SURJECTIVE ISOMETRIES ON A BANACH SPACE OF ANALYTIC FUNCTIONS ON THE OPEN UNIT DISC

日本大学・薬学部 丹羽 典朗 NORIO NIWA, SCHOOL OF PHARMACY, NIHON UNIVERSITY

This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

1. INTRODUCTION

Let $(M, \|\cdot\|_M)$ and $(N, \|\cdot\|_N)$ be normed linear spaces, respectively. A mapping $T: (M, \|\cdot\|_M) \to (N, \|\cdot\|_N)$ is an isometry if and only if it preserves the distance of two points in M, that is,

$$||T(a) - T(b)||_N = ||a - b||_M$$
 $(a, b \in M).$

Here, we assume that T is not necessarily complex linear. The Mazur-Ulam theorem [16] states that every surjective isometry T between two normed linear spaces is real linear provided T(0) = 0.

We mention the characterization of isometries on several normed linear spaces. Isometries were studied on various spaces by many researchers, as for example in [3, 12, 13, 21, 22]. In 1932, isometries are studied by Banach [1, Theorem 3 in Chapter XI] (see also [24, Theorem 83]). There have been numerous papers on isometries defined on Banach spaces of analytic functions; see [2, 4, 5, 8, 11, 14].

Among the basic problems in analytic function spaces, Novinger and Oberlin, in [20], characterized *complex linear* isometries on a normed space S^p . The underlying space S^p is a normed space consisting of analytic functions f on the open unit disc \mathbb{D} whose derivative f' belongs to the classical Hardy space $(H^p(\mathbb{D}), \|\cdot\|_p)$ for $1 \leq p < \infty$. They introduced the norm $|f(0)| + \|f'\|_p$ on the normed space S^p .

In this talk, we study surjective isometries on the Banach space S_A of analytic functions f defined on \mathbb{D} whose derivative can be extended to the closed unit disc $\overline{\mathbb{D}}$, and endowed with the norm $||f||_{\sigma} = |f(0)| + \sup_{z \in \mathbb{D}} |f'(z)|$. We denote by $A(\overline{\mathbb{D}})$ the disc algebra, that is, the algebra of all analytic functions on \mathbb{D} which can be extended to continuous functions on $\overline{\mathbb{D}}$.

2. Main result

Let $A(\mathbb{D})$ be the Banach space of all analytic functions on the open unit disc \mathbb{D} that can be continuously extended to the closed unit disc $\overline{\mathbb{D}}$ with the supremum norm on \mathbb{D} . For each $v \in A(\overline{\mathbb{D}})$, v' means the derivative of v on \mathbb{D} , that is,

$$v'(z) = \lim_{h \to 0} \frac{v(z+h) - v(z)}{h} \qquad (z \in \mathbb{D}).$$

We define S_A by the linear space of all analytic functions f on \mathbb{D} whose derivative f' belongs to $A(\overline{\mathbb{D}})$. By [6, Theorem 3.11], we see that $S_A \subset A(\overline{\mathbb{D}})$. By the definition of S_A , f' is an analytic function on \mathbb{D} which can be extended to a continuous function on $\overline{\mathbb{D}}$. Let \hat{v} be the unique continuous extension of $v \in A(\overline{\mathbb{D}})$ to $\overline{\mathbb{D}}$. In fact, such an extension is unique since \mathbb{D} is dense in $\overline{\mathbb{D}}$. We define the norm $\|f\|_{\sigma}$ of $f \in S_A$ by

(2.1)
$$||f||_{\sigma} = |f(0)| + ||\widehat{f'}||_{\infty} \quad (f \in \mathcal{S}_A),$$

where $\|\widehat{f'}\|_{\infty} = \sup\{|\widehat{f'}(z)| : z \in \overline{\mathbb{D}}\} = \sup\{|f'(z)| : z \in \mathbb{D}\}$. It is not difficult to check that $(\mathcal{S}_A, \|\cdot\|_{\sigma})$ is a complex Banach space.

Theorem 1. If $T: (\mathcal{S}_A, \|\cdot\|_{\sigma}) \to (\mathcal{S}_A, \|\cdot\|_{\sigma})$ is a surjective, not necessarily complex linear, isometry, then one of the following four forms is occured;

there exist constants $c_{1,1}, c_{1,2}, \lambda_1 \in \mathbb{T}$ and $a_1 \in \mathbb{D}$ such that

$$T(f)(z) = T(0)(z) + c_{1,1}f(0) + \int_{[0,z]} c_{1,2}f'(\rho(\zeta)) \, d\zeta \quad (\forall f \in \mathcal{S}_A, \ \forall z \in \mathbb{D}),$$

there exist constants $c_{2,1}, c_{2,2}, \lambda_2 \in \mathbb{T}$ and $a_2 \in \mathbb{D}$ such that

$$T(f)(z) = T(0)(z) + \overline{c_{2,1}f(0)} + \int_{[0,z]} c_{2,2}f'(\rho(\zeta)) d\zeta \quad (\forall f \in \mathcal{S}_A, \ \forall z \in \mathbb{D}),$$

there exist constants $c_{3,1}, c_{3,2}, \lambda_3 \in \mathbb{T}$ and $a_3 \in \mathbb{D}$ such that

$$T(f)(z) = T(0)(z) + c_{3,1}f(0) + \int_{[0,z]} \overline{c_{3,2}f'(\rho(\overline{\zeta}))} \, d\zeta \quad (\forall f \in \mathcal{S}_A, \ \forall z \in \mathbb{D}),$$

there exist constants $c_{4,1}, c_{4,2}, \lambda_4 \in \mathbb{T}$ and $a_4 \in \mathbb{D}$ such that

$$T(f)(z) = T(0)(z) + \overline{c_{4,1}f(0)} + \int_{[0,z]} \overline{c_{4,2}f'(\rho(\overline{\zeta}))} \, d\zeta \quad (\forall f \in \mathcal{S}_A, \ \forall z \in \mathbb{D}),$$

where $\rho(z) = \lambda_j \frac{z - a_j}{\overline{a_j z} - 1}$ for all $z \in \overline{\mathbb{D}}$ and for j = 1, 2, 3, 4.

Conversely, each of the above forms is a surjective isometry on S_A with the norm $\|\cdot\|_{\sigma}$, where T(0) is an arbitrary element of S_A .

We start by defining an embedding of S_A into a subspace *B* consisting of complex valued continuous functions. Then using the Arens-Kelley theorem (see [10, Corollary 2.3.6 and Theorem 2.3.8]), we give a characterization of extreme points of the unit ball B_1^* of the dual space B^* of *B*. Then we construct some maps to describe extreme points of B_1^* .

We used an idea by Ellis for the characterization of surjective real linear isometries on uniform algebras (see [9]). An adjoint operator of a surjective real linear isometry on the dual space B^* preserves extreme points. The action of such adjoint operator on the set of extreme points gives a representation for the isometries on B. We show that the isometries of S_A are integral operators of weighted differential operators.

For the details of proof, refer to [18].

References

- S. Banach, Theory of linear operations, Translated by F. Jellett, Dover Publications, Inc. Mineola, New York, 2009.
- F. Botelho, Isometries and Hermitian operators on Zygmund spaces, Canad. Math. Bull. 58 (2015), 241–249.
- [3] M. Cambern, Isometries of certain Banach algebras, Studia Math. 25 (1964-1965) 217-225.
- [4] J.A. Cima and W.R. Wogen, On isometries of the Bloch space, Illinois J. Math. 24 (1980), 313–316.
- [5] K. deLeeuw, W. Rudin and J. Wermer, *The isometries of some function spaces*, Proc. Amer. Math. Soc. **11** (1960), 694–698.
- [6] P.L. Duren, The theory of H^p spaces, Academic Press, New York, 1970
- [7] F. Forelli, The isometries of H^p , Canad. J. Math. 16 (1964), 721–728.
- [8] F. Forelli, A theorem on isometreis and the application of it to the isometries of H^p(S) for 2
- [9] A.J. Ellis, Real characterizations of function algebras amongst function spaces, Bull. London Math. Soc. 22 (1990), 381–385.
- [10] R. Fleming and J. Jamison, Isometries on Banach spaces: function spaces, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 129. Chapman & Hall/CRC, Boca Raton, FL, 2003.
- [11] W. Hornor and J.E. Jamison, Isometreis of some Banach spaces of analytic functions, Integral Equations Operator Theory 41 (2001), 410–425.
- [12] K. Jarosz and V.D. Pathak, *Isometries between function spaces*, Trans. Amer. Math. Soc. **305** (1988), 193–205.
- [13] K. Kawamura, H. Koshimizu and T. Miura, Norms on C¹([0,1]) and their isometries, Acta Sci. Math. (Szeged) 84 (2018), 239–261.
- [14] C.J. Kolaski, Isometries of Bergman spaces over bounded Runge domains, Canad. J. Math. 33 (1981), 1157–1164.
- [15] H. Koshimizu, Linear isometries on spaces of continuously differentiable and Lipschitz continuous functions, Nihonkai Math. J. 22 (2011), 73–90.
- [16] S. Mazur and S. Ulam, Sur les transformationes isométriques d'espaces vectoriels normés, C. R. Acad. Sci. Paris 194 (1932), 946–948.

- [17] T. Miura, Surjective isometries between function spaces, Contemp. Math. 645 (2015), 231–239.
- [18] T. Miura and N. Niwa, Surjective isometries on a Banach space of analytic functions on the open unit disc, Nihonkai Math. J. 29 (2018), 53–67.
- [19] M. Nagasawa, Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kōdai Math. Sem. Rep. 11 (1959), 182–188.
- [20] W.P. Novinger and D.M. Oberlin, Linear isometries of some normed spaces of analytic functions, Canad. J. Math. 37 (1985), 62–74.
- [21] V.D. Pathak, Isometries of $C^{(n)}[0,1]$, Pacific J. Math. 94 (1981), 211–222.
- [22] N.V. Rao and A.K. Roy, *Linear isometries of some function spaces*, Pacific J. Math. 38 (1971), 177–192.
- [23] W. Rudin, Real and complex analysis. Third edition. McGraw-Hill Book Co., New York, 1987.
- [24] M.H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), 375–481.