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混合単調性をもつ写像に対する不動点定理と混合単調性をもたない写像に対する不

動点定理

TOSHIKAZU WATANABE*

1. INTRODUCTION

Bhaskar and Lakshmikantham [2] obtained some coupled fixed point results for
mixed monotone operators F:X\cross Xarrow X which satisfy a certain contractive type
condition, where  X is a partially ordered metric space.

Definition 1. An element  (x, y)\in X\cross X is called a coupled fixed point of the
mapping  F :  X\cross Xarrow X if  F(x, y)=x and  F(y, x)=y.

If (X, d) is a metric space and  F :  X\cross Xarrow X is an operator, then, by definition,
a coupled fixed point for  F is a pair  (x, y)\in X\cross X satisfying the system ;

(1.1)  \begin{array}{l}
x=F(x, y)
y=F(y, x) .
\end{array}
In order to consider this in the ordered set, for the mapping  F we need the

following mixed monotone property.

Definition 2. We say that a mapping  F of  X^{n} into  X has mixed monotone prop‐
erty, if it satisfies the following, see [1,4]: for any  t_{1},  t_{2},  t_{n},  \in X,

 \begin{array}{l}
x_{1}, x\'{i}\in X, x_{1} \succeq x\'{i}, \Rightarrow F(x_{1}, t_{2}, t_{3}, 
\ldots, t_{n}) \succeq F(x\'{i}, t_{2}\ldots, t_{n}),
x_{2}, x_{2}'\in X, x_{2}\succeq x_{2}', \Rightarrow F(t_{1}, x_{2}, t_{3}, 
\ldots, t_{n})\succeq F(t_{1}, x_{2}', \ldots, t_{n}) ,
x_{n}, x_{n}'\in X, x_{n}\succeq x_{n}', \Rightarrow F(t_{1}, t_{2}, \ldots, 
x_{n})\succeq F(t_{1}, t_{2}, \ldots, x_{n}') ,
\end{array}
Using this, we have several results [1].

Theorem 3. Let  (X, d, \preceq) be a partially ordered set and suppose there is a metric
 d on  X such that (X, d) is a complete metric space. Let  F:X\cross Xarrow X be a mixed
monotone mapping for which there exists a constant  k\in[0,1 ) such that for each
 x\leq u,  y\geq v,

 d(F(x, y), F(u, v))+d(F(y, x), F(v, u))\leq k[d(x, u)+d(y, v)].

If there exist  x_{0},  y_{0}\in X such that  x_{0}\leq F(x_{0}, y_{0}) and  y_{0}\geq F(y_{0}, x_{0}) , or   x_{0}\geq

 F(x_{0}, y_{0}) and  y_{0}\leq F(y_{0}, x_{0}) , then there exist  x,  y\in X such that  x=F(x, y) and
 y=F(y, x) .
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However for the mapping  F :  X\cross Xarrow X there are some abstract concept
without mixed monotone.

It is easy to see that the above coupled fixed point problem can be represented
as a fixed point problem for the operator  T_{F} :  Zarrow Z defined by

 T_{F}(x, y)=(F(x, y), F(y, x)) ,

where  Z  :=X\cross X . On the other hand, any solution  (x, y) of the coupled fixed
point problem with  x=y gives a fixed point for  F , i.e., a solution of the equation
 x=F(x, x) .

Moreover if we consider two operators  F_{1} :  X\cross Xarrow X and  F_{2} :  X\cross Xarrow X

and define  T:Zarrow Z by

 T(x, y)=(F_{1}(x, y), F_{2}(x, y))

where  Z  :=X\cross X . Then if  F_{1}(x, y)=x and  F_{2}(x, y)=y , then this result represent
ordinary fixed point theorem.

In this talk, according to the [4, 5, 6], we introduce several notions for the
mapping  F :  X\cross Xarrow X without mixed monotone property and consider the
coupled fixed point theorem. Moreover, we introduce these notion for the mapping
 f :  Xarrow X and consider the fixed point theorem. And as a our result, we give
some application of the fixed point theorem.

2. COUPLED FIXED POINT THEOREM AND FIXED POINT THEOREM

Definition 4. (Samet and Vetro [6]) Let (X, d) be a metric space and   F:X\cross Xarrow

 X be a given mapping. Let  M be a nonempty subset of  X\cross X . We say that  M is
an  F‐invariant subset of  X\cross X if, for all  x,  y,  z,  w\in X,

 (i)(x, y, z, w)\in M\Rightarrow(w, z, y, x)\in M ;

 (ii)(x, y, z, w)\in M\Rightarrow(F(x, y), F(y, x), F(z, w), F(w, z))\in M.

Theorem 5. (Samet and Vetro [6]) Let (X, d) be a complete metric space,  F :
 X\cross Xarrow X be a continuous mapping and  M be a nonempty subset of X.  We

assume that

(i)  M is  F ‐invariant;
(ii) there exists  (x_{0}, y_{0})\in X such that  (F(x_{0}, y_{0}), F(y_{0}, x_{0}), x_{0}, y_{0})\in M ;

(iii) for all  (x, y, u, v)\in M, we have

 d(F(x, y), F(u, v)) \leq\frac{\alpha}{2}[d(x, F(x, y))+d(y, F(y, x))]
 + \frac{\beta}{2}[d(u, F(u, v))+d(v, F(v, u))]+\frac{\theta}{2}[d(x, F(u, v))+d
(y, F(v, u))]
 + \frac{\gamma}{2}[d(u, F(x, y))+d(v, F(y, x))]+\frac{\delta}{2}[d(x, u)+d(y, 
v)],
where  \alpha,  \beta,  \theta,  \gamma,  \delta are nonnegative constants such that  \alpha+\beta+\theta+\gamma+\delta<1.

Then  F has a coupled fixed point, i. e., there exists  (x, y)\in X\cross X such that  F(x, y)=
 x and  F(y, x)=y.

Let (X, d) be a metric space and  M be a subset of  X^{4} . We say that  M satisfies the
transitive property if, for all  x,  y,  z,  w,  a,  b\in X,  (x, y, z, w)\in M and  (z, w, a, b)\in
 M\Rightarrow(x, y, a, b)\in M.

Theorem 6. (Sintunavarat et al. [7]) Suppose that either
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(a)  F is continuous or
(b) if for any two sequences  x_{rn},  y_{rn} with  (x_{7n+1}, y_{7n+1}, x_{rn}, y_{rn})\in M,  \{x_{rn}\}arrow

 x,  \{y_{rn}\}arrow y , for all  m\geq 1 , then  (x, y, x_{rn}, y_{rn})\in M for all  m\geq 1.

If there exists  (x_{0}, y_{0})\in X\cross X such that  (F(x_{0}, y_{0}), F(y_{0}, x_{0}), x_{0}, y_{0})\in M and  M is
an  F ‐invariant set which satisfies the transitive property, then there exist  x,  y\in X
such that  x=F(x, y) and  y=F(y, x) , that is,  F has a coupled fixed point.

Definition 7. Let (X, d) be a complete metric space endowed with a partial order
 \preceq . We say that

(i)  (X, d, \preceq) is nondecreasing‐regular (nd‐M‐regular) if a nondecreasing se‐
quence  \{x_{n}\}\subset X with  (x_{n}, x_{n+1})\in M converges to  x , then  (x_{n}, x)\in M
for all  n ;

(ii)  (X, d, \preceq) is nonincreasing‐regular (ni‐M−regular) if a nonincreasing sequence
 \{x_{n}\}\subset X with  (x_{n}, x_{n+1})\in M converges to  x , then  (x, x_{n})\in M for all  n.

Definition 8. (Sintunavarat et al. [7]) Let (X, d) be a metric space and  F :
 X\cross Xarrow X be a given mapping and  M be a subset of  X^{4} . We say that
 M is an  F‐closed subset of  X^{4} if, for all  x,  y,  u,  v\in X,  (x, y, u, v)\in M\Rightarrow
 (F(x, y), F(y, x), F(u, v), F(v, u))\in M . Obviously, every  F‐invariant set is an F‐
closed set. In particular,  \emptyset and  X are  F‐closed sets.

The definition of  F‐closed is obtained to the mapping  f :  Xarrow X.

Definition 9. Let (X, d) be a metric space and  f :  Xarrow X be a given mapping
and  M be a subset of  X\cross X . We say that  M is an  f‐closed subset of  X\cross X if,
for all  x,  y\in X,  (x, y)\in M\Rightarrow(F(x), F(y))\in M.

Then we have the following fixed point theorem.

Theorem 10. Let (X, d) be a complete metric space, let  f :  Xarrow X be a continuous
mapping, and let  M be a subset of  X\cross X . Assume that:

(i)  M is  f ‐closed;
(ii) there exists  x_{0}\in X such that  (f(x_{0}), x_{0})\in M ;

(iii) there exists  k\in[0,1 ) such that for all  (x, y)\in M , we have

 d(f(x), f(y))\leq kd(x, y) .

Then  f has a fixed point  x^{*} and  \{f^{n}(x)\} converges to  x^{*}.

3. APPLICATION

As an application of Theorem 2.8, we consider the following fractional boundary
value problems of cantilever beam type equations.

(3.1)  \{\begin{array}{l}
D_{0+}^{\alpha}u(t)=f(t, u(t), D_{0+}^{\alpha-3}u(t), D_{0+}D_{0+}^{\alpha-3}
u(t)) ,
0<t<1,
u(0)=u'(0)=u"(1)=u"'(1)=0.
\end{array}
where  D_{0+}^{\alpha} is the Riemann‐Liouville fractional derivative and  f is a function of

 [0,1]\cross \mathbb{R} into  \mathbb{R} . Let  \alpha>0 . The Riemann‐Liouville fractional derivative of order

 \alpha of a function  u of  (0, \infty) into  \mathbb{R} is given by

 D_{0+}^{\alpha}u(t)= \frac{1}{\Gamma(n-\alpha)}\frac{d^{n}}{dt^{n}}\int_{0}^{t}
(t-s)^{n-\alpha-1}u(s)ds,
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where  n=[\alpha]+1 (  [\alpha] denotes the integer part of  \alpha ) and  \Gamma(\alpha) denotes the gamma
function; see [3, 8].

We denote by  \mathbb{R} the set of all real numbers,  N by natural numbers and  N_{0}=

 N\cup\{0\} . Let  AC[0,1] be the space of functions which are absolutely continuous on
 [0,1],

 AC^{n}[0,1]= {  y :  [0,1]arrow \mathbb{R} and  D^{n-1}y(t)\in AC[0,1],  D= \frac{d}{dt} }.
First we have the following lemma, see Lemma 2.22 of [3]

Lemma 11. Let  \alpha>0 . If  u(t)\in AC^{n}[0,1] or  y(t)\in C^{n}[0,1] , then

 I_{0+}^{\alpha}D_{0+}^{\alpha}y(t)=y(t) .

Lemma 12. Let  g\in C^{n}(0,1) . Then the unique solution to problem  D^{\alpha}y(t)=g(t)
together with the boundary conditions in (3.1) is

 u(t)= \int_{0}^{t}G(t, s)g(s)ds,
where

(3.2)  G(t, s)=\{\begin{array}{ll}
G_{1}(t, s)   (0\leq s\leq t<1) ,
G_{2}(t, s)   (0\leq t\leq s<1) .
\end{array}
In this case

 G_{1}(t, s)= \frac{1}{\Gamma(\alpha)}((t-s)^{\alpha-1}+t^{\alpha-1}((4-\alpha)s
-1)(1-s)^{\alpha-4}
 +t^{\alpha-2}(\alpha-1)(1-s)^{\alpha-4}s) ,

and

 G_{2}(t, s)= \frac{1}{\Gamma(\alpha)}(t^{\alpha-1}(1-s)^{\alpha-4}((4-\alpha)s-
1)
 +(\alpha-1)t^{\alpha-2}(1-s)^{\alpha-4}s) .

Put  F_{1}(\alpha, t, s)=G_{1}(t, s) . Then  F_{1}(\alpha, t, s) is continuous with respect to  \alpha.

There exists  t_{0} and  s_{0} such that  F_{1}(3, t_{0}, s_{0})<0,  F_{1}(4, t_{0}, s_{0})>0 . In fact

 F_{1}(3,1/4,1/8)= −5/192,  F_{1}(4,1/4,1/8)= 5/112. Moreover there exists  \alpha^{*},  t^{*},  s^{*}

with  3<\alpha^{*}\leq 4t^{*},  s^{*}\in[0,1] such that  F_{1}(\alpha^{*}, t^{*}, s^{*})=0 . Let

 N=\{(\alpha, t, s)|G(t, s)<0orD_{0+}^{\alpha-3}G(t, s)<0orD_{0+}D_{0+}^{\alpha-
3}G(t, s)<0\}.

Thus if  (\alpha, t, s)\not\in N , then for any  f\in C^{+}[0,1],   \int_{0}^{1}G^{\alpha}(t, s)f(s)ds\geq 0 . The
following argument we assume that;

(AO)  (\alpha, t, s)\not\in N.

Next we consider the following assumptions (A1) and (A2).

(A1) There exists  \omega\in\Omega such that for all  t\in I and for all  (a_{1}, a_{2}, a_{3}),  (b_{1}, b_{2}, b_{3})\in
 \mathbb{R}^{3} , with  (a_{1}, a_{2}, a_{3})\ll(b_{1}, b_{2}, b_{3}) ,

 0\leq f(t, a_{1}, a_{2}, a_{3})-f(t, b_{1}, b_{2}, b_{3})\leq\omega(a_{1}-b_{1}
)
(3.3)

 +\omega(a_{2}-b_{2})+\omega(a_{3}-b_{3}) .
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(A2) There exist  \alpha,  \beta,  \gamma\in C(I, \mathbb{R}) which are solutions of

(3.4)   \alpha(t)\leq\int_{0}^{1}G(t, s)f(s, \alpha(s), \beta(s), \gamma(s))ds, t\in 
I,
(3.5)   \beta(t)\leq\int_{0}^{1}D_{0+}^{\alpha-3}f(s, \alpha(s), \beta(s), \gamma(s))
ds, t\in I,
(3.6)   \gamma(t)\leq\int_{0}^{1}D_{0+}D_{0+}^{\alpha-3}f(s, \alpha(s), \beta(s), 
\gamma(s))ds, t\in I,
We define the subset  M of  C[0,1] by

 M= {  (f, g)\in C[0,1]\cross C[0,1]|f\geq g or  f\leq g}.

Consider the natural partial order relation  \preceq on  X=C(I, R) , that is,

 u,  v\in X,  u\preceq v\Leftrightarrow u(t)\leq v(t) for all  t\in I.

It is well known that  X is a complete metric space with respect to the metric

 d(u, v)= \max_{t\in I}|u(t)-v(t)| :=\Vert u-v\Vert_{\infty}, u, v\in C(I, 
\mathbb{R}) .

It is easy to show that  (X, d, \preceq) is nondecreasing‐regular and nonincreasing‐regular
(  \uparrow\downarrow‐regular), and that every pair of elements in  X\cross X has either a lower bound or
an upper bound. Let  (X, d, \preceq) is an ordered complete metric space. Moreover in
 X^{3} define the metric  D by

 D((x, y, z), (u, v, w))= \frac{1}{3}(d(x, u)+d(y, v)+d(z, w)) .

Also define the order  \ll inX^{3} by

 (x, y, z)\ll(u, v, w) iff  x\preceq u,  y\preceq v,  z\preceq w

Then  (X^{3}, D, \ll) is an ordered complete metric space.
The boundary problem (3.1) is equivalent to the following integral equation form.

 \{\begin{array}{l}
u(t)=\int_{0}^{1}G(t, s)f(s, u(s), v(s), w(s))ds,
v(t)=\int_{0}^{1}D_{0+}^{\alpha-3}G(t, s)f(s, u(s), v(s), w(s))ds,
w(t)=\int_{0}^{1}D_{0+}D_{0+}^{\alpha-3}G(t, s)f(s, u(s), v(s), w(s))ds,
\end{array}
where the green function  G is given by (3.2) We define the operator  F_{1},  F_{2} and
 F_{3} by

 \{\begin{array}{l}
F_{1}(u(t), v(t), w(t))=\int_{0}^{1}G(t, s)f(s, u(s), v(s), w(s))ds,
F_{2}(u(t), v(t), w(t))=\int_{0}^{1}D_{0+}^{\alpha-3}G(t, s)f(s, u(s), v(s), 
w(s))ds,
F_{3}(u(t), v(t), w(t))=\int_{0}^{1}D_{0+}D_{0+}^{\alpha-3}G(t, s)f(s, u(s), 
v(s), w(s))ds,
\end{array}
where  v(t)=D_{0+}^{\alpha-3}u(t) and  w(t)=D_{0+}D_{0+}^{\alpha-3}u(t) . We define the operator  A :
 X^{3}arrow X^{3} by

 A((u(t), v(t), w(t)))

 =(F_{1}(u(t), v(t), w(t)), F_{2}(u(t), v(t), w(t)), F_{3}(u(t), v(t), w(t))) .

Then  M is  A‐closed. In fact let  u\leq v , we have  D_{0+}^{\alpha-3}u(t)\leq D_{0+}^{\alpha-3}v(t) and

 D_{0+}D_{0+}^{\alpha-3}u(t)\leq D_{0+}D_{0+}^{\alpha-3}v(t) . Thus

 U=(u, D_{0+}^{\alpha-3}u, D_{0+}D_{0+}^{\alpha-3}u), V=(v, D_{0+}^{\alpha-3}v, 
D_{0+}D_{0+}^{\alpha-3}v)\in M.
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Then by assumption (A. 1),

 f(t, u(t), D_{0+}^{\alpha-3}u(t), D_{0+}D_{0+}^{\alpha-3}u(t))
 \leq f(t, v(t), D_{0+}^{\alpha-3}v(t), D_{0+}D_{0+}^{\alpha-3}v(t)) .

Then by assumption (A.0), that is, for any  (\alpha, t, s)\not\in N , we have

 F_{1}U(t)= \int_{0}^{1}G^{\alpha}(t, s)f(t, u(t), D_{0+}^{\alpha-3}u(t), D_{0+}
D_{0+}^{\alpha-3}u(t))ds
  \leq\int_{0}^{1}G^{\alpha}(t, s)f(t, v(t), D_{0+}^{\alpha-3}v(t), D_{0+}D_{0+}
^{\alpha-3}v(t))ds=F_{1}v(t) .

Also  F_{2}U\leq F_{2}V and  F_{3}U\leq F_{3}V . Then we have

 AU=(F_{1}U, F_{2}U, F_{3}U)\ll(F_{1}V, F_{2}V, F_{3}V)=AV.

We have the following:

Theorem 13. Under the assumptions (A0), (A1) and (A2), the fourth‐order two‐
point boundary value problem (3.1) has a solution.
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