_{1}(\tau)d\tau)\ldots(2\pi if_{r}
(\tau)d\tau) .

Let  \omega_{j}=2\pi if_{j}(\tau)d\tau for all  j . Since   \omega_{j}\in\Gamma(\overline{X}_{\Gamma}, \Omega\frac{1}{X}\Gamma(\log D)) , this integral is proportional by an

element in  k^{\cross} to the iterated integral on  X_{\Gamma}(\mathbb{C})

  \int_{\gamma}\omega_{1}\ldots\omega_{r}
where  \gamma is a geodesic path between the cusps  x_{0},  x_{\infty} defined by the images of  0,   i\infty . It is a period
of the unipotent fundamental groupoid since

 \omega_{1}\otimes\ldots\otimes\omega_{r} \in W_{r}F^{r}\mathcal{O}(\pi_{1}^{dR}
(X_{\Gamma}/k;x_{0}, x_{\infty}))
and since  \gamma defines an element  \gamma^{B}\in\pi_{1}^{B}(X_{\Gamma}/k;x_{0}, x_{\infty})(\mathbb{Q}) . By Beilinson’s geometric construction
[10], this iterated integral can be interpreted, in any suitable category of realisations, as a period
of the relative cohomology group  H^{r}(X_{\Gamma}^{r}, Y) where  Y is the normal crossing divisor (to be slightly
modified in the case  x_{0}=x_{\infty} , see [10], §3)

 (\{x_{0}\}\cross X_{\Gamma}^{r-1})\cup\triangle_{1,2}\cup\ldots\cup\triangle_{r
-1,r}\cup(X_{\Gamma}^{r-1}\cross\{x_{\infty}\})
and  \triangle_{i,j} denotes the diagonal in  X_{\Gamma}^{r} where the ith and jth coordinates coincide. The state‐
ment about extensions follows easily from the standard cohomology spectral sequence for relative
cohomology which satisfies

 E_{1}^{pq}= \bigoplus_{i_{1},\ldots,i_{p}}H^{q}(Y_{i_{1}}\cap\ldots\cap 
Y_{i_{p}})
where the  Y_{i} are irreducible components of  Y . Since   Y_{i_{1}}\cap  \cap Y_{i_{p}} is isomorphic to a product

 X_{\Gamma}^{r-p} , it follows from the Künneth formula that  H^{r}(X_{\Gamma}^{r}, Y) is an iterated extension of tensor
products of the objects  H^{i}(X_{\Gamma}) . These are pure Tate for  i\neq 1 . Furthermore,  H^{1}(X_{\Gamma}) is itself an
extension of the required type by Gysin:

 0arrow H^{1}(\overline{X}_{\Gamma})arrow H^{1}(X_{\Gamma})arrow H^{0}(D)(-1)
arrow H^{2}(X_{\Gamma})
since  H^{0}(D)(-1) is Tate over  k.  \square 

We claim that the periods in the theorem have coradical filtration  \leq r , and furthermore if one
of the  \theta_{i} ’s is cuspidal, then this drops to  \leq r-1.

Remark 7.2. One can get rid of the  (\sqrt{N})^{r} occuring in this proof by working with  L^{*}(\theta_{1}, \ldots, \theta_{r})
instead of  \Lambda(\theta_{1}, \ldots, \theta_{r}) via (3.1). Since algebraic numbers are periods this does not affect the gist
of the theorem. Similar remarks apply in the next paragraphs, but it is more convienent to state
our results in terms of the functions  \Lambda.

8. EXAMPLE: MIXED TATE MOTIVES OVER  \mathbb{Z}

Mixed Tate motives over the integers are one of the few classes of mixed motives whose periods
are completely known [3]. Indeed, as discussed in the first half of this talk [2], they are  \mathbb{Q}[(2\pi i)^{-1} ] ‐
linear combinations of multiple zeta values

  \zeta(n_{1}, \ldots, n_{r})=\sum_{1\leq k_{1}<..<k_{r}}.\frac{1}{k_{1}^{n_{1}}
\ldots k_{r}^{n_{r}}}
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where  n_{r}\geq 2 . In this paragraph, we shall show that they are totally critical values of multiple
 L‐fUnctions derived from the trivial motive  \mathbb{Q} . This is not the only way in which this could be
achieved, but possibly one of the simplest.

8.1. A pair of  L‐functions. One might hope that the periods of all mixed Tate motives over  \mathbb{Z}

arise as values of the multiple Riemann  \xi‐fUnction. I do not know if this is the case. One problem
with this function is that there is no integer point which lies within the critical box  0<s<1 at
which it can be evaluated. Instead, we could start with the motivic  L‐fUnction associated to a
direct sum of Tate motives  \mathbb{Q}(0)\oplus \mathbb{Q}(-1) . It is a product of two Riemann  \xi‐fUnctions  \xi(s)\xi(s-1) ,
whose functional equation is  s\mapsto 2-s , but has a double pole at  s=1 . Consider the following
variants which have modified Euler factors at the prime 2, and no pole at  s=1

  \Lambda_{+}(s) = \frac{2}{\pi}(s-1)(2^{S}-2^{2-s})\xi(s)\xi(s-1)
  \Lambda_{-}(s) = -\frac{12}{\pi}(s-1)(2^{s-1}-1)(1-2^{1-s})\xi(s)\xi(s-1)

They are generated from  \xi(s)=\Lambda(\theta_{\mathbb{Q}}, s) from the operations  (L1)-(L4) and satisfy

 \Lambda_{\pm}(s)=\varepsilon\pm\Lambda_{\pm}(2-s)

where  \varepsilon+=1 and  \varepsilon_{-}=-1 . The point  s=1 is critical, since by the duplication formula (2.1),
the above functions can be expressed in the form

 \Lambda_{\pm}(s)=\pi^{-s}\Gamma(s)L_{\pm}(s)

where  L_{\pm}(s) are the following Dirichlet series:

 L_{+}(s) = 8\zeta(s)((1-4^{1-s})\zeta(s-1))
 L_{-}(s) = -24((1-2^{1-s})\zeta(s))((1-2^{1-s})\zeta(s-1))

The second is a product  L_{-}(s)=-24L_{\eta}(s)L_{\lambda}(s-1) of Dirichlet’s functions (5.1). Denote their
inverse Mellin transforms by  \theta_{\pm}(t) . They satisfy

 \theta\pm(t^{-1})=\varepsilon\pm t^{2}\theta_{\pm}(t) .

They are generated, perhaps artificially, from the theta function of the trivial motive  \theta_{\mathbb{Q}} , using
operations  (T1)-(T4) .

8.2. Totally critical values. Consider the associated multiple  \Lambda‐functions

 \Lambda(\theta_{\pm}, \ldots, \theta_{\pm};s_{1}, \ldots, s_{r})

and their totally critical values for  s_{1}=  =s_{r}=1.
From the expressions above we deduce that:

 \pi\Lambda(\theta_{+};1)=-8\log(2) \Lambda(\theta_{-};1)=0 .

The number  \log(2) is a period of a mixed Tate motive over   \mathbb{Z}[\frac{1}{2}] (example 5.2).

Theorem 8.1. Each of the  2^{r} multiple  \Lambda functions of length  r

(8.1)  \pi^{r}\Lambda(,\pm, .., \theta\pm;1, .., 1)\tilde{r}.\tilde{r}.
can be written as a polynomial in  \log(2) whose coefficients are multiple zeta values. This polyno‐
mial is homogenous of weight  r , where  \log(2) has weight 1 and the weight of a multiple zeta value
is the sum of its arguments. Every multiple zeta value arises in this way. Thus, the  Q ‐algebra
generated by the numbers (8.1) is equal to the  \mathbb{Q}[\log(2)] ‐algebra generated by multiple zeta values.
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Proof. The projective line minus 3 points admits a modular parametrization

 z:X_{0}(4)arrow^{\sim}\mathbb{P}^{1}\backslash \{0,1, \infty\},
where  X_{0}(4) is the quotient of the upper half plane by  \Gamma_{0}(4) and

(8.2)  z=( \frac{\theta_{2}(\tau)}{\theta_{3}(\tau)})^{4}=16q-128q^{2}+704q^{3}-3072q^
{4}+
using notation (10.1). Consider the one forms   \omega_{0}=\frac{dz}{z} and   \omega_{1}=\frac{dz}{1-z} on  \mathbb{P}^{1}\backslash \{0,1, \infty\} . By
computing finitely many Fourier coefficients, one finds that

 \omega_{-}:=\omega_{0}+\omega_{1}=2\pi i\theta_{-}(2\tau)d\tau

 \omega_{+}:=\omega_{0}-\omega_{1}=2\pi i\theta_{+}(2\tau)d\tau
where  \theta_{\pm}(2\tau) are the modular forms of weight 2 for  \Gamma_{0}(4) given by

(8.3)  \theta_{+}(2\tau)=\theta_{3}^{4}=8\mathbb{G}_{2}(q)-32\mathbb{G}_{2}(q^{4})
 =1+8q+24q^{2}+32q^{3}+24q^{4}+48q^{5}+

 \theta_{-}(2\tau)=2\theta_{4}^{4}-\theta_{3}^{4}=-24\mathbb{G}_{2}(q)+96\mathbb
{G}_{2}(q^{2})-96\mathbb{G}_{2}(q^{4})
 =1-24q+24q^{2}-96q^{3}+24q^{4}-144q^{5}+

Note that  \omega_{-} (respectively  \omega_{+} ) is invariant (resp. anti‐invariant) under the involution  z\mapsto 1-z,
which corresponds to the reflection formula  t\mapsto t^{-1} in the Mellin variable  t={\rm Im}(2\tau) . It follows
from the  q‐expansion (8.2) that the unit tangent vector at the cusp   i\infty corresponds to the tangent
vector

 16 \frac{\partial}{\partial z}=\frac{\partial}{\partial q}
of length 16 on  \mathbb{P}^{1}\backslash \{0,1, \infty\} at the origin. Similarly, the image of   \frac{\partial}{\partial q} under  t\mapsto t^{-1} corresponds
to the tangent vector of length  -16 at  z=1 . It follows from the definition of a multiple  A‐value
of length  \ell as an iterated integral and functoriality that

(8.4)  (- \pi)^{\ell}\Lambda(\theta_{\pm}, \ldots, \theta_{\pm};1, \ldots, 1)=
\int_{\vec{16}_{0}}^{-\vec{16}_{1}}\omega\pm\cdots\omega\pm
where  \vec{16}_{0} is the tangent vector of length 16 at  0 , etc, and the path of integration is

 dch_{16}=\gamma_{1}^{16}0 dch  \circ\gamma_{0}^{16}
where  \gamma_{0}^{16} is a path inside the tangent space  T_{0}\mathbb{P}^{1} from 16 to 1, and  \gamma_{1}^{16} is a path inside  T_{1}\mathbb{P}^{1}
from 1 to 16. By composition of paths, we deduce that (8.4) is

(8.5)   \sum_{0\leq\dot{i}\leq j\leq\ell}\int_{\gamma_{1}^{16}}\omega\pm\cdot\cdot\sim
\omega_{\pm}\cross\int_{dch}\omega\pm\cdots\omega\pm\dot{i}.
\cross\int_{\gamma_{1}^{16}}\omega\pm_{\tilde{\ell-j}}\omega\pm
Since the residues of  \omega_{+},  \omega_{-} at zero both equal 1, the leftmost integrals reduce to

  \int_{\gamma_{1}^{16}}\omega\pm\cdots\omega\pm\tilde{i}=\int_{16}^{1}
\omega_{0}\ldots\omega_{0}=\frac{(-\log(16))^{i}}{i!}
These integrals take place on the punctured tangent space  \mathbb{G}_{m} of  \mathbb{P}^{1} at  0 . The right‐most integrals
of (8.5) likewise give powers of  \log(2) , but this time with a sign depending on the integrand (equal
to the number of  \omega_{+}' s ). We conclude that

  \pi^{\ell}A(\theta_{\pm}, \ldots, \theta_{\pm};1, \ldots, 1)= \sum 
\pm\frac{\log^{i}(16)}{;!}\frac{\log^{\ell-j}(16)}{(\ell-\dot{j})!}\int_{dch}
\omega\pm\cdots\omega\pm,
  0\leq i\leq j\leq\ell
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where every middle integral in (8.5) is a period of  \pi_{1}^{\mathfrak{m}}(\mathbb{P}^{1}\backslash \{0,1, \infty\}, \vec{1}_{0}, -
\vec{1}_{1}) with respect to dch,
which are multiple zeta values. Furthermore, to leading order,

 (- \pi)^{\ell}\Lambda(\theta_{\pm}, \ldots, \theta_{\pm};1, \ldots, 1)=
\int_{dch}\omega\pm\cdots\omega_{\pm}+\log(16)(\cdots)
where the term in brackets only involves multiple zeta values of lower weight and powers of
 \log(16) . Since  \omega\pm generate a basis for  H_{dR}^{1}(\mathbb{P}^{1}\backslash \{0,1, \infty\};\mathbb{Q}) , and 2  \log(16)=\pi\Lambda(\theta_{+};1) , we
can use the shuffle product formula for multiple  A‐values and induction to conclude that every
multiple zeta value of weight  w can be written as a  \mathbb{Q}‐linear combination of multiple  A‐values
 \Lambda(\theta_{\pm}, \ldots, \theta_{\pm};1, \ldots, 1) of length  w.  \square 

For example,

 \pi^{2}\Lambda(\theta_{-}, \theta_{+};1,1)  =   2 \zeta(2)-\frac{2}{2!}\log (16)2

  \pi^{3}\Lambda(\theta_{-}, \theta_{-}, \theta_{+};1,1,1) = 4\zeta(3)+2\log(16)
\zeta(2)-\frac{2}{3!}\log(16)^{3}
Remark S.2. We showed that (S.1) generate all periods of  \pi_{1}^{\mathfrak{m}}(\mathbb{P}^{1}\backslash \{0,1, \infty\}, \vec{1}_{0}, -
\vec{1}_{1}) , which in turn
generates all mixed Tate motives over  \mathbb{Z} , by the motivic version of the Deligne‐Ihara conjecture
[3, 2]. Therefore all periods of mixed Tate motives over  \mathbb{Z} can be expressed as totally critical
values of multiple  A‐functions. The point is to interpret certain linear combinations of   \frac{dz}{z} and

  \frac{dz}{i-} as inverse Mellin transforms of  L‐fUnctions.

8.3. Alternative approaches. One can also construct all periods of  \mathcal{M}T(\mathbb{Z}) as iterated Eisen‐
stein integrals, via Saad’s theorem [2]. Here is a slightly different approach. Suppose we wish to
construct the periods of a bi‐extension of  \mathbb{Q},  \mathbb{Q}(-3),  \mathbb{Q}(-12) . By [2] §3, this problem is fiendish
when expressed using multiple zeta values. However, the following ad‐hoc argument seems to
work. The  A‐functions of its weight graded pieces are  \xi(s),  \xi(s-3),  \xi(s-12) . By convoluting
 \xi(s) and  \xi(s-3) (respectively  \xi(s-3),  \xi(s-12) ), one can obtain  \Lambda(\mathbb{G}_{4};s) and  \Lambda(\mathbb{G}_{10};s-3) as in
example 5.3. Their critical values capture the periods of extensions of  \mathbb{Q}(-3) by  \mathbb{Q} , and  \mathbb{Q}(-12)
by  \mathbb{Q}(-3) . From these, we obtain the function  \Lambda(\mathbb{G}_{4}, \mathbb{G}_{10};s_{1}, s_{2}) . The combination of totally
crıtical values   \Lambda(\mathbb{G}_{4}, \mathbb{G}_{10};1,1)-\frac{2520}{691}
\Lambda(\mathbb{G}_{4}, \mathbb{G}_{10};3,5) supplies the remaining period ([2], §7.2).

9. MULTIPLE RIEMANN  \xi‐FUNCTION

The simplest possible example of an iterated Mellin transform is where all  \theta_{i}=\theta_{\mathbb{Q}} are associated
to the trivial motive  \mathbb{Q}=H^{0}({\rm Spec} \mathbb{Q}) .

Definition 9.1. Define the multiple Riemann  \xi‐function to be

 \xi(s_{1}, \ldots, s_{r})=\Lambda(\theta_{\mathbb{Q}}, \ldots, 
\theta_{\mathbb{Q}};s_{1}, \ldots, s_{r}) .

It reduces to the classical Riemann  \xi‐fUnction when  r=1.

Theorem 1.1 follows easily from theorem 3.1, together with some simple calculations of residues
along the lines of example 4.2.

Remark 9.2. The functions  \xi(s_{1}, \ldots, s_{r}) should not be confused with the multiple zeta functions
which are defined for large  {\rm Re}(s_{i}) by:

  \zeta(s_{1}, \ldots, s_{r})=\sum_{1\leq k_{1}<..<k_{r}}.\frac{1}{k_{1}^{s_{1}}
\ldots k_{r}^{s_{r}}}
and were essentially first defined by Euler. The proof of their meromorphic continuation to  \mathbb{C}^{r} is
much more recent [23]. They have poles along infinitely many hyperplanes, but a functional equa‐
tion valid for all  s_{i} is not known to my knowledge. The functions  \xi(s_{1}, \ldots, s_{r}) and  \zeta(s_{1}, \ldots, s_{r})
are not related in any obvious way when  r>1.
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The positive critical values of the Riemann zeta function are even integers. Therefore the
totally critical positive values of  \xi(s_{1}, \ldots, s_{r}) are also the even integers.

9.1. Totally even values and multiple quadratic sums. We can express the totally even
positive values of  \xi(s_{1}, \ldots, s_{r}) in terms of the following quantities.

Definition 9.3. For any integers  k_{1},  k_{r}\geq 1 define the multiple quadratic sum:

 Q(k_{1},  \ldots, k_{r})=\sum_{n_{1},\ldots,n_{r}\geq 1}\frac{1}{(n_{1}^{2}+
\ldots+n_{r}^{2})^{k_{1}}\ldots(n_{r-1}^{2}+n_{r}^{2})^{k_{r-1}}(n_{r}^{2})
^{k_{r}}}
It converges. Let us call  2k_{1}+\ldots+2k_{r} the weight, and  r the depth.

If  k_{1}\geq 2 , and we replace every exponent 2 with a 1, we obtain

  \sum_{n_{1},\ldots,n_{r}\geq 1}\frac{1}{(n_{1}+\ldots+n_{r})^{k_{1}}
\ldots(n_{r-1}+n_{r})^{k_{r-1}}n_{r}^{k_{r}}}=\sum_{m_{1}>\ldots>m_{r}\geq 1}
\frac{1}{m_{1}^{k_{1}}m_{2}^{k_{2}}\ldots m_{r}^{k_{r}}}
which is nothing other than a multiple zeta value  \zeta(k_{r}, k_{r-1}, \ldots, k_{1}) .

Theorem 9.4. Let  \ell_{i} be integers  \geq 1 , and set  \ell=\ell_{1}+\ldots+\ell_{r} . Then every totally even multiple
 \xi ‐value  \pi^{\ell}\xi(2\ell_{1}, \ldots, 2\ell_{r}) is a  Q ‐linear combination of multiple quadratic sums  Q(k_{1}, \ldots, k_{p}) of
weight   2\ell and depth  \leq r , i. e.,   k_{1}+\ldots+k_{p}=\ell , and  p\leq r.

Proof. Assume that all  {\rm Re}(s_{i})>1 , and define

(9.1)  D(s_{1},  \ldots, s_{r})=\int_{0\leq t_{1}\leq\ldots\leq t_{r}\leq\infty}
\theta_{\mathbb{Q}}^{0}(t_{1})t_{1}^{s_{1}-1}dt_{1}\ldots\theta_{\mathbb{Q}}^{0}
(t_{r})t_{r}^{s_{r}-1}dt_{r} .

Expanding out the theta functions and exchanging summation and integration gives

 2^{r} \sum_{m_{1},\ldots,m_{r}\geq 1}\int_{0\leq t_{1}\leq\ldots\leq t_{r}
\leq\infty}e^{-\pi(m_{1}^{2}t_{1}^{2}+\ldots+m_{r}^{2}t_{r}^{2})}t_{1}^{s_{1}-1}
\ldots t_{r}^{s_{r}-1}dt_{1}\ldots dt_{r} .

Now write  s_{i}=2\ell_{i} . After changing variables  u_{i}=t_{i}^{2} this reduces to

  \sum_{m_{1},\ldots,m_{r}\geq 1}\int_{0\leq u_{1}\leq\ldots\leq u_{r}
\leq\infty}e^{-\pi(m_{1}^{2}u_{1}+\ldots+m_{r}^{2}u_{r})}u_{1}^{\ell_{1-1}}
\ldots u_{r}^{\ell_{r-1}}du_{1}\ldots du_{r} .

For any integer  \ell\geq 1 one has the following identity

  \int_{v}^{\infty}e^{-\pi m^{2}u}u^{\ell-1}du=\frac{P_{\ell}(\pi m^{2}v)}
{m^{2\ell}\pi^{\ell}}e^{-\pi m^{2}v}
where  P_{\ell} is a polynomial with integer coefficients of degree  \ell-1 . If one applies it to the previous
integral and integrates out the variables  u_{r},  u_{r-1},  u_{1} in turn, one obtains an integer linear
combination of terms of the form

  \frac{\pi^{-\ell}}{(m_{r}^{2})^{a_{r}}(m_{r}^{2}+m_{r-1}^{2})^{a_{r-1}}
\ldots(m_{r}^{2}+m_{r-1}^{2}+\ldots+m_{1}^{2})^{a_{1}}}
where  \ell=\ell_{1}+\ldots+\ell_{r}=a_{1}+  +a_{r} and  1\leq a_{r}\leq\ell_{r},   1\leq a_{r-1}\leq\ell_{r}+\ell_{r-1}-1,1\leq a_{r-2}\leq
 \ell_{r}+\ell_{r-1}+\ell_{r-2}-2 , and so on.

This shows that  \pi^{r}D(2\ell_{1}, \ldots, 2\ell_{r}) is an integer linear combination of  Q(k_{1}, \ldots, k_{r}) where  k_{1}+
 +k_{r}=\ell . To conclude, apply the definition of the regularised iterated integral with respect to

a tangential base point §3.2 to express  \xi(2\ell_{1}, \ldots, 2\ell_{r}) as an isobaric rational linear combination
of  D(2n_{1}, \ldots, 2n_{p}) for  p\leq r.  \square 
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Example 9.5. Following the procedure in the previous proof, we find that

 D(2 \ell_{1},2\ell_{2})=\frac{(\ell_{1}-1)!(\ell_{2}-1)!}{\pi^{\ell_{1}+
\ell_{2}}}\sum_{k=0}^{\ell_{2}-1}  (\begin{array}{l}
\ell_{1}+k-1
k
\end{array})  Q(\ell_{1}+k, \ell_{2}-k)

for  \ell_{1},  \ell_{2}\geq 1 integers. In particular, we have:

  \pi^{2}D(2,2) = Q(1,1) = \sum_{m,n\geq 1}\frac{1}{(m^{2}+n^{2})n^{2}} = \frac{
\pi^{4}}{72}
  \pi^{3}D(2,4) = Q(1,2)+Q(2,1) = \sum_{m,n\geq 1}\frac{1}{(m^{2}+n^{2})n^{4}}+
\frac{1}{(m^{2}+n^{2})^{2}n^{2}}
  \pi^{3}D(4,2) = Q(2,1) = \sum_{m,n\geq 1}\frac{1}{(m^{2}+n^{2})^{2}n^{2}}

Formula (4.2) implies that

  \xi (s_{1}, s_{2})=D(s_{1}, s_{2})+(\frac{1}{s_{1}}-\frac{1}{s_{2}})\xi(s_{1}+
s_{2}) ,

which enables us to deduce a formula for  \xi(2\ell_{1},2\ell_{2}) . For instance, we find that

  \frac{\pi^{\ell+1}}{(\ell-1)!}\xi(2\ell, 2)=(\sum_{m,n\geq 1}\frac{1}{(m^{2}+
n^{2})^{\ell}n^{2}})+(\frac{1-\ell}{2})(\sum_{m\geq 1}\frac{1}{m^{2\ell+2}})
for all values of  \ell\geq 1 . Conversely, every multiple quadratic sum of depth  \leq 2 can be expressed
in terms of totally even single and double Riemann  \xi‐values.

9.2. Double  \xi‐function and real analytic Eisenstein series. The function  \xi(s_{1}, s_{2}) turns
out to be a partial Mellin transform of a real analytic Eisenstein series, which is defined for
 {\rm Re}(s)>1 , and  z in the upper half plane by

 E(z, s)= \frac{1}{2} \sum \frac{y^{s}}{|m+nz|^{2s}}
 (m,n)\neq(0,0)

where  y={\rm Im}(z) . Denote its completed version by

 E(z, s)=\Gamma_{\mathbb{R}}(2s)E(z, s)

where we recall that  \Gamma_{\mathbb{R}}(2s)=\pi^{-s}\Gamma(s) . It admits a meromorphic continuation to  \mathbb{C} with simple
poles at  s=0,1 , and satisfies the functional equation

(9.2)  E(z, s)=E(z, 1-s) .

Its asymptotic behaviour as   z\mapsto i\infty is given by its zeroth Fourier coefficient

 E^{\infty}(z, s)=\xi(2s)y^{s}+\xi(2s-1)y^{1-s}

Set  E^{0}(z, s)=E(z, s)-E^{\infty}(z, s) . With  \vec{1}_{\infty} denoting the unit tangent vector at   i\infty on the upper
half plane, a mild generalisation of §3 gives:

  \int_{i}^{\vec{1}_{\infty}}E(z, s)y^{t}\frac{dz}{z}=l^{i\infty}E^{0}(z, s)
y^{t}\frac{dz}{z}-\int_{0}^{1}E^{\infty}(z;s)(y)y^{t}\frac{dy}{y}
The first integral on the right‐hand side converges for all  t.
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Theorem 9.6. We have the regularised Mellin transform formula

(9.3)   \xi(2s_{1},2s_{2})=l^{\vec{1}_{\infty}}E(z, s_{1}+s_{2})y^{s_{2}-s_{1}}
\frac{dz}{z}
The right‐hand side is by definition the ordinary integral

(9.4)   \int_{i}^{i\infty}E^{0}(z, s_{1}+s_{2})y^{s_{2}-s_{1}}\frac{dz}{z}-
\frac{\xi(2s_{1}+2s_{2})}{2s_{2}}-\frac{\xi(2s_{1}+2s_{2}-1)}{1-2s_{1}}
The integral on the left admits an analytic continuation to  \mathbb{C}^{2}.

Proof. Let  {\rm Re}(s_{1}),  {\rm Re}(s_{2})\gg 0 . From equation (4.2) we find

  \xi(2s_{1},2s_{2})=\int_{0\leq t_{1}\leq t_{2}\leq\infty}\theta_{\mathbb{Q}}
(t_{1})t_{1}^{2s_{{\imath}}}\theta_{\mathbb{Q}}^{0}(t_{2})t_{2}^{2s_{2}}
\frac{dt_{1}}{t_{1}}\frac{dt_{2}}{t_{2}}-\frac{1}{2s_{2}}\int_{0}^{\infty}
\theta_{\mathbb{Q}}^{0}(t_{1})t_{1}^{2s_{1}+2s_{2}}\frac{dt_{1}}{t_{1}}
The second integral is simply  \xi(2s_{1}+2s_{2}) . Therefore

(9.5)   \xi(2s_{1},2s_{2})+\frac{1}{2s_{2}}\xi(2s_{1}+2s_{2})=\sum_{m\in Z,n\in 
Z\backslash 0}\int_{0\leq t_{1}\leq t_{2}\leq\infty}e^{-\pi(m^{2}t_{1}^{2}+n^{2}
t_{2}^{2})}t_{1}^{2s_{1}}t_{2}^{2s_{2}}\frac{dt_{1}}{t_{1}}\frac{dt_{2}}{t_{2}}
Change variables by setting  t_{1}=\lambda,  t_{2}=yA . The integral becomes

 I_{m,n}= \int_{1}^{\infty}dy\int_{0}^{\infty}e^{-\pi(m^{2}+n^{2}y^{2})
\lambda^{2}}\lambda^{2s_{1}+2s_{2}}\frac{d\lambda}{\lambda}y^{2s_{2}}\frac{dy}
{y}
Perform the  \lambda integration using the following formula

  \int_{0}^{\infty}e^{-\pi\phi\lambda^{2}}\lambda^{2s}\frac{d\lambda}{\lambda}=
\frac{1}{2\phi^{s}}\Gamma_{\mathbb{R}}(2s) ,

which holds for any  \phi>0 . This gives

 I_{m,n}= \Gamma_{\mathbb{R}}(2s)\int_{1}^{\infty}\frac{1}{2}(\frac{y}{m^{2}+
n^{2}y^{2}})^{s_{1}+s_{2}}y^{s_{2}-s_{1}}\frac{dy}{y}
Writing  y={\rm Im}(z) for  z on the imaginary axis, and invoking

 m^{2}+n^{2}y^{2}=|m+nz|^{2}
we deduce that the right‐hand side of (9.5) is

  \Gamma_{\mathbb{R}}(2s)\int_{i}^{i\infty}(\frac{1}{2}\sum_{m\in \mathbb{Z},
n\in \mathbb{Z}\backslash 0}\frac{y^{s_{1}+s_{2}}}{|m+nz|^{2s_{1}+2s_{2}}})y^{s_
{2}-s_{1}}\frac{dz}{z}
It follows from the definitions that

  E(z, s)-\xi(2s)y^{s}=\Gamma_{\mathbb{R}}(2s)(\frac{1}{2}\sum_{m\in Z,n\in 
Z\backslash 0}\frac{y^{s}}{|m+nz|^{2s}})
The left‐hand side equals  E^{0}(z, s)+\xi(2s-1)y^{1-s} . We conclude that

(9.6)   \xi(2s_{1},2s_{2})+\frac{1}{2s_{2}}\xi(2s_{1}+2s_{2})=l^{i\infty}(E^{0}(z, 
s_{1}+s_{2})+\xi(2s_{1}+2s_{2}-1)y^{1-s_{1}-s_{2}})y^{s_{2}-s_{1}}\frac{dz}{z}
 =- \frac{1}{1-2s_{1}}\xi(2s_{1}+2s_{2}-1)+l^{i\infty}E^{0}(z, s_{1}+s_{2})y^{s_
{2}-s_{1}}\frac{dz}{z}

The two terms on the right of (9.4) account for the poles of  \xi(2s_{1},2s_{2}) which lie on  s_{2}=0,  s_{1}=1,
 s_{1}+s_{2}\in\{0,2\} . The apparent singularity at  2s_{1}+2s_{2}=1 cancels out. It follows that the integral
of  E^{0} in (9.4) has no poles.  \square 
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9.3. Functional equation. It is instructive to retrieve the functional equation and shuffle prod‐
uct formula for the double  \xi‐function from the previous theorem. The functional equation (9.2)
for the real analytic Eisenstein series implies that

 l^{\vec{1}_{\infty}} E(z, s_{1}+s_{2})y^{s_{2}-s_{1}}\frac{dz}{z}=\int_{i}
^{\vec{1}_{\infty}}E(z, 1-s_{1}-s_{2})y^{s_{2}-s_{1}}\frac{dz}{z}
which is equivalent, by (9.3), to

 \xi(2s_{1},2s_{2})=\xi(1-2s_{2},1-2s_{1}) .

Thus the functional equation for the double Riemann  \xi‐fUnction follows formally from the func‐
tional equation of the real analytic Eisenstein series.

9.4. Shuffle product. Similarly, let us compute, using (9.3), the expression

  \xi(2s_{1},2s_{2})+\xi(2s_{2},2s_{1})=l^{\vec{1}_{\infty}}E(z, s_{1}+s_{2})(y^
{s_{2}-s_{1}}+y^{s_{1}-s_{2}})\frac{dz}{z}
for large  {\rm Re}(s_{1}),  {\rm Re}(s_{2}) . Since the Eisenstein series is invariant under the involution  S :  z \mapsto-\frac{1}{z},
the right‐hand side can be unfolded and rewritten in the form:

  \int_{S\vec{1}_{\infty}}^{\vec{1}_{\infty}}E(z, s_{1}+s_{2})y^{s_{2}-
s_{1_{\frac{dz}{z}}}}
If one prefers, one can take the lower bound of integration to be  0 if one assumes that  {\rm Re}(s_{2})>
 {\rm Re}(s_{1}) . The Eisenstein series is itself a Mellin transform

 2  E(z, s)=\int_{0}^{\infty}(\Theta_{z}(t)-1)t^{s}\frac{dt}{t}=\int_{0}
^{\vec{1}_{\infty}}\Theta_{z}(t)t^{S}\frac{dt}{t}
for  {\rm Re}(s) large, where

  \Theta_{z}(t)=\sum_{m,n\in \mathbb{Z}}e^{-\pi\frac{|m+nz|^{2}}{{\rm Im}(z)}t}
On the imaginary axis  z=it_{1} , this theta function factorises:

  \Theta_{it_{1}}(t_{2})=\sum_{m,n\in \mathbb{Z}}e^{-\pi(m^{2}t_{1}^{-1}+n^{2}t_
{1})t_{2}}=\theta(t_{i}t_{2})\theta(t_{1}^{-1}t_{2})
where  \theta(x)=\theta_{\mathbb{Q}}(\sqrt{x}) . Substituting into the formula above gives

  \xi(2s_{1},2s_{2})+\xi(2s_{2},2s_{1})=\frac{1}{2}\int_{0}^{\vec{1}_{\infty}}
\int_{0}^{\vec{1}_{\infty}}\theta(t_{1}t_{2})\theta(t_{1}^{-1}t_{2})t_{2}^{s_{1}
+s_{2}}t_{1}^{s_{2}-s_{1}}\frac{dt_{1}}{t_{1}}\frac{dt_{2}}{t_{2}}
Change variables  u=t_{i}t_{2},  v=t_{1}^{-1}t_{2} to obtain

  \xi(2s_{1},2s_{2})+\xi(2s_{2},2s_{1})=\frac{1}{4}\int_{0}^{\vec{1}_{\infty}}
\int_{0}^{\vec{1}_{\infty}}\theta(u)\theta(v)u^{s_{2}}v^{s_{1}}\frac{du}{u}\frac
{dv}{v}
The right hand side is a product of integrals (after rescaling  u=t^{2} , etc)

  \int_{0}^{\vec{1}_{\infty}}\theta_{\mathbb{Q}}(t)t^{2s_{1}}\frac{dt}{t}
\int_{0}^{\vec{1}_{\infty}}\theta_{\mathbb{Q}}(t)t^{2s_{2}}\frac{dt}{t}=
\xi(2s_{1})\xi(2s_{2}) .

We conclude that the shuffle product formula

 \xi(2s_{1},2s_{2})+\xi(2s_{2},2s_{1})=\xi(2s_{1})\xi(2s_{2})

is a consequence of the modular invariance (or rather, invariance with respect to  z\mapsto-z^{-1} ) of
the real analytic Eisenstein series and the factorisation of its associated theta function.
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9.5. Totally even double  \xi‐values. The critical values of the zeta function were computed by
Euler. The next simplest multiple  \xi‐values should be the totally even double  \xi‐values.

Theorem 9.7. For any integers  \ell_{1},  \ell_{2}\geq 1 , the double  \xi ‐values  \xi(2\ell_{1},2\ell_{2}) are linear combinations
of regularised Eichler integrals from the point  \tau=i to infinity:

 \pi^{-\ell_{1-\ell_{2}}}\xi(2\ell_{1},2\ell_{2})=l^{\vec{1}_{\infty}}
P_{\ell_{1},\ell_{2}}(\tau)\mathbb{G}_{2\ell}(\tau)d\tau
where  \ell=\ell_{1}+\ell_{2} and

 P_{\ell_{1},\ell_{2}}( \tau) \in \mathbb{Q}i\tau^{2\ell_{1}-1}+ \sum_{k=0}
^{2\ell-2}\mathbb{Q}\tau^{2k}
Proof. We only give the main steps. Starting from (9.3), one can write the real analytic Eisenstein
series  E(z, \ell) in terms of the function  \mathcal{E}_{\ell-1,\ell-1}(z) where

  \mathcal{E}_{a,b}(z)=\frac{w!}{(2\pi i)^{w+1}}\frac{1}{2} \sum \frac{i{\rm Im}
(z)}{(mz+n)^{a+1}(m\overline{z}+n)^{b+1}}
 (m,n)\neq(0,0)

and  w=a+b is even  \geq 2 , and  a,  b\geq 0 . These satisfy the differential equations

 2 \frac{\partial}{\partial y}(y^{s}\mathcal{E}_{a,b}(iy))=y^{s-1}((a+1)\mathcal
{E}_{a+1,b-1}(iy)+(2s-w)\mathcal{E}_{a,b}(iy)+(b+1)\mathcal{E}_{a-1,b+1}(iy))
for  a,  b\geq 0 (see [5], §4), where we set

 \mathcal{E}_{w+1,-1}  (iy)= \mathcal{E}_{-1,w+1}(iy)=-\frac{2\pi y}{w+1}\mathbb{G}_{w+2} (  iy ) .

We shall show that for every  m odd, there exist rational numbers  \lambda_{a,b},  \lambda such that

(9.7)   \frac{\partial}{\partial y}(\sum_{a+b=2\ell-2}y^{m}\lambda_{a,b}\mathcal{E}
_{a,b}(iy))=y^{m-1}\mathcal{E}_{\ell-1,\ell-1}(iy)+\lambda\pi y^{m}\mathbb{G}_{2
\ell}(iy) .

For this, it suffices to show that the vector  v=(0, \ldots, 0,1,0, \ldots, 0) , with  w/2 zeros either side
of 1, is in the image of the following matrix for  s=m and  w=2\ell-2 :

 M_{w}=(\begin{array}{llllll}
2s-w   1            
w   2s-w   2         
   w-1   2s-w   3      
               
         \cdot      
         2   2s-w   w
            1   2s-w
\end{array})
It encodes the action of the operator  2\partial/\partial y on the  \{y^{s}\mathcal{E}_{a,b}(iy)\} modulo  \mathbb{G}_{w+2} . Its determinant
is  \det(M_{w})=2^{w+1}s(s-1)\ldots(s-w) , so it is unfortunately singular for  s=m and  0\leq m\leq w.

Nonetheless, it can be written in the form

 M_{w}= (\begin{array}{ll}
R_{w}   0
0   0
\end{array}) +(_{0}^{0} \frac{0}{R_{w}})
where  R_{w} is a square matrix with  w/2+1 rows and columns and  \overline{R_{w}} is the matrix  R_{w} rotated
through 180 degrees. For example, when  w=4 we have

 R_{4}=(\begin{array}{llllll}
2s   -4      1      
   4   2s   -4      2
         3   s   -2
\end{array}) \overline{R_{4}}=(\begin{array}{lllll}
s-2      3      
2   2s   -4      4
      1   2s   -4
\end{array})
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Note that the bottom‐right entry of  R_{w} is half the other diagonal entries, since it contributes
twice to  M_{w} . One easily checks that the matrices  R_{w} have determinant

 \det(R_{w})=-2^{w/2}s(2-s)(4-s)\ldots(w-s)

which is non‐zero if  s=m is odd. Therefore, for odd  s=m , the vector  (0, \ldots, 0,1) is in the
image of  R_{w} , from which it follows that  v is in the image of  M_{w} . This proves the claim (9.7).
Substituting (9.7) into the integral (9.3) leads to an expression for  \xi(2\ell_{1},2\ell_{2}) as an Eichler integral
with an odd power of  \tau , together with the values of  \mathcal{E}_{a,b}(i) . Since

 d( \sum_{r+s=w}\mathcal{E}_{r,s}(\tau)(X-\tau Y)^{r}(X-\overline{\tau}Y)^{s})={
\rm Re}(2\pi i\mathbb{G}_{w+2}(\tau)(X-\tau Y)^{w}d\tau)
the values  \mathcal{E}_{a,b}(i) can all be expressed as regularised Eichler integrals from  i to infinity of
 \mathbb{G}_{w+2}(\tau)\tau^{k} where  0\leq k\leq w is an even integer.  \square 

Remark 9.8. In particular,  \pi^{\ell_{1}+\ell_{2}}\xi(2\ell_{1},2\ell_{2}) are periods of  \pi_{1}^{re1}(\mathcal{M}_{1,1};i, \vec{1}_{\infty}) , the torsor of paths
on the moduli stack of elliptic curves  \mathcal{M}_{1,1}[12,4] . In fact, the regularised Eichler integrals of
 \mathbb{G}_{2\ell} from  i to   i\infty are periods of an extension

 0arrow(Sym^{2\ell-2}H^{1}(E_{i})^{\vee})(1)\oplus \mathbb{Q}(2\ell-1)arrow 
\mathcal{E}arrow \mathbb{Q}arrow 0
of mixed Hodge structures, where  E_{i} is the CM elliptic curve  \mathbb{C}/\mathbb{Z}\oplus i\mathbb{Z}.

Using the modularity of  \mathbb{G}_{2\ell} under inversion  \tau\mapsto-1/\tau , one has

 (-1)^{k} \int_{i}^{\vec{1}_{\infty}}\tau^{k}\mathbb{G}_{2\ell}(\tau)d\tau+
l^{\vec{1}_{\infty}}\tau^{2\ell-2-k}\mathbb{G}_{2\ell}(\tau)d\tau=\int_{0}^{\vec
{1}_{\infty}}\tau^{k}\mathbb{G}_{2\ell}(\tau)d\tau
where  0\leq k\leq 2\ell-2 . The integrals on the right‐hand side are known explicitly ([4] §7, [2]) and are
critical values of  \Lambda(\mathbb{G}_{2\ell};s) . Since most of the latter vanish or are rational, this implies relations
between the regularised Eichler integrals from  i to   i\infty . Furthermore, the Eichler integrals

  l^{\vec{1}_{\infty}}\tau^{k}\mathbb{G}_{2\ell}(\tau)d\tau
for even  0\leq k\leq 2\ell-2 are values of  L‐functions of Hecke Grossencharacters, via their interpre‐
tation as values of the real analytic Eisenstein series  \mathcal{E}_{a,b} at the CM point  i.

Examples 9.9. Following the proof of the theorem yields explicit expressions:

  \xi(2,2) = -8\pi^{2}\int_{1}^{\vec{1}_{\infty}}y\mathbb{G}_{4}(iy)dy=
\frac{\pi^{2}}{72}
  \xi(2,4) = \frac{4\pi^{3}}{3}\int_{1}^{\vec{1}_{\infty}}(1+3y^{2}-4y^{3})
\mathbb{G}_{6}(iy)dy
  \xi(4,2) = -\frac{4\pi^{3}}{3}\int_{1}^{\vec{1}_{\infty}}(1-4y+3y^{2})
\mathbb{G}_{6}(iy)dy
  \xi(6,2) = \frac{8\pi^{4}}{15}\int_{1}^{\vec{1}_{\infty}}(1-4y+5y^{2})
\mathbb{G}_{8}(iy)dy

Remark 9.10. Erik Panzer kindly sent me an independent evaluation of  Q(2,2) as a regularised
Eichler integral of  \mathbb{G}_{8} by clever application of the Lipschitz summation formula.
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10. FURTHER COMMENTS

10.1. Multiple Jacobi theta values. The theta function  \theta_{\mathbb{Q}} associated to the trivial motive  \mathbb{Q}
generates a large space of functions under the operations  (T1)-(T4) if we also allow multiplication
(remark 5.5). As we have tried to argue, the associated multiple  L‐values contain some numbers
of potential arithmetic interest.

In order to make this framework more manageable, it is natural to restrict to the graded algebra
 \Theta_{J} generated only by the Jacobi theta‐null functions

(10.1)   \theta_{2}(\tau)=\sum_{n\in Z}q^{(n+\frac{1}{2})^{2}} \theta_{3}(\tau)=\sum_{n
\in \mathbb{Z}}q^{n^{2}} \theta_{4}(\tau)=\sum_{n\in Z}(-1)^{n}q^{n^{2}}
where  q=e^{i\pi\tau} . They are not self‐dual, and can have half‐integral weights. Their Mellin trans‐
forms can have poles at half‐integers, so we should allow  \theta^{\infty}\in \mathbb{C}[\sqrt{t}] in §3 (2).

Let us call a multiple Jacobi theta value a totally critical value of

 \Lambda(\theta_{1}, \ldots, \theta_{r};s_{1}, \ldots, s_{r}) where  \theta_{i}\in\Theta_{J} .

The structure of these numbers should prove to be interesting, given the intricate algebraic and
differential relations which theta functions satisfy [24].

(1) By §8 and (8.3), multiple zeta values are examples of multiple Jacobi theta values.

(2) Since  \theta_{\mathbb{Q}}(\sqrt{t})=\theta_{3} (it), and  t\mapsto\sqrt{t} corresponds to  s\mapsto 2s , the totally even Riemann
 \xi‐values are also multiple Jacobi theta values.

(3) Since iterated integrals are invariant under reparametrisation (note that this can affect
tangential base points), and since the Eisenstein series  \mathbb{G}_{4}(2\tau),  \mathbb{G}_{6}(2\tau) are in  \Theta_{J} (see
[24]) and generate the full ring of modular forms of level one, we deduce that all totally
holomorphic multiple modular values for  SL_{2}(\mathbb{Z}) [2] are multiple Jacobi theta values.

(4) Multiple Jacobi values of length one are related to ‘lattice sums’ which arise in a variety
of contexts (see [22] for interesting examples and references) and to values of the Arakelov
double zeta function  Z_{\mathbb{Q}}(w, s) of [15].

Thus all the numbers discussed in the first half of this talk [2] are subsumed into this class.
Note that multiple zeta values arise in two completely different ways: via (1), but also via (2) as
iterated integrals of Eisenstein series by Saad’s theorem [2].

10.2.  L‐functions of non‐holomorphic modular forms. In [5] we defined non‐holomorphic
modular forms by taking real and imaginary parts of iterated primitives of classical holomorphic
modular forms. The prototypical examples are the real‐analytic Eisenstein series  \mathcal{E}_{a,b}(s) consid‐
ered in §9. These functions, via a regularised Mellin transform, also give rise to  L‐functions with
good properties [5], §9.4. One can show that they are linear combinations of multiple  \Lambda‐functions

 \Lambda(f_{1}, \ldots, f_{r-1}, f_{r};p_{1}, \ldots,p_{r-1}, s)

where  f_{1},  f_{r} are modular forms of full level, and  p_{1},  p_{r-1} are fixed integers which are
critical for each  f_{i} , and only the last parameter is allowed to vary. This fact was one of our
motivations for the present work, but will be discussed elsewhere.

10.3. Conclusion. We have defined a family of multiple motivic  \Lambda‐functions with good properties
and exhibited examples where their totally critical values are related to periods. For motives of
higher rank  >2 , or in the case of several motives which have different gamma factors, there is
currently insufficient evidence to know if the definition needs modifying in some way. Hilbert
modular forms, for example, have multi‐variable Mellin transforms which define  L‐fUnctions in
several variables. It is not clear how these should relate to the objects defined here. In any
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case, the present definition §3, applied to motives of low rank, leads to new objects, such as the
multiple Riemann  \xi‐function, which are potentially of interest.
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