Construction of new Griesmer codes of dimension 5

Yuto Inoue, Tatsuya Maruta *
Department of Mathematical Sciences
Osaka Prefecture University

1 Introduction

We denote by \mathbb{F}_q the field of q elements. A linear code over \mathbb{F}_q of length n, dimension k is a k-dimensional subspace \mathcal{C} of the vector space \mathbb{F}_q^n of n-tuples over \mathbb{F}_q . The vectors in \mathcal{C} are called codewords. \mathcal{C} is called an $[n,k,d]_q$ code if it has minimum Hamming weight d. A $k \times n$ matrix G whose rows form a basis of \mathcal{C} is a generator matrix of \mathcal{C} . A fundamental problem in coding theory is to find $n_q(k,d)$, the minimum length n for which an $[n,k,d]_q$ code exists for given q,k,d [5, 6]. The Griesmer bound states that

$$n_q(k,d) \ge g_q(k,d) := \sum_{i=0}^{k-1} \left\lceil \frac{d}{q^i} \right\rceil,$$

where $\lceil x \rceil$ denotes the smallest integer greater than or equal to x, see [1]. A linear code attaining the Griesmer bound is called a *Griesmer code*. The values of $n_q(k,d)$ are determined for all d only for some small values of q and k [4, 11]. For the case k=5, the following result is well known.

Theorem 1.1 ([3, 8, 9]). For any prime power q, $n_q(5, d) = g_q(5, d)$ for

(1)
$$q^4 - q^3 - q + 1 \le d \le q^4 - q^3 + q^2 - q$$
,

(2)
$$q^4 - 2q^2 + 1 \le d \le q^4 + q$$
,

(3)
$$2q^4 - 2q^3 - q^2 + 1 \le d \le 2q^4 + q^2 - q$$
,

$$(4) \ d \ge 3q^4 - 4q^3 + 1.$$

We recently proved the following, which was already known only for $q \leq 4$.

Theorem 1.2 ([7]). For any prime power q, $n_q(5,d) = g_q(5,d)$ for

(1)
$$2q^4 - 3q^3 + 1 \le d \le 2q^4 - 3q^3 + q^2$$
,

(2)
$$3q^4 - 5q^3 + q^2 + 1 \le d \le 3q^4 - 5q^3 + 2q^2$$
.

This note is a digest (and some typos are corrected) version of [7].

^{*}Corresponding author. E-mail address: maruta@mi.s.osakafu-u.ac.jp

2 Construction methods

Denote by PG(r,q) the projective geometry of dimension r over \mathbb{F}_q . The 0-flats, 1-flats, 2-flats, 3-flats and (r-1)-flats are called *points*, *lines*, *planes*, *solids* and *hyperplanes*, respectively. We denote by \mathcal{F}_j the set of all j-flats in PG(r,q) and by θ_j the number of points in a j-flat, so, $\theta_j = (q^{j+1} - 1)/(q - 1)$.

Let \mathcal{C} be an $[n, k, d]_q$ code with no coordinate identically zero. Then, the columns of a generator matrix of \mathcal{C} can be considered as a multiset of n points in Σ PG(k-1,q) denoted by $\mathcal{M}_{\mathcal{C}}$. We see linear codes from this geometrical point of view. An *i-point* is a point of Σ which has multiplicity i in $\mathcal{M}_{\mathcal{C}}$. Denote by γ_0 the maximum multiplicity of a point from Σ in $\mathcal{M}_{\mathcal{C}}$. Let C_i be the set of *i*-points in Σ , $0 \le i \le \gamma_0$, and let $\lambda_i = |C_i|$, where $|C_i|$ denotes the number of elements in a set C_i . For any subset S of Σ , the multiplicity of S, denoted by $m_{\mathcal{C}}(S)$, is defined as $m_{\mathcal{C}}(S) = \sum_{i=1}^{\gamma_0} i \cdot |S \cap C_i|$. Then we obtain the partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ such that $n = m_{\mathcal{C}}(\Sigma)$ and $n - d = \max\{m_{\mathcal{C}}(\pi) \mid \pi \in \mathcal{F}_{k-2}\}$. Conversely such a partition $\Sigma = \bigcup_{i=0}^{\gamma_0} C_i$ as above gives an $[n,k,d]_q$ code in the natural manner. A hyperplane H with $t = m_{\mathcal{C}}(H)$ is called a t-hyperplane. A t-line, a t-plane and t-solid are defined similarly. Denote by a_i the number of i-hyperplanes in Σ . The list of the values a_i is called the spectrum of \mathcal{C} , which can be calculated from the weight distribution by $a_i = A_{n-i}/(q-1)$ for $0 \le i \le n-d$, where A_j is the number of codewords of \mathcal{C} with weight j. An $[n, k, d]_q$ code is called m-divisible if all codewords have weights divisible by an integer m > 1.

Lemma 2.1 ([13]). Let C be an m-divisible $[n, k, d]_q$ code with $q = p^h$, p prime, whose spectrum is

$$(a_{n-d-(w-1)m}, a_{n-d-(w-2)m}, \cdots, a_{n-d-m}, a_{n-d}) = (\alpha_{w-1}, \alpha_{w-2}, \cdots, \alpha_1, \alpha_0),$$

where $m = p^r$ for some $1 \le r < h(k-2)$ satisfying $\lambda_0 > 0$ and

$$\bigcap_{H \in \mathcal{F}_{k-2}, \ m_{\mathcal{C}}(H) < n-d} H = \emptyset.$$

Then there exists a t-divisible $[n^*, k, d^*]_q$ code C^* with $t = q^{k-2}/m$, $n^* = \sum_{j=0}^{w-1} j\alpha_j = ntq - \frac{d}{m}\theta_{k-1}$, $d^* = ((n-d)q - n)t$ whose spectrum is

$$(a_{n^*-d^*-\gamma_0 t}, a_{n^*-d^*-(\gamma_0-1)t}, \cdots, a_{n^*-d^*-t}, a_{n^*-d^*}) = (\lambda_{\gamma_0}, \lambda_{\gamma_0-1}, \cdots, \lambda_1, \lambda_0).$$

The condition " $\bigcap_{H \in \mathcal{F}_{k-2}, m_{\mathcal{C}}(H) < n-d} H = \emptyset$ " is needed to guarantee that \mathcal{C}^* has dimension k although it was missing in Lemma 5.1 of [13]. Note that a generator matrix for \mathcal{C}^* is given by considering (n-d-jm)-hyperplanes as j-points in the dual space Σ^* of Σ for $0 \le j \le w-1$ [13]. \mathcal{C}^* is called a *projective dual* of \mathcal{C} , see also [2] and [6].

Lemma 2.2 ([10, 12]). Let C be an $[n, k, d]_q$ code and let $\bigcup_{i=0}^{\gamma_0} C_i$ be the partition of $\Sigma = \operatorname{PG}(k-1,q)$ obtained from C. If $\bigcup_{i\geq 1} C_i$ contains a t-flat Δ and if $d > q^t$, then there exists an $[n - \theta_t, k, d']_q$ code C' with $d' \geq d - q^t$.

The code \mathcal{C}' in Lemma 2.2 can be constructed from \mathcal{C} by removing the t-flat Δ from the multiset $\mathcal{M}_{\mathcal{C}}$. In general, the method for constructing new codes from a given $[n, k, d]_q$ code by deleting the coordinates corresponding to some geometric object in $\mathrm{PG}(k-1,q)$ is called geometric puncturing [10].

3 A sketch of the proof of Theorem 1.2

We constructed a 5-divisible $[34, 5, 20]_5$ code and a 5-divisible $[38, 5, 20]_5$ code by some heuristic computer search. Then, we generalized the constructions to the following using a normal rational curve in PG(4, q).

Lemma 3.1 ([7]). There exists a q-divisible $[q^2 + 2q - 1, 5, q^2 - q]_q$ code C_1 with spectrum

$$(a_{q-1}, a_{2q-1}, a_{3q-1}) = (\binom{q}{2} + q^4 - 2q^3 + q^2, 3q^3 - 3q^2 + q + 1, \binom{q}{2} + 2q^2 + q).$$

Lemma 3.2 ([7]). There exists a q-divisible $[q^2 + 3q - 2, 5, q^2 - q]_q$ code C_2 with spectrum

$$(a_{q-2}, a_{2q-2}, a_{3q-2}, a_{4q-2}) = (q^4 - 4q^3 + 6q^2 - 4q + 1,$$

$$5q^3 - 12q^2 + 10q - 3 - \binom{q}{2}, 7q^2 - 9q + 4, \binom{q}{2} + 4q - 1).$$

As projective duals of C_1 and C_2 , one can get a q^2 -divisible $[2q^4 - q^3 + 1, 5, 2q^4 - 3q^3 + q^2]_q$ code C_1^* and a q^2 -divisible $[3q^4 - 2q^3 + 1, 5, 3q^4 - 5q^3 + 2q^2]_q$ code C_2^* . It can be also shown that each of the multisets $\mathcal{M}_{C_1^*}$ and $\mathcal{M}_{C_2^*}$ contains q-1 skew lines. Applying Lemma 2.2 repeatedly (for t=1), starting with the codes C_1^* and C_2^* , we get $[2q^4 - q^3 + 1 - s(q+1), 5, 2q^4 - 3q^3 + q^2 - sq]_q$ codes and $[3q^4 - 2q^3 + 1 - s(q+1), 5, 3q^4 - 5q^3 + 2q^2 - sq]_q$ codes for $1 \le s \le q-1$. These provide the Griesmer codes needed to prove Theorem 1.2 when d is divisible by q. The rest of the codes required can be obtained by puncturing these divisible codes.

References

- [1] J. Bierbrauer, Introduction to Coding Theory, Chapman & Hall/CRC, 2005.
- [2] A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, Des. Codes Cryptogr. 11 (1997) 261–266.
- [3] E.J. Cheon, Y. Kageyama, S.J. Kim, N. Lee, T. Maruta, Construction of two-weight codes over finite fields and its applications, Bull. Korean Math. Soc. **54** (2017) 731–736.
- [4] M. Grassl, Tables of linear codes and quantum codes (electronic table, online). http://www.codetables.de/.
- [5] R. Hill, Optimal linear codes, in: Mitchell C. (ed.) Cryptography and Coding II, pp. 75–104. Oxford Univ. Press, Oxford, 1992.
- [6] R. Hill, E. Kolev, A survey of recent results on optimal linear codes, in: Holroyd F.C. et al (ed.) Combinatorial Designs and their Applications, pp.127–152. Chapman and Hall/CRC Press Research Notes in Mathematics CRC Press. Boca Raton, 1999.

- [7] Y. Inoue, T. Maruta, Construction of new Griesmer codes of dimension 5, Finite Fields Appl. **55** (2019) 231–237.
- [8] Y. Kageyama, T. Maruta, On the construction of Griesmer codes of dimension 5, Des. Codes Cryptogr. **75** (2015) 277–280.
- [9] T. Maruta, On the nonexistence of q-ary linear codes of dimension five, Des. Codes Cryptogr. **22** (2001) 165–177.
- [10] T. Maruta, Construction of optimal linear codes by geometric puncturing, Serdica J. Computing 7 (2013) 73–80.
- [11] T. Maruta, Griesmer bound for linear codes over finite fields, http://www.mi.s.osakafu-u.ac.jp/~maruta/griesmer/.
- [12] T. Maruta, Y. Oya, On optimal ternary linear codes of dimension 6, Adv. Math. Commun. 5 (2011) 505–520.
- [13] M. Takenaka, K. Okamoto, T. Maruta, On optimal non-projective ternary linear codes, Discrete Math. **308** (2008) 842–854.