Multiplicative linear functional on the Zygmund F-algebra

東海大学·理学部 植木 誠一郎

Sei-Ichiro Ueki, Faculty of Science, Tokai University

This work was supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University. This work also was supported by JSPS KAKENHI Grant Number 17K05282.

1 Zygmund F-algebra

Let consider the function $\varphi(t) = t \log(e+t)$ for $t \in [0, \infty)$. The Zygmund F-algebra $N \log N$ consists of analytic functions f on the unit disc \mathbb{D} for which

$$\sup_{0 \le r < 1} \int_{\mathbb{T}} \varphi(\log^+ |f(r\zeta)|) d\sigma(\zeta) < \infty,$$

where $\log^+ x = \max\{0, \log x\}$ for $x \ge 0$. It is easily verified that the above condition is equivalent to the condition:

$$\sup_{0 \le r < 1} \int_{\mathbb{T}} \varphi(\log(1 + |f(r\zeta)|)) d\sigma(\zeta) < \infty.$$

This class was considered by A. Zygmund [5] first. O.M. Eminyan [1] studied linear space properties of this class. Since the function $\varphi(\log(1+x))$ satisfies

$$\varphi(\log(1+x)) \le x \text{ for } x \ge 0,$$

we see that the inclusion $H^1 \subset N \log N$ holds. More precisely it is known that it holds the following relation:

$$\bigcup_{p>0} H^p \subset N \log N \subset N^* \subset N.$$

This implies that the boundary function f^* exists for any $f \in N \log N$. By using this boundary value of f, we can define the quasi-norm ||f|| on $N \log N$ by

$$||f|| = \int_{\mathbb{T}} \varphi(\log(1 + |f^*(\zeta)|)) d\sigma(\zeta).$$

Since this quasi-norm satisfies the triangle inequality, d(f,g) := ||f - g|| defines a translation invariant metric on $N\log N$. So $N\log N$ is an *F*-space in the sense of Banach with respect to this metric *d*. Moreover Eminyan [1] proved that $N\log N$ forms *F*-algebra with respect to *d*. The author and et al. [2, 4] have considered isometries of $N\log N$.

2 Results

In a general theory on Banach algebra, it is well known that every nontrivial multiplicative linear functional is continuous and that every maximal ideal is the kernel of a multiplicative linear functional. In [3], Roberts and Stoll proved that for the class N^* it is still true that every nontrivial multiplicative linear functional is continuous. However they showed that a maximal ideal in N^* is not necessarily the kernel of a multiplicative linear functional. Since the space $N\log N$ is also topological algebra, we will consider the same problems for $N\log N$.

First we will observe elementary examples. Fix $a \in \mathbb{D}$ and put $\phi_a(f) = f(a)$ for $f \in N \log N$. By applying the Poisson integral of $\varphi(\log(1 + |f^*|))$, we see that ϕ_a is a continuous multiplicative linear functional on $N \log N$. Furthermore, for each $a \in \mathbb{D}$ we define

$$\mathcal{M}_a = \{ f \in N \log N : f(a) = 0 \},\$$

that is $\mathcal{M}_a = \text{Ker}(\phi_a)$. Since ϕ_a is a surjective multiplicative linear functional on $N\log N$, \mathcal{M}_a is a maximal ideal of $N\log N$. The continuity of ϕ_a implies \mathcal{M}_a is closed in $N\log N$. Hence we see that \mathcal{M}_a is a closed maximal ideal in $N\log N$.

The following result claim that every nontrivial multiplicative linear functional on $N\log N$ is represented by a point evaluation at some point of \mathbb{D} . Since $N\log N$ is a subspace in N^* , each function $f \in N\log N \setminus \{0\}$ has a canonical factorization form as follows:

$$f(z) = B(z)S(z)F(z),$$

where B is the Blaschke product, S is the singular inner function and F is the outer

function. This result implies that $\mathcal{M}_a = (\pi - a)N\log N$ for some point $a \in \mathbb{D}$. Thus we have the following result.

Theorem 1. Suppose that ϕ is a nontrivial multiplicative linear functional on $N\log N$. Then there exists $a \in \mathbb{D}$ such that $\phi(f) = f(a)$ for $f \in N\log N$ and ϕ is continuous on $N\log N$.

As a corollary, we also can characterize a nontrivial algebra homomorphism of $N \log N$.

Corollary 2. If Γ : $N \log N \to N \log N$ is a nontrivial algebra homomorphism, then there is a analytic self-map Φ of \mathbb{D} such that $\Gamma(f) = f \circ \Phi$ for $f \in N \log N$.

Remark. Every composition operator induced by an analytic self-map of \mathbb{D} is continuous on $N \log N$.

As in the case N^* , we also obtain some information on the structure of a maximal ideal in $N\log N$. Let ν be a positive singular measure and put S a singular inner function with respect to ν , namely

$$S(z) = \exp\left(-\int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} d\nu(\zeta)\right).$$

Since $S^{-1} \notin N \log N$, $S \cdot N \log N$ is proper ideal. By Zorn's lemma, we see that $S \cdot N \log N$ is contained in a maximal ideal \mathcal{M} in $N \log N$. Thus we have $S \in \mathcal{M}$. If \mathcal{M} is the kernel of some multiplicative linear functional on $N \log N$, then Theorem 1 shows that $\mathcal{M} = \mathcal{M}_a$ for some point $a \in \mathbb{D}$. This implies that $S \notin \mathcal{M}$. We reach a contradiction. Hence we have the following result.

Proposition 3. A maximal ideal need not be the kernel of a multiplicative linear functional on $N\log N$.

References

- O. M. Eminyan, Zygmund F-algebras of holomorphic functions in the ball and in the polydisk, *Doklady Math.*, 65 (2002), 353–355.
- [2] O. Hatori, Y. Iida, S. Stević and S. Ueki, Multiplicative isometries on F-algebras of holomorphic functions, *Abstract and Applied Analysis*, Vol. 2012 (2012), Article ID 125987.
- [3] J. W. Roberts and M. Stoll, Prime and principle ideals in the algebra N⁺, Arch. Math., 27 (1976), 387–393.

- [4] S. Ueki, Isometries of the Zygmund F-algebra, Proc. Amer. Math. Soc., 140 (2012), 2817–2824.
- [5] A. Zygmund, Trigonometric series vol. 2, Cambridge Univ., 1959.

Sei-ichiro Ueki
Department of Mathematics,
Faculty of Science,
Tokai University,
4-1-1, Kitakaname, Hiratsuka, 259-1292 JAPAN
E-mail : sei-ueki@tokai.ac.jp