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Abstract

In this article we give some examples of structure-preserving finite dif-
ference schemes for nonlinear thermoelasticity. Here the preserved structure
means that the solution for numerical schemes also satisfy the energy conser-
vation law, the momentum conservation law and the law of increasing entropy.

1 Introduction

The dynamics of nonlinear thermoelastic deformation in the one-dimensional space
is represented as the following system of partial differential equations:
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where unknowns v and 7 are the displacement and the absolute temperature respec-
tively, w represents a shear strain defined by w = 0,u and a given nonlinear function
¢ means the Helmholtz free energy density. We assume that the domain X, bound-
ary and initial conditions are given suitably as mentioned later. For example, our
argument works well in the case X = T, or bounded domain with the Neumann zero
boundary conditions, etc. For the derivation of this model we refer the reader to [6].
We normalize all physical parameters or constants by unity. In the one-dimensional
case, it is well-known (see e.g. [6]) that the system can be transformed to the first



order system:
Ow = O,
o = awg—f}(w, T),
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a2
5y (w,7) = 0;T.

If we set the energy F, the momentum M and the entropy S as follows:

Bw,v,7) /|v|2dx+/{ (w, )—Tgf(w,f)}dz,

M(w) = /dex, S(w,7) = — o —(w, 7)dx,
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where [-]x means a boundary integral. We thus obtain the following energy conser-
vation law, the momentum conservation law and the law of increasing entropy:
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der >0, (1.1)
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if we assume the boundary integral terms equal to zero and § > 0. In this arti-
cle we give some examples of finite difference schemes satisfying these laws in the
discrete sense. In [?] and [8], the numerical simulation for this schemes is actually
demonstrated.

Before discussing our results precisely, we give known related results. For the
numerical analysis of nonlinear thermoelasticity, we only find the finite element
analysis by S. Jiang [3], [4] and [5]. On the other hand, there seems to be no result
by finite difference context. In a choice of special free energy ¢ the system becomes
semilinear PDEs. For example if we choose

o= 1/|v| de+ - /|8 w| dx+/{w T—70)11)2}d:zc+/(7—710g7)dﬂc7

the derived semilinear system represents a phase transition of shape memory alloys.
For the background of this system we refer to [1]. For the system recently in [10],
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[11], [12] and [9] the authors propose a new finite difference scheme which satisfies the
discrete version of (1.1) and gives existence result of solution, and the error estimate
and another existence result of solution are shown by applying the energy method
given in [11]. When we consider the numerical scheme of PDEs, structure-preserving
property is useful because the numerical stability is often satisfied automatically.
There are several popular methods to derive these schemes systematically. For
example we refer to [2]. Ome of advantage using structure-preserving numerical
schemes is working the energy method similar to PDEs.

In particular, we remark that the existence of solution for nonlinear thermoe-
lasticity is shown by the energy method (see e.g. [6]) under sufficiently small and
smooth initial data and the structural assumptions of nonlinearity as follows:

Po P

T >60>0, X< <0 1.2
an = 00 d@Z >~ (1 ) ( )

for some constants ¢y and ¢;. The smallness for 7 means that the perturbation

of temperature from the reference temperature 7y is sufficiently small, namely we

assume that the temperature difference § = 7 — 7 is sufficiently small. For the later

argument, we rewrite the equations to the one for (w,v,0) as follows:

Ow = O, (1.3)
0
dv = aza%(“”e“o)’ (1.4)
Jip 2
— (6 + To)atg(u', 0+ 7—0) = axe (15)

Moreover, recently the authors in [14] show that the energy methods given in [13]
works successfully also on structure-preserving numerical schemes for some quasi-
linear PDEs. We thus expect the existence of discrete solution for the numerical
scheme and error estimate between the solution and exact solution by the energy
method, although we do not mention to such a mathematical treatments here.

2 Preliminaries

We denote by 0; and 0, partial differential operators with respect to variables ¢
and x, respectively. We split space interval [0, L] into K-th parts and time interval
[0,T] into N-th parts, and hence the following relations hold L = KAz and T =

NAt. For k = 0,1,...,K and n = 0,1,...,N we write w,(c") = w(kAz,nAt),
o\ = v(kAz,nAt) and 6" = §(kAz, nAt), for short. Let (W™, V™ ©") be an
approximate solution corresponding to the solution (w,(c”), v,(cn), 91(:))- Let us define



difference operators by

(n) (n) (n) (n)
5 ) fon =20+ 4 5 ) B = 1
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5+fn — fk+1 fk 67][-71) — Jo = e
kIR AV kb Az 7
and o, 4., 54 and 652 are defined the same manner by replacing the space-variable

k and Az to the time-variable n and At. In this article, we approximate an integral
by the trapezoidal rule

K 1 K-1 1
" . _ -
> fAa = <2fo +> fit 2fK> Az,
k=0 k=1
Let us introduce the discrete version of integration by parts.

Lemma 2.1 (Summation by parts [2, Propositions 3.2 and 3.3]). For any vectors
{fx kK:tll and {gk},[f:tll it holds that

K K
S fi o g e+ fi - gedw
k=0 k=0 (2.1)
_ {fk (Gr1 + Gro—1) + (fesr + feo1) 'gk] K
k=0

4
K K K
Z”fk'51jgkA$+Z"5;ka'gkAfEZ [fk’ngrl;rfkl'gk} 7 (2.2)
k=0 k=0 k=0
K o _ K
6 fr - 0 O fi+ 0
Z// kfk kgk; kfk kgkAx+Z/15]<€2>fk'gkAx
=0 k=0 . (2.3)
_ [5;!fk (grr + 9x) + 0 fi - (gr + gk_l)}
4 —y

It is easily seen that the above formulas correspond to

/ J - dugde + / 8, - gdz = [fglox.
X X

/ 0.f - Oy + / Of - gdu = [0, - glox
X X

By setting gr, =1 (k= —1,0,1,..., K, K +1) in (2.1) and (2.3), we also obtain the
following formulas

K K
Z"(S;il)kal’: |:fk+1+2fk+fk1:| 7 (2.4)
k=0

4
k=0
K

> e = [off fk] N (2.5)

k=0 -
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which correspond to fundamental theorem of calculus:

/@w:mm Lﬁmmzmmx
X X

We assume the case of X = T is represented as fyix = fr for any & =
—1,0,1,..., K. Observe that in the case the trapezoidal rule is equivalent to the

rectangle rule;
K K-1
> A=Y filx,
k=0 k=0

and all the boundary integral terms of (2.1)—(2.5) vanish.

Next, if we regard X as a standard bounded interval [0, L] (L < oo) with the
Neumann boundary condition, we assume that the discrete boundary conditions are
given as

ou fo = 04" fic = 8 go = 6 gic = 0.
In the case the boundary integral terms of (2.1), (2.3), (2.4) and (2.5) vanish, but the
one of (2.2) remains. The most important problem of the finite difference method is
which difference operators we should choose. This argument implies how to choose
the difference operators according to the boundary conditions. From now on, we
give the argument under the assumption X = T, for simplicity. B

For a smooth function F' = F(u,v), the partial difference quotients OF(-,V)/0(U,U)
and OF(U,-)/8(V, V) of F are defined by

(V) {F(UV’W U£T,  0p(,U) _{F(UWFW) VAT

uv-u ~ —_— .
0, F (U, V), U="U, oV, V) 0, F (U, V), V=V.

For more precise information about the difference quotient we refer to [11].

3 Structure-Preserving Schemes

We give several schemes which are derived by applying the idea given in [2] and [10]
easily. We first introduce difference formulas for product and composite function.
Obviously, it holds that

5:(f(n) -g(")) — 5;:f(n) . g(n) + f(n+1) . (5:9(70 (3.1)
= oFfm . gt () gt o) (3.2)

(1) 4 () (nt1) o p(n)
W (9 +g f + f n
:(;gf().( . >+< : ).gigu,

(3.3)
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etc. From a similar observation, we also see that

N . &p( g”) - dp(f+,)
+ (n) L)y — s+ f(n) | +(n) |
n+1 (n)
s+ r£(n) | ( ) + . (n) . 890(][‘ ) )
=0 g 7 ™) g g, goy D)
=0, 3(f("+1), f(n)) a(f(n—s-l)7 f(n))
N 8@(][(71)’ ) acp(f(nJrl)v )
+,(n) .
#0147 (i oy * dgeg) 09

Let us give examples. We can derive various structure-preserving finite difference
schemes for (1.3)—(1.5) by the combination of choice of (3.1)—(3.3) and (3.4)—(3.6).
The first example is the following:

(1) | )
srwi = st (w) , (3.7)
s = o (22 (31 o)), (3.8)
oW W)

n 0 W(n) . } .
— (O + )6 - il 57)1 =50 k=12..K, (39
3(@( ) + 70, @56 ) + To)

with the periodic boundary condition:
Wi = W, VL =Y, e, - o 510

Let the discrete energy E; = Ey(W™, V™ @Y @) the discrete momentum
My = My(W™) and the discrete entropy Sq = Sy(W™, 01 @™) be defined
by

K (n)
1 , dp(W,,", ")
Eo:=Y "3 VPR + oW, 00 + 1) — (0 + 7 b Az,
kz:% {2| - W ’ g * 0)8(@1(:) + 7o, @’(an) + 7o)
K K ) .
My=Y""WAx,  Sg=->" (n)w(Wk (T;)D Az.
k=0 i—o 00" +70,0," " + )

Then the following conservation laws
SFE, W™ v @b @)y =0, §fMW™)=0
hold and under the assumptions of positivity of temperature the increasing law

5:{Sd(W(n)7 @(n*l)7 @(n)) >0
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holds. Indeed, it is easily seen from (3.7) and (2.4) that

K K . V(n+1) + V(n)
SEMU(W ™) =3t Ae =Y ot Ar =0,
k=0 k=0

Next, observing

(W, )
5 W(n), oM 1 ) — (0™ 47 ko
{ ( k k 0) ( k 0)8<@](€n) N 7_0795;1—1) + 7_0)

DWW,

&) dp(-, 01" + )
(O + 7,0 + 1)

= o +orel
k a(W]gn—H)’Wk(n)) k

w_ OpW ) " op(Wy" )
- 5:@1(c )8 (n+1) : (n) - (@Eg '+ T0)0, n) : (n—1)
<®k +7—07@k +7'0) a(@k +7_07®k +TO)
(n) (n)
_ sy 9200 ) m Op(Wy", )
=0, Wi (n+]l€) oy — (B +70)dy ) (n—1) ’
oW, W) (0" + 10,09, + 1)

where we have used (3.4) and (3.2), we obtain from (3.7)—(3.9) that

K (n+1) (n) (n)
} ) 'V +V N m 00(0." + 19, -
oy Eq = Z"{O:Lk( kT Tk +0$W;£) PO, + )

2 oW Wiy

-
- ((‘);(cn) + 70)0,¢ (n)alp( 7I/Vécn—)n }Ax
90, + 1,0, '+ 1)
o (B )
oW W) 2

s (VAT 000,00 t10)  segm) o
T 0 5 Eyreses yp—"n N A B
oW, W)

:07

with the help of (2.1) and (2.5). We also see that

K (n)
oSy = _Z”(S:{ (8( OpW ) )) Ax

0 oy +m,00 Y+

0
K n c— n
:Z//( |5l:—@/(c)|2 ()k@/(c)|2 >A$,
(© )

@) @) e @)
r+HT0)(0) +10) (0 +70)(0,7, + 70
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from (2.3) and 05 (1/ fx) = 05 fi/ (frfrr1). We thus complete the proof.
Next, we shall consider the different choices of (3.1)—(3.3) and (3.4)—(3.6). If we
use (3.5) and (3.1), we see that

574; @(Wk( )a ®§c ) + 7—0) - (G)gc : + 7—0) (n) k (n—1)
8((~)k +7‘0,(5)k +To)

Qo O V4 m0) o D)
(n+1) (n) 0, O} (n+1) (n)
G(Wk ’Wk ) 6(6k +7’0,@k +T0)
- 6TT@I(C ) (n) : (n—1) a (@é +1) + TO) ;: (n) . (n—1)
8((~)k +7’0,(T)k +7’0) 6((—)k +T07@k +’7'0)

n+1 n
_ ~+W]§n) 8()0(a @;gg +1) —+ 7'0) - (@](JVH) + T())(SJF 850(ch( )7 )
" AW W) "\oOr + 1,00 + 1)

Therefore, by replacing the scheme (3.7)—(3.9) to

. V(n—H) V(n)
5:{Wk():(51<cl>< : 2+ ) )

SHy™ _ 5 Op(-, O + )
n Vi =% D) oy |
oW, W)

(n)
_ (@](anrl) +1o)5t : )GSD(Wk (,7)1) _ 5]<€2>®}(€n+1)’
8(@]: +’7'0,@kn +To)

we can check energy and momentum conservation laws and the law of increasing
entropy. In this way we can derive various structure-preserving numerical schemes.

4 Example of Numerical Simulation

In this section we give a guide for numerical experiments using a simple example in

the case: ) 0 )
+
QD(’U},H—FT(]) = % — %4‘ (94‘7’0)111.
Obviously it satisfies (1.2). It follows from the definition of partial difference quotient

that
9o(- 00" + 1) W L
oW Wiy 2
(W, ) of +oi Y

(n)
— = — — Ty + Wk .
O + 70,00 4 1) 2

+ (0 + 1),
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Then the numerical scheme (3.7)—(3.9) in this case is

. V("‘H) V(n)
5:W1£ ) _ 5}(;) (16;_16 7 (4.1)
. W(n—H) W(n) .
stV = sV <’“2+’c +om |, (4.2)
@(“) @(n—l) 5<2>@(”)
5t (k T ) = ST (4.3)
2 ®k‘ +T0
and
K (n) (n—1)
1 1 (@ +Tg)(@ +T[))
B = nd 2y iz o )2 k k A
d kz:% {2| w I+ 2| P 9 €,
K K ) | oD
! n U @ + @ n
M, ::Z'W,i Az, Sa ::Z'{k 5 k —I—TO—WIC()}AI"
k=0 k=0
Now we set U™ = [W™ vV @™|T for K-dimensional vectors W =
(WE v — (VMK and @ = {0M}E | and define K-dimensional
matrices
[0 1 0 —1] -2 1 0 1]
-1 0 1 0 0 1 -2 1 0 0
1 : . S . : 1 : . . . . :
D. — : . N - | py= : ST el el
T2zl o -1 0 10 TA2|0 .. 1 -2 1 0
-1 0 1 s 1 -2 1
1 -1 0] 1 1 -2
(O 4 1) 0 0
T — 0 (O + 1)~
0 e (@g’?) + ,7_0)71

Here D; and D, are matrix representations of (5,<Cl> and 619 with the periodic bound-
ary condition (3.10). By using these, we define the following 3K -dimensional ma-

trices
LE -ip, O LE LDy O
A= |-iD; SE O |, A=|1iDi LE O],
-+E O SLE -+E O D,
0O 0 O B E O O
As=10 0 O |, TW=10 E O |,
O 0 -LE O 0 Tw



where F and O are K-dimensional identity and zero matrices. Remark that the
equation (4.3) is equivalent to

1 1 1 1wy o760
= e VN A (s R v va O = (o VI Sy S
20t F At F At R T 2AtTH oM 4+ 7

Then the equations (4.1)-(4.3) with periodic boundary condition can be rewritten
as
AU = T A,UM 4 AU,

We thus easily obtain U™+ = A7H(T™ A,U™ 4+ A;U™Y). Here we remark that
in the first step, we need to prepare another calculation because (4.3) is two-step
method. For example, by using

+(2) 3 (0)
SYONG o) _ % 6y
of (0 — ) = Dk

@k +7'0

instead of (4.3), we can perform the numerical simulation, and check numerical sim-
ulation works well satisfying the discrete version of (1.1). For the actual numerical
simulation results we refer to the bachelor thesis by Yamada ([8]).
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