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In this paper, linear always means complex linear, especially Banach algebra always

means complex Banach algebra. Isometries with respect to the s‐norm between vector

valued Lipschitz spaces were studied by Hatori and Oi [2]. We prove a version of their

results (Main Theorem A). There are literatures which study isometries with respect

to the   \max‐norm between vector valued Lipschitz spaces [1, 4]. In this paper, we

exhibit the form of isometries with respect to the   \max‐norm under an additional

condition (Main Theorem B) (cf. [7].).

1 Definitions

In this section, we introduce some basic definitions.

Definition 1.1. Let  X be a compact metric space and  E a normed space. A map

 f :  Xarrow E is called a Lipschitz map if

 (L(f):=) \sup_{x,y\in X,x\neq y}\frac{\Vert f(x)-f(y)\Vert_{E}}{d(x,y)}<\infty.
The number  L(f) is called the Lipschitz constant of  f . We shall denote by Lip  (X, E)

the space of all Lipschitz maps from  X into  E . We write the space Lip  (X, \mathbb{C}) just by
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Lip (X) for simplification. There are several norms on the Lipschitz space Lip  (X, E) :
 s ‐norm  \Vert  \Vert_{s} is defined by  \Vert  \Vert_{s}=\Vert  \Vert_{\infty}+L(\cdot) , and max‐norm  \Vert  \Vert_{7nax} by  \Vert

  \Vert_{rnax}=\max\{\Vert . \Vert {}_{\infty}L (.)\} . If  B is a Banach algebra, the space (Lip (X,  B),  \Vert .  \Vert_{s} ) is

a Banach algebra, and the space (Lip (X,  B),  \Vert .  \Vert_{\max} ) is a Banach space (In general,

submultiplicativity needs not hold.).

2 Main Theorem A

The next is the theorem of isometries with respect to the  s‐norm between Lipschitz

spaces. In this section, we give an outline of the proof of this theorem.

Theorem 2.1 (Main Theorem A). For  j=1,2 , let  X_{j} be a compact metric space,  Y_{j}

a compact Hausdorff space, and  A_{j} a uniform algebra. If  U : (Lip  (X_{1}, A_{1}),  \Vert\cdot\Vert_{s} )  arrow

(Lip  (X_{2}, A_{2}),  \Vert .  \Vert_{s} ) is a unital surjective linear isometry, then there exist

 \bullet a continuous map  \psi :   X_{2}\cross Ch  (A_{2})arrow X_{1} such that for every   y'\in Ch  (A_{2})

 \psi(\cdot, y') :  X_{2}arrow X_{1} is a surjective isometry,

and

 \bullet a homeomorphism  \tau : Ch  (A_{2})arrow Ch(A_{1})

such that  (U(F)(x'))(y')=(F(\psi(x', y')))(\tau(y')) for every  x'\in X_{2},   y'\in Ch  (A_{2}) ,

and   F\in Lip  (X_{2}, A_{2}) .

Remark 2.2. A map  U being unital means  U(1)=1 . The space Ch (A) denotes

a Choquet boundary of A. (If  Y is a compact metric space and  A is a subspace of

 (C(Y), \Vert\cdot\Vert_{\infty}) , Ch  (A)= {   y\in Y|\tau_{y}\in ext  \{\varphi\in A^{*}|\Vert\varphi\Vert=\varphi(1)=1\} } where  \tau_{y} is

the evaluation map at  y\in Y. )

Outline of the proof of the Main Theorem  A

First, we regard Lip  (X_{j}, A_{j}) as a subspace of  C(X_{j}\cross Y_{j}) . We apply a theorem of

Jarosz [3], then we find that  U is an isometry also with respect to the supremum norm.

Using partition of unity, we find that the uniform closure of Lip  (X_{j}, A_{j}) coincides

with  C(X_{j}, A_{j}) . So we can extend  U from  C(X_{1}, A_{1}) onto  C(X_{2}, A_{2}) which is a

unital surjective linear isometry with respect to the supremum norm. We denote this
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map by  \tilde{U}^{\infty} We define maps

 S :  \{\varphi'\in C(X_{2}, A_{2})^{*}|\Vert\varphi'\Vert=\varphi'(1)=1\}
 arrow\{\varphi\in C(X_{1}, A_{1})^{*}|\Vert\varphi\Vert=\varphi(1)=1\}

by  S(\varphi')  :=\varphi'\circ\tilde{U}^{\infty} and

 S' :  \{\varphi\in C(X_{1}, A_{1})^{*}|\Vert\varphi\Vert=\varphi(1)=1\}
 arrow\{\varphi'\in C(X_{2}, A_{2})^{*}|\Vert\varphi'\Vert=\varphi'(1)=1\}

by  S'(\varphi)  :=\varphi o(\tilde{U}^{\infty})^{-1} Then,  S and  S' are well‐defined,  S' is an inverse map of

 S , and  S is a  w^{*} ‐homeomorphism.

For  j=1,2 , we define a set

 K_{j}  := ext  \{\varphi\in C(X_{j}, A_{j})^{*}|\Vert\varphi\Vert=\varphi(1)=1\}.

Then we find that  S(K_{2})=K_{1} by some easy argument of extreme points. We note

that the Choquet boundary of  C(X_{j}, A_{j}) coincides with  X_{j}\cross Ch(A_{j}) . If we define

a homeomorphism  \Phi_{j} :   X_{j}\cross Ch  (A_{j})arrow K_{j} by  \Phi_{j}(x, y)=\varphi_{(x,y)} where  \varphi_{(x,y)} is

the evaluation at  (x, y) for  j=1,2 , then the map  \Phi_{1}^{-1}oSo\Phi_{2} is a homeomorphism

between   X_{2}\cross Ch  (A_{2}) and   X_{1}\cross Ch  (A_{1}) . So we can define continuous maps  \psi_{1} :

 X_{2}\cross Ch(A_{2})arrow X_{1},  \psi_{2} :  X_{2}\cross Ch(A_{2})arrow Ch(A_{1}) by  (\psi_{1}, \psi_{2})=\Phi_{1}^{-1}oSo\Phi_{2} . By

the similar way, we consider the homeomorphism  \Phi_{2}^{-1}oS^{-1}o\Phi_{1} between  X_{1}\cross Ch(A_{1})

and   X_{2}\cross Ch  (A_{2}) , and define continuous maps  \psi í :   X_{1}\cross Ch  (A_{1})arrow X_{2},  \psi_{2}' :

 X_{1}\cross Ch(A_{1})arrow Ch(A_{2}) by (  \psií,  \psi_{2}' )  =\Phi_{2}^{-1}oS^{-1}o\Phi_{1} . Then for every  x'\in X_{2} and

 y'\in Ch(A_{2}),  ((U(F))(x'))(y')=S(\varphi_{(x,y)}')(F)=(F(\psi_{1}(x', y')))(\psi_{2}(x', y')) . We

shall observe the maps  \psi_{1},  \psi_{2}.

At the first, We show that the map  \psi_{2} needs not depend on the first variable

 x'\in X_{2} , that is, the equality  \psi_{2} (xí,  y' )  =\psi_{2}(x_{2}', y') holds for any xí,  x_{2}'\in X_{2}

and   y'\in Ch  (A_{2}) . Suppose that there are  x_{1}^{\circ}\neq X_{2}^{\circ}\in X_{2} and   y^{\circ}\in Ch  (A_{2}) such

that  \psi_{2}(x_{1}^{\circ}, y^{\circ})\neq\psi_{2}(x_{2}^{\circ}, y^{\circ}) . Then there is  h\in A_{1} such that   h(\psi_{2}(x_{1}^{\circ}, y^{\circ}))\neq

 h(\psi_{2}(x_{2}^{\circ}, y^{\circ})) since  A_{1} is a uniform algebra. By the direct computation, we assert

that  L(1\otimes h)=0 and  L(U(1\otimes h))\neq 0 . On the other hand  U preserves the Lip‐

schitz constant because  U preserves the  s‐norm and the supremum norm. This is a

contradiction. Hence the map  \psi_{2} needs not depend on the first variable.

Then we define continuous maps  \tau : Ch  (A_{2})arrow Ch  (A_{1}) by  \tau(y')=\psi_{2}(x', y')

 (y'\in Ch(A_{2})) for some  x'\in X_{2} , and  \tau' : Ch  (A_{1})arrow Ch  (A_{2}) by  \tau'(y)=\psi_{2}'(x, y)
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 (y\in Ch(A_{1})) for some  x\in X_{1} . We can check that the map  \tau is a homeomorphism

between Ch  (A_{2}) and Ch  (A_{1}) . Moreover,  \tau' is an inverse map of  \tau . On the other

hand, the maps  \psi_{1}(\cdot, y') :  X_{2}arrow X_{1} and  \psi í :  X_{1}arrow X_{2} are bijective for each

  y'\in Ch  (A_{2}) and   y\in Ch  (A_{1}) respectively. Moreover,  \psi_{1}(\cdot, y')  =\psi í  (\cdot, \tau(y'))^{-1} and

 \psi í  (\cdot, \tau^{-1}(y))^{-1} hold for each  y'\in Ch(A_{2}) and  y\in Ch(A_{1}) respectively.

These indicate that it is sufficient to show that  \psi_{1} (  \cdot , yÓ) :  X_{2}arrow X_{1} is a contractive

map for each  y\'{O}\in Ch(A_{2}) which proves the Main Theorem A. Take  y\'{O}\in Ch(A_{2}) arbi‐

trarily. We prove that  d (  \psi_{1} (xí, yÓ),  \psi_{1}(x_{2}', y\'{O}) )  \leq d (xí,  x_{2}' ) for every distinct xí,   x_{2}'\in
 X_{2} . We define a function  f_{\psi_{1}()}x_{2},y_{0} :  X_{1}arrow \mathbb{C} by  f_{\psi_{1}(x_{2}}, ,yÓ)  (x)=d(x,  \psi_{1} (  x_{2}' , yÓ)  )

for  x\in X_{1} . Then  f_{\psi_{1}()}x_{2},y_{0} is in Lip  (X_{1}) and  L(f_{\psi_{1}()}x_{2},y_{0})=1 . Therefore,

 d (  \psi_{1} (xí, yÓ)  \psi_{1}(x_{2}' , yÓ))
 =d (  \psi_{1} (xí, yÓ) ,  \psi_{1}(x_{2}', y\'{O}) )  -d (  \psi_{1}(x_{2}' , yÓ)  \psi_{1}(x_{2}' , yÓ))

 =|f_{\psi_{1}(x_{2}'} , yÓ  )  (\psi_{1} (xí,  y\'{O}))-f_{\psi_{1}(x_{2}'} , yÓ  ) (  \psi_{1}(x_{2}' , yÓ))  |
 =|  ( (  f_{\psi_{1}(x_{2}'} , yó)  \otimes 1) (  \psi_{1} (xí, yÓ))  ) (  \tau (yÓ)) —  ((f_{\psi_{1}(x_{2}'} , yÓ)  \otimes 1) (  \psi_{1}(x_{2}' , yÓ))  ) (  \tau (yÓ))  |
 =|  ((U(f_{\psi_{1}()}x_{2}',y_{0}'\otimes 1)) (xí)  )  (y\'{O})-((U(f_{\psi_{1}(x_{2}'} , yÓ)  \otimes 1))(x_{2}')) (yÓ)  |
 \leq\Vert  (U (f_{\psi_{1}(x_{2}'},y\'{O})\otimes 1))  (x\'{i})-(U(f_{\psi_{1}(x_{2}'} , yÓ)  \otimes 1))(x_{2}')\Vert_{\infty(Y_{2})}
 \leq d (xí,  x_{2}' )  L(U (  f_{\psi_{1}(x_{2}}, , yÓ)  \otimes 1)) .

Since  U preserves the Lipschitz constant, we have

 L(U(f_{\psi_{1}()}x_{2}',y_{0}'\otimes 1))=L(f_{\psi_{1}()}x_{2}',y_{0}'\otimes
1)=L(f_{\psi_{1}()}x_{2}',y_{0}')=1.
Hence we have

 d (  \psi_{1} (xí, yÓ),  \psi_{1}(x_{2}', y\'{O}) )  \leq d (xí,  x_{2}' )  L(U(f_{\psi_{1}()}x_{2}',y_{0}'\otimes 1))
 =d (xí,  x_{2}' )

and  \psi_{1} (  \cdot , yÓ) is a contractive map. We complete the outline of the proof of the Main
Theorem A.

 \square 
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3 Main Theorem B

In this section, we consider isometries with respect to the   \max‐norm between Lips‐

chitz spaces. We exhibit the Main Theorem B and give an outline of the proof of this

theorem.

Definition 3.1 (  K pair). Let  X_{1} and  X_{2} be compact metric spaces. We say that the

ordered pair  (X_{1}, X_{2}) of these two sets is a  K pair if the following two conditions are

satisfied.

 \bullet (K1) For  j=1,2 , if we take any  x_{1},  x_{2}\in X_{j} , there are finitely many  x_{1}^{\circ},   x_{n}^{\circ}\in

 X_{j} such that  d(x_{1}, x_{\mathring{1}})<1,  d(x_{i}^{\circ}, x_{i+1}^{\circ})<1(i=1, \ldots n-1),  d(x_{\mathring{n}}, x_{2})<1.
 \bullet  (K2) For any bijection  \psi :  X_{2}arrow X_{1} and positive  \varepsilon , the following state‐

ment holds; if xí,  x_{2}'\in X_{2} and  d (xí,  x_{2}' )  <\varepsilon implies that   d(\psi (xí),  \psi(x_{2}'))=
 d (xí,  x_{2}' ), then  \psi is an isometry.

Theorem 3.2 (Main Theorem B). For  j=1,2 , let  X_{j} be a compact metric space,

 Y_{j} a compact Hausdorff space, and  A_{j} a uniform algebra. We assume that  (X_{1}, X_{2})

is a  K pair. If  U : (Lip  (X_{1}, A_{1}),  \Vert .  \Vert_{\max} )  arrow (Lip  (X_{2}, A_{2}),  \Vert .  \Vert_{\max} ) is a unital

surjective linear isometry, then there exist

 \bullet a continuous map  \psi :   X_{2}\cross Ch  (A_{2})arrow X_{1} such that for every   y'\in Ch  (A_{2})

 \psi(\cdot, y') :  X_{2}arrow X_{1} is a surjective isometry,

and

 \bullet a homeomorphism  \tau : Ch  (A_{2})arrow Ch(A_{1})

such that  (U(F)(x'))(y')=(F(\psi(x', y')))(\tau(y')) for every  x'\in X_{2},   y'\in Ch  (A_{2}) ,

and   F\in Lip  (X_{2}, A_{2}) .

Outline of the proof of the Main Theorem  B

We can prove by the same way as the outline of the proof of Theorem 2.1 that there

are continuous maps  \psi_{1} :  X_{2}\cross Ch(A_{2})arrow X_{1},  \psi_{2} :  X_{2}\cross Ch(A_{2})arrow Ch(A_{1}) such

that for every  x'\in X_{2},  y'\in Ch(A_{2}),  ((U(F))(x'))(y')=(F(\psi_{1}(x', y')))(\psi_{2}(x', y'))
holds.
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At the first, we show that the map  \psi_{2} needs not depend on the first variable

 x'\in X_{2} , that is, the equality  \psi_{2} (xí,  y' )  =\psi_{2}(x_{2}', y') holds for any xí,  x_{2}'\in X_{2}

and   y'\in Ch  (A_{2}) . By the condition  (K1) , it suffices to show that the equality

 \psi_{2} (xí,  y' )  =\psi_{2}(x_{2}', y') holds for every xí,  x_{2}'\in X_{2} with  d (xí,  x_{2}' )  <1 and   y'\in

Ch  (A_{2}) . If not, there exist  x_{1}^{\circ},  x_{2}^{\circ}\in X_{2} with  d(x_{1}^{\circ}, x_{2}^{\circ})<1 and   y^{\circ}\in Ch  (A_{2}) such

that  \psi_{2}(x_{1}^{\circ}, y^{\circ})\neq\psi_{2}(x_{2}^{\circ}, y^{\circ}) . Let   \varepsilon_{0}=\frac{1-d(x_{1}^{\circ},x_{2}^{\circ})}{2} . We take an open neighborhood

 V\subset Y_{1} of  \psi_{2}(x_{1}^{\circ}, y^{\circ}) which doesn’t contain  \psi_{2}(x_{2}^{\circ}, y^{\circ}) . Then there is a peaking

function  h\in A_{1} such that  h(\psi_{2}(x_{1}^{\circ}, y^{\circ}))=1 , and  |h(y)|<\varepsilon_{0} for every  y\in Y_{1}\backslash V.

Especially  |h(\psi_{2}(x_{2}^{\circ}, y^{\circ}))|<\varepsilon_{0} . It is clear that  \Vert 1\otimes h\Vert_{7nax}=1 . On the other hand,

 L(U(1 \otimes h))\geq\frac{|U(1\otimes h)(x_{1}^{\circ},y^{\circ})-U(1\otimes 
h)(x_{2}^{\circ},y^{\circ})|}{d(x_{1}^{\circ},x_{2}^{\circ})}
 = \frac{|h(\psi_{2}(x_{1}^{\circ},y^{\circ}))-h(\psi_{2}(x_{2}^{\circ},
y^{\circ}))|}{d(x_{1}^{\circ},x_{2}^{\circ})}
 > \frac{1-2\varepsilon_{0}}{d(x_{\mathring{1}},x_{2}^{\circ})}=1

holds, hence we get  \Vert U(1\otimes h)\Vert_{7nax}>1 . This contradicts to the fact that  U preserves

the   \max‐norm. Thus  \psi_{2} needs not depend on the first variable.

By the Theorem of Jarosz [3],  U is also an isometry with respect to the supremum

norm. We can extend  U from the uniform closure of Lip  (X_{1}, A_{1}) , which is  C(X_{1}, A_{1}) ,

onto the uniform closure of Lip  (X_{2}, A_{2}) , which is  C(X_{2}, A_{2}) , that is a unital surjective

linear isometry with respect to the supremum norm. Since  C(X_{j}, A_{j}) is a uniform

algebra, a theorem of Nagasawa [5] yields that  U is multiplicative. For each   y'\in

Ch  (A_{2}) , we define a map  U_{y'} : Lip  (X_{1})arrow Lip(X_{2}) by

 U_{y'}(f)=((U(f\otimes 1))(\cdot))(y')

for   f\in Lip  (X_{1}) .  U_{y'} is a unital homomorphism. So by [6, Theorem 5‐1] , there is a

Lipschitz map  \phi_{y'} :  X_{2}arrow X_{1} such that  U_{y'}(f)=f\circ\phi_{y'} for every   f\in Lip  (X_{1}) . It

is easy to check the equality  \phi_{y'}=\psi_{1}(\cdot, y') . Hence  \psi_{1}(\cdot, y') is a Lipschitz map.

Next we prove that  \psi_{1}(\cdot, y') :  X_{2}  arrow X_{1} is a surjective isometry for each

  y'\in Ch  (A_{2}) . Let   \varepsilon_{0}=\frac{1}{\max\{1,L(\psi_{1}(\cdot,y))\}} . By  (K2) and the descriptions in the

outline of the proof of Theorem 2.1, it suffices to show that for every xí,  x_{2}'\in X_{2}

with  d (xí,  x_{2}' )  <  \varepsilon_{0} , the equality  d (xí,  x_{2}' )  \geq  d(\psi_{1} (xí,  y' ),  \psi_{1}(x_{2}', y')) holds.

We define  f_{\psi_{1}()}x_{2},y’  \in Lip  (X_{1}) by  f_{\psi_{1}()}x_{2},y'(x)= \min\{d(x, \psi_{1}(x_{2}', y')), 1\} for

57



58

 x\in X_{1} , then we have  L(f_{\psi_{1}()}x_{2},y')  \leq 1,  \Vert f_{\psi_{1}()}x_{2},y'\Vert_{\infty}\leq 1 . By the defini‐

tion of  \varepsilon_{0} , we get  d  (\psi_{1} (xí,  y' ),  \psi_{1}(x_{2}', y'))\leq 1 . Hence  f_{\psi_{1}()}x_{2},y' (  \psi_{1} (xí,  y') )  =

 d  (\psi_{1} (xí,  y' ),  \psi_{1}(x_{2}', y')) , and

 d(\psi_{1} (xí,  y'),  \psi_{1}(x_{2}', y'))

 =|f_{\psi_{1}(x_{2}',y^{\prime)}} (  \psi_{1} (xí,  y') )  -f_{\psi_{1}(x_{2}',y^{\prime)}}(\psi_{1}(x_{2}', y'))|
 =|  (U(f_{\psi_{1}()}x_{2}',y'\otimes 1) (xí)  )  (y')-(U(f_{\psi_{1}()}x_{2}',y'\otimes 1)(x_{2}'))(y')|
 \leq\Vert U(f_{\psi_{1}()}x_{2}',y'\otimes 1) (  x í)—  U  (f_{\psi_{1}(x_{2}',y^{\prime)}}\otimes 1)(x_{2}')\Vert_{\infty(Y_{2})}
 \leq L(U(f_{\psi_{1}()}x_{2},y'\otimes 1))d (xí,  x_{2}' )  \leq d (xí,  x_{2}' ).

Thus we get the desired inequality. Now we complete the outline of the proof of the

Main Theorem B.

 \square 

In the next section, we observe some examples of  K pairs, and Main Theorem B

without the condition,  K pair.

4  K pairs

In the Main Theorem B, we assume that  (X_{1}, X_{2}) is a  K pair. We give some

examples of  K pairs.

Example 4.1.

1. If  a<b , the pair of closed intervals  ([a, b], [a, b]) is a  K pair.

2. Let  \overline{\mathbb{D}}=\{z\in \mathbb{C}||z|\leq 1\} with the usual distance, then  (\overline{\mathbb{D}}, \overline{\mathbb{D}}) is a  K pair.

3. Let  K=( \{0\}\cross[-1,1])\cup(\{(t, \frac{1}{2}t)|0\leq t\leq 2\})\cup(\{(t, -
\frac{1}{2}t)|0\leq t\leq 2\})\subset \mathbb{R}^{2}
with the usual distance, then  (K, K) is a  K pair.

It is not difficult to check that these three pairs above are  K pairs.

Example 4.2. Let  X_{1}=X_{2}=Y_{1}=Y_{2}=\{a, b\} where the distance of  a and  b is

2, then  (X_{1}, X_{2}) is not a  K pair because it doesn’t satisfy  (K1) . We define a map

 \phi:X_{2}\cross Y_{2}arrow X_{1}\cross Y_{1} by

 \phi((a, a))=(a, a), \phi((a, b))=(b, a)
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 \phi((b, a))=(a, b), \phi((b, b))=(b, b)

and maps  \psi_{1} :  X_{2}\cross Y_{2}arrow X_{1},  \psi_{2} :  X_{2}\cross Y_{2}arrow Y_{1} by  \phi=(\psi_{1}, \psi_{2}) . Let  U :

Lip  (X_{1}, C(Y_{1}))arrow Lip(X_{2}, C(Y_{2})) be

 ((U(F))(x'))(y')=(F(\psi_{1}(x', y')))(\psi_{2}(x', y'))

for  x'\in X_{2},  y'\in Y_{2} , and   F\in Lip  (X_{1}, C(Y_{1})) . Then  U is a unital surjective linear

isometry with respect to the   \max‐norm. Actually for every   F\in Lip  (X_{j}, C(Y_{j})) ,

 L(F)= \frac{\Vert F(a)-F(b)\Vert_{\infty}}{2}\leq\Vert F\Vert_{\infty}.
Hence the   \max‐norm coincides with the supremum norm in this case. The map  U is

clearly an isometry with respect to the supremum norm. But  U cannot be represented

as the form in Theorem 3.2.

Example 4.3. Let  H=(\{0\}\cross[-1,1])\cup([0,3]\cross\{0\})\cup(\{3\}\cross[-1,1])\subset 
\mathbb{R}^{2} with

the usual distance. Then  (H, H) is not a  K pair. To prove this, we define a bijection

 \psi:Harrow H by

 \psi((x, y))=\{\begin{array}{ll}
(x, y)   ((x, y)\in\{0\}\cross[-1,1])
(x, y)   ((x, y)\in[0,3]\cross\{0\})
(x, -y)   ((x, y)\in\{3\}\cross[-1,1]) .
\end{array}
Then  d((x_{1}, y_{1}), (x_{2}, y_{2}))<2 implies that  d((x_{1}, y_{1}), (x_{2}, y_{2}))=d(\psi((x_{1}, y_{1})), \psi((x_{2}, y_{2})))

but  \psi is not an isometry. Let  Y be any compact Hausdorff space. We define a map

 U : Lip  (H, C(Y))arrow Lip(H, C(Y)) by

 ((U(F))(x'))(y')=(F(\psi(x')))(y')

for  x'\in H,  y'\in Y , and   F\in Lip  (H, C(Y)) . This  U is not represented by the

form in Theorem 3.2, but  U is a unital surjective linear isometry with respect to the

  \max‐norm.
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