Construction of new Griesmer codes of dimension 5
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1 Introduction

We denote by F, the field of g elements. A linear code over I, of length n, di-
mension k is a k-dimensional subspace C of the vector space [ of n-tuples over
F,. The vectors in C are called codewords. C is called an [n,k,d], code if it has
minimum Hamming weight d. A k& x n matrix G whose rows form a basis of C is a
generator matriz of C. A fundamental problem in coding theory is to find n,(k, d),
the minimum length n for which an [n, k, d], code exists for given ¢, k,d [5, 6]. The
Griesmer bound states that

k. d) > gy(k,d) =Z Fit

where [z] denotes the smallest integer greater than or equal to z, see [1]. A linear
code attaining the Griesmer bound is called a Griesmer code. The values of n,(k, d)
are determined for all d only for some small values of ¢ and k [4, 11]. For the case
k = 5, the following result is well known.

Theorem 1.1 ([3, 8, 9]). For any prime power q, ny(5,d) = g,(5,d) for

(1) ¢ = —q+1<d<¢" -+ —q

(2) ¢* =2 +1<d < q'+q,

(3) 2¢" —2¢* = * +1<d < 2¢" + ¢* — q,

(4) d >3¢" —4¢° + 1.

We recently proved the following, which was already known only for ¢ < 4.

Theorem 1.2 ([7]). For any prime power q, ny(5,d) = g,(5,d) for

(1) 2¢* =3¢ +1 < d < 2¢* = 3¢* + ¢,

(2) 3¢* =543 + ¢ +1 <d < 3q¢* —5¢> + 2¢%.

This note is a digest (and some typos are corrected) version of [7].
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2 Construction methods

Denote by PG(r,q) the projective geometry of dimension r over F,. The 0-flats,
1-flats, 2-flats, 3-flats and (r — 1)-flats are called points, lines, planes, solids and
hyperplanes, respectively. We denote by F; the set of all j-flats in PG(r, ¢) and by
6; the number of points in a j-flat, so, §; = (¢/** —1)/(¢ — 1).

Let C be an [n, k, d], code with no coordinate identically zero. Then, the columns
of a generator matrix of C can be considered as a multiset of n points in ¥ =
PG(k — 1,q) denoted by M. We see linear codes from this geometrical point of
view. An i-point is a point of ¥ which has multiplicity 7 in M. Denote by ~, the
maximum multiplicity of a point from ¥ in M¢. Let C; be the set of i-points in
¥, 0 <i < 9, and let \; = |C;|, where |C;| denotes the number of elements in a
set C;. For any subset S of X, the multiplicity of S, denoted by m¢(.9), is defined
as me(S) = >.,2,4-|/SNC;|. Then we obtain the partition ¥ = (J)2, C; such that
n = me(X) and n — d = max{me(7) | 7 € Fr_a}. Conversely such a partition
¥ = U2, C; as above gives an [n, k, d], code in the natural manner. A hyperplane
H with t = me(H) is called a t-hyperplane. A t-line, a t-plane and t-solid are defined
similarly. Denote by a; the number of i-hyperplanes in ¥. The list of the values a;
is called the spectrum of C, which can be calculated from the weight distribution by
a; = A,—i/(g—1) for 0 < i < n —d, where A; is the number of codewords of C
with weight j. An [n, k,d], code is called m-divisible if all codewords have weights
divisible by an integer m > 1.

Lemma 2.1 ([13]). Let C be an m-divisible [n,k,d], code with ¢ = p", p prime,
whose spectrum is

(anfdf(wfl)ma Ap—d—(w—2)m> """ » An—d—m; an—d) = (aw—la Qyp—2, "+, O, OKQ),
where m = p" for some 1 < r < h(k — 2) satisfying A\g > 0 and

N H=0.

HeFy_o, mc(H)<n—d

Then there exists a t-divisible [n*, k, d*], code C* witht = ¢*~%/m, n* = Z;Uz_ol Jja; =
ntq — L6,_1, d* = ((n — d)qg — n)t whose spectrum is

(a‘n*—d*—’yotv an*—d*—(’yo—l)h cr Ly Apx—d*—t, CLn*_d*> = ()\707 )\70—17 ) )\17 )\0)

The condition “ﬂHefk_% me () enaHd = (" is needed to guarantee that C* has
dimension k although it was missing in Lemma 5.1 of [13]. Note that a generator
matrix for C* is given by considering (n — d — jm)-hyperplanes as j-points in the
dual space ¥* of ¥ for 0 < j < w — 1 [13]. C* is called a projective dual of C, see
also [2] and [6].

Lemma 2.2 ([10, 12]). Let C be an [n, k,d], code and let U C; be the partition of
¥ = PG(k — 1,q) obtained from C. If U;>1C; contains a t-flat A and if d > ¢*, then
there exists an [n — 0y, k,d'), code C" with d' > d — ¢".

The code C’" in Lemma 2.2 can be constructed from C by removing the ¢-flat A from
the multiset M. In general, the method for constructing new codes from a given

[n, k,d], code by deleting the coordinates corresponding to some geometric object
in PG(k — 1, ¢q) is called geometric puncturing [10].
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3 A sketch of the proof of Theorem 1.2

We constructed a 5-divisible [34,5,20]5 code and a 5-divisible [38,5,20]5; code by
some heuristic computer search. Then, we generalized the constructions to the
following using a normal rational curve in PG(4, q).

Lemma 3.1 ([7]). There exists a q-divisible [¢* + 2q — 1,5,¢* — q], code Cy with
spectrum,

q : q
(aq—b a2q—l> a3q—l) - ((2) + (]4 - 26]3 + q2’ 3(]5 - 3q2 + q + ]-7 (2) + 26]2 + q)
Lemma 3.2 ([7]). There exists a g-divisible [¢* + 3q — 2,5,¢*> — ¢|, code Cy with
spectrum

(%—2, A2q—2, A3¢—2, a4q—2) = (q4 - 4q3 + 6q2 —4q+1,

5¢° — 12¢* +10g — 3 — <g),7q2 —9q + 4, (g) +4q—1).

As projective duals of C; and Cy, one can get a ¢>-divisible [2¢* — ¢* + 1,5, 2¢* —
3¢* +¢%, code C; and a ¢>-divisible [3¢* —2¢® + 1,5, 3¢* — 5¢> 4+ 2¢?], code C;. Tt can
be also shown that each of the multisets Mc: and Mc; contains ¢ — 1 skew lines.
Applying Lemma 2.2 repeatedly (for t = 1), starting with the codes C; and Cj, we
get 2¢* — @ +1—s(g+1),5,2¢* — 3¢> + ¢* — sq], codes and [3¢* — 2¢* + 1 — s(q +
1),5,3¢* — 5¢® + 2¢* — sq|, codes for 1 < s < g — 1. These provide the Griesmer
codes needed to prove Theorem 1.2 when d is divisible by ¢q. The rest of the codes
required can be obtained by puncturing these divisible codes.
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