Algebraic independence of the values
of a certain map defined on the set of orbits
of the action of Klein four-group

BERARFH T8 Hp 220 (Taka-aki Tanaka)
Faculty of Science and Technology, Keio Univ.

1 Introduction

Let {Rk}r>1 be a linear recurrence of positive integers satisfying
Rk-i—n = Cle+n—l + -t e Ry (k‘i > 1)> (1)

where n > 2 and ¢y, ..., ¢, are nonnegative integers with ¢, # 0. The author [9] studied
the two-variable function E(x,q) defined by

o k o0 gk g+ Rat+ Ry

Hl—qu :,;(1—qu)(1—qRQ)---(l—qR’f)’

k=1 I=1

which may be regarded as an analogue of g-exponential function

k 1+2+ +k

B Zl—q (L =q?)---(1—¢")

(cf. Gasper and Rahman [2]), if we replace k in the exponent of ¢ in E,(z) with {Ry}r>1
defined above.
Let
PX)=X"—c X"~ —¢c, (2)

and let Q" be the set of nonzero algebraic numbers. The author proved the following

Theorem 0 (Corollary 4 of [9]). Let { Ry }x>1 be a linear recurrence satisfying (1). Suppose
that ®(£1) # 0 and the ratio of any pair of distinct roots of ®(X) is not a root of unity.
Assume that { Ry }r>1 is not a geometric progression. Then the values

E(z,q) (v,q€Q", |g| <1)

are algebraically dependent if and only if there exist some distinct pairs (x1,q1) and (2, ¢2)
of monzero algebraic numbers xq,x2,qr, and go with |q1|, |g2| < 1 such that x1 = x5 and
q{v’“ = qév’“ for some k > 1, where N, = g.c.d.(Rg, Rgs1, -+, Riin_1)-

In particular, if Ny = 1 for any k > 1, then the values E(x,q) are algebraically
independent for any distinct pairs (z,q) of nonzero algebraic numbers x and q with |q| < 1.



Example 0. Let {F} }x>1 be the sequence of Fibonacci numbers defined by Fy = 1, Fy =
1, and Fyy9 = Fyy1 + F) (K > 1). Since {F}}r>1 satisfies the conditions in Theorem 0,
the infinite set of the values

{ s k, Fi+Fot+Fp

g
,; (1 =¢M)(1—¢)-- (1 —g¢")

r,qeQ”, |q < 1}

is algebraically independent.

The two-variable function E(x,q) converges on the domain

(Cx {lgl <1HU (=] <1} x {lgl > 1}) =={(z,q) € C* | g| < 1V (2| <1Alql > 1)},
whereas a ‘balanced’ analogue
o xqu1+R2+'“+Rk

ZH - qQRl - ; (1—g*f)(1 —g*R2) -+ (1 — ¢*Fx)

k=1 l=1

converges on the wider domain
Cx{lgl # 1} :={(z,q) € C* | |g| # 1}.
Indeed, if ¢ # 0, O(z, q) is invariant under the map
o1 ¢ (2,0) — (—2,q7),

namely

o —Ri—Ro——Ry,

(—2)*q
O(o1(z,9)) Z —2R 2R 5y — O, q)
— 1_q 1 1_q 2)...(1_q k)

and so ©(x,q) converges on C x {|q| # 1} by the similar reason to the convergence of
E(z,q).
Moreover, if { Ry }x>1 is a sequence of odd integers, then ©(x, g) is invariant also under
the maps
oy (x,q) — (=2, —q),
o3 (z,q) — (z,—q¢ ).

Since 01 0 01 = 03 0 09 = id and 0y 0 09 = 09 0 01 = 03, we see that G4 = {id, o1, 02, 03}
is Klein four-group. Therefore, O(z,q) can be regarded as a map defined on the set of
orbits (C x {|q| # 0,1})/G4, where C x {|q| # 0,1} = {(z,q) € C* | |q| # 0,1}, namely
the map _
© : (Cx{lgl#0,1})/Gs — O(C x {|q| # 0,1})
given by
the orbit of (x,q) — O(z,q)

is well-defined. Hence the restriction to algebraic points

6:((x fld #0100 (@)°) /61— 6 (©x 1l 200 (7).



or equivalently
6: (T @\ {lal=1D) /G — 6 (Tx @ \ {lal = 1)

is also well-defined, where the second @X denotes the multiplicative group of nonzero
algebraic numbers while the first @X simply denotes the set of nonzero algebraic numbers.
In this paper we prove the following

Theorem 1. Let {Ry}r>1 be a linear recurrence satisfying (1). Suppose that ®(£1) # 0
and the ratio of any pair of distinct roots of ®(X) is not a root of unity. Assume that
g.cd.(Rg, Rgs1, .-y Rpyn1) = 1 for any k > 1. Assume further that ®(2) < 0 and that
{Ry}i>1 is a sequence of odd integers. Then the infinite set of the values

6 ((@"x @ \{lal=1p)/ )
18 algebraically independent.

Remark 1. The condition that g.c.d.(Ry, Rki1, ..., Rkin_1) = 1 for any k£ > 1 implies
that the sequence {Rj}r>1 is not a geometric progression.

Corollary 1. Let {Ry}r>1 be as in Theorem 1. Then the infinite set consisting of the
distinct values of

i kgl Rt Ry
= (1= g?M)(1 = ¢*f2) - (1 = g*Fr)

2,0 €Q", |q| # 1}

18 algebraically independent.

Example 1. Let {P;}r>1 be the sequence defined either by P, = P, = 1 and Pyyo =
2P 1+ P, (k>1)orby P, =P, =Py =1and P,y 3 = Peio+ Pey1 +3F (k> 1). Since
{Py}rx>1 satisfies all the conditions of Theorem 1, the infinite set consisting of the distinct
values of

e xkqP1+P2+“‘+Pk —
) 6 Y 1
; - @)1 —P) (1 —gm) | 77 Q7
is algebraically independent.
If {Ry}r>1 is a sequence of odd integers, then
ok R 00 k, Ri+Ra+-+R
xq 1 €T q 1 2 k
O = =
+(@0) ,; E 1 4 g*f ,; (1+ @) (1+¢*R=) - (1 + ¢)
is invariant under the maps
AT (x7Q> — (xaq_l>7
T2 x:Q) L (—LE, _Q>7



Since 1y o1 = o 07y =1id and 7 0 Ty, = Ty 0 Ty = T3, we see that G, = {id, 7, T2, T3} is
also Klein four-group. Hence the map

O, ¢ (Cx {lg] #0,1})/G} — ©,(C x {|g| #0,1})

given by
the orbit of (x,q) — ©,(z,q)

is well-defined. We also have the following

Theorem 2. Let {Ry}i>1 be as in Theorem 1. Then the infinite set of the values
O ((@x@\flal=11)/c4)
18 algebraically independent.

Example 2. Let {P;}r>1 be one of the linear recurrences defined in Example 1. Since
{ Py }k>1 satisfies all the conditions of Theorem 1, the infinite set consisting of the distinct

values of
° k  Pi+Po++Py
xrq X
) E Y 1
{; L+ @)L+ ) (g | 71 ¢l }
is algebraically independent.
2 Lemmas
Let F(z1,...,2,) and F|[z1,...,2,]] denote the field of rational functions and the ring
of formal power series in variables zy, ..., z, with coeflicients in a ficld F', respectively,

and F* the multiplicative group of nonzero elements of F. Let @ = (w;;) be an n x n
matrix with nonnegative integer entries. Then the maximum p of the absolute values of
the eigenvalues of ) is itself an eigenvalue (cf. Gantmacher [1, p. 66, Theorem 3]). If

z=(z1,...,2,) is a point of C", we define a transformation € : C" — C" by
n n n
Qz:(Hzf”,Hz?j,...,Hzf”j). (3)
j=1 j=1 Jj=1
We suppose that Q and an algebraic point @ = (a, ..., a,), where «; are nonzero alge-

braic numbers, have the following four properties:

(I) 2 is nonsingular and none of its eigenvalues is a root of unity, so that in particular
p> 1.

(IT) Every entry of the matrix Q¥ is O(p*) as k tends to infinity.
(1) If we put Qfa = (ol ... o), then
log|af| < —ep* (1<i<n)

for all sufficiently large k, where c is a positive constant.



(IV) For any nonzero f(z) € C|[z1, ..., 2,]] which converges in some neighborhood of the
origin, there are infinitely many positive integers k such that f(Q*a) # 0.

Lemma 1 (Lemma 4 and Proof of Theorem 2 in [6]). Suppose that ®(£1) # 0 and
the ratio of any pair of distinct roots of ®(X) is not a root of unity, where ®(X) is the
polynomial defined by (2). Let

cgc 1 0 ... 0

c 0 1 :
Q=1 0 (4)

: 1

c, O 0

and let By, ..., Bs be multiplicatively independent algebraic numbers with 0 < |5;| <1 (1 <
Jj <'s). Let p be a positive integer and put Q) = diag(QP,...,QP). Then the matriz
—_———

and the point 3= (1,...,1,81,...... ,1,... 1, Bs) have the properties (I)—(IV).

21 Z1
Lemma 2 (Kubota [3], see also Nishioka [5]). Let K be an algebraic number field. Suppose
that f1(2),..., fm(2) € K[[z1,...,2,]] converge in an n-polydisc U around the origin and
satisfy the functional equations

fi(z) = ai(2) [i(Qz) + bi(z) (1 <i<m),

where a;(z),b;(z) € K(21,...,2,) and a;(z) (1 < i < m) are defined and nonzero at the
origin. Assume that the n xn matriz Q and a point o« € U whose components are nonzero
algebraic numbers have the properties (I)—(IV) and that a;(z) (1 < i < m) are defined
and nonzero at Qfav for any k > 1. If f1(2),..., fm(2) are algebraically independent over
K(z1,...,2), then the values fi(a),..., fm(a) are algebraically independent.

In what follows, C' denotes a field of characteristic 0. Let L = C(zy,...,2,) and let
M be the quotient field of C[[z1,...,2,]]. Let © be an n x n matrix with nonnegative
integer entries having the property (I). We define an endomorphism 7 : M — M by
fT(z) = f(Qz) (f(z) € M) and a subgroup H of L* by

H={gg" [geL"}.
Lemma 3 (Kubota [3], see also Nishioka [5]). Let fj; e M (i=1,...,h; j=1,...,m(i))
satisfy
Jij = aifi; + bij,
where a; € L*, by € L (1 <i < h, 1 <j<mi)), and a;a;' ¢ H for any distinct
i,i" (1 < 1,7 <h). Suppose for any i (1 <i < h) there is no element g of L satisfying

g=ag + Z cjbij,
j=1

where ci,...,cme € C are not all zero. Then the functions fi; (1 = 1,...,h; j =
1,...,m(3)) are algebraically independent over L.



Let {Rg}r>1 be a linear recurrence satisfying (1) and define a monomial

M(z) = 2" - 27, ()

n

which is denoted similarly to (3) by
M(z) = (R,,...,R)z. (6)
Let © be the matrix defined by (4). It follows from (1), (3), and (6) that
M(QFz) = 2% 2B (] > 0). (7)

Lemma 4 (Theorem 2 of [7]). Suppose that {Ry}r>1 is not a geometric progression.
Assume that ®(£1) # 0 and the ratio of any pair of distinct roots of ®(X) is not a root
of unity. Let C' be an algebraically closed field of characteristic 0. Suppose that F(z) is
an element of the quotient field of C|[z1, ..., z,)] satisfying the functional equation of the
form

Fm=(lwiwmm>mm4

where Q is defined by (4), p > 0, u > 0 are integers, and Qn(X) € C(X) (u < k <
p+u—1) are defined and nonzero at X = 0. If F(z) € C(z1,...,z,), then F(2) € C and
Qe(X)eC" (u<k<p+u-—1).

We adopt the usual vector notation, that is, if I = (41, ...,1,) € Z%, with Z>, the set

of nonnegative integers, we write 2/ = 2i' - .- zin. We denote by C|z1, ..., z,] the ring of
polynomials in variables zq, ..., 2z, with coefficients in C.

Lemma 5 (Lemma 3.2.3 in Nishioka [5]). If A,B € Clz,...,z,] are coprime, then
g.c.d.(A",B7) = 2!, where I € Z2,.

Lemma 6 (Lemma 12 of [7]). Let  be an n X n matriz with nonnegative integer entries
which has the property (1). Let R(z) be a nonzero polynomial in Clzy, ..., z,]. If R(Qz)
divides R(z)z', where I € Z2, then R(z) is a monomial in z1,.. ., z,.

Lemma 7 (Lemma 6 of [8]). Let P(z) be a nonconstant polynomial in z = (z1,...,2,)
with n > 2. Let  be an n X n matrix with positive integer entries which has the property
(I). Then

deg, P(Qz) > degy P(z).

3 Proof of the main theorem

We prove only Theorem 1, since Theorem 2 is proved in the same way.

Proof of Theorem 1. A complete set of representatives of the orbits

(@ @\ {lal =1})) / Gu s given by

0\ 2
{(m,q)e((@ ) ‘ |q|<1,0§Argq<7r} = A



since, under the action of the Klein four-group Gy, the second component ¢ is transformed
either to ¢, ¢~', —q, or —¢~*. Hence it is enough to prove that the values

g}
n; - xza% ZHl_qZZRl (i:1>"'ar)

k=1 l=1

are algebraically independent for any finite number of distinct pairs (z1,q1),
(x2,q2), - -, (s, qr) belonging to A.

Assume that the values 7, ..., 7, are algebraically dependent. There exist multiplica-
tively independent algebraic numbers f;,...,8s with 0 < [5;] <1 (1 < j < s) and a
primitive N-th root of unity ¢ such that

= (™ Hﬂj“ (1<i<r), (8)
j=1

where my, ..., m are integers with 0 <m; < N —lande; (1<i<r 1<j<s)are
nonnegative integers (cf. Loxton and van der Poorten [4], Nishioka [5]). We can choose a
positive integer p and a sufficiently large integer u, which will be determined later, such
that Ryp, = R, (mod N) for any & > u+1. Let y;) (1 <j <s, 1 <X <n) be variables
and let y; = (Y1, ¥m) (1 <J<8),y=(yy,.--,Y,). Define

oo k xigmiRHl Hs':l M(Qlyj>€ij .
fily) = (lsisr),
;L ll_{ 1— (szRHl [, M(Qy )ez]>2

where M(z) and Q are defined by (5) and (4), respectively. Letting

B=(1,...,1,B,...... 1., 1.8,),
N—— N——

n—1 n—1

we see by (7) and (8) that

ZH ZLEQZ?RHA Z H IZQZQRl

kulu k=u+1l=u+1 _ql

and so

S SR o § N
=11 | £+ 1] o
Pl - 1 ;

Since 7, . .., 1, are algebraically dependent, so are f;(3) (1 <i <r). Let
Q' = diag(QP,..., Q).
N
Then each f;(y) satisfies the functional equation
ptu—1 m; R s k €ij
x; (it H.: M(Q y,) ij
fi(y) = H - : 3 fi(Q/y)
e 1 ((msz [T, M(Qhy, ))




p+u—1 k m; R, s l €;j
z (M [ M(Qy,)e
X H H =1 J

b i—u 1 — (gmszH  M(Qly )e”)

where Q'y = (Qy,,...,0Py,). Let D = |det(Q — E)| = |®(1)|, where E is the identity
matrix. Then D is a positive integer, since ®(1) #£ 0. Let y;-)\ = ny (1<j<s 1<A<

n), Yy = Y- ¥, (1<j<s),andy = (y),...,y;). Noting that [[;_, M((2—
E)7'Quy;)e = [T, M(D(2 — E)~'Qy)) € Q(y'), we define

27

9(y) = (HM (Q-E)'Qy )5“> filty) = Ti(y)

= (H M(D(2 - E)‘lﬂuy;)%) fily)—Ty) (1<i<r),

where
ook
) = > 11
k=u l=u 1 — ((mszH | M(Qy )Dem>
i ;M szlM(Qly’.)Deij

Ti(y) = ( M(D(Q—E)_lﬂuy})“") 3

€T leRl+1 H M(Ql )D €ij

€ Qlly'l],

€ Q).
and k; is such a large integer that g;(y') € Q[[y']] (1 < i < r). Since M(D(Q —

u +U 1 / _ —1Ou .
E) 'y [Tl M(QFy))P = M(D(Q — E)'QPy)), each g;(y’) satisfies the func-
tional equatlon

pru—l (MR
X
gi(y/) = II ¢ 3 gi(Q/y/)
= 1—(cmle+1H L M ()P )

D\ e [, M (@)
+ M 1Qu )em> !
H ; E 1 — <szRl+1 H M(Ql )De”)Q

ptu—1 T gml Riy1

k=u 1 — (szRkH H L M(QFy )D%)2

T(QY') - Ti(y'),

where 'y’ = (QPy),...,QPy.). Since f;(8) (1 < i < r) are algebraically dependent, so
are g;(B') (1 <i <r), where

B =1,..,18/" . ... . 1,...,1,8YP).

By Lemma 1, the matrix ) and B’ have the properties (I)—(IV). By Lemma 2, the
functions g;(y') (1 < i < r) are algebraically dependent over Q(y’).



In order to apply Lemma 3, we assert that
pruct gt (1= ((mefn T, M(Q4y))Pe))

i et (1= (mfens TT5_y M(QFy))Pen)?

Qir(Y) =

N———

hQ'y") ‘ =
€ = ny') € Q(y")\ {0
B | ) e Q) 10
if and only if m; = my, (ei1,...,€is) = (ei1,...,es), and ¥ = . It is clear that, if
mi =my, (€,...,€is) = (€r1,...,ers), and z, = =¥, then Qi (y') = 1 € H. Conversely,

suppose that Q;(y') € H. Then there exits an F(y') € Q(y’) \ {0} satisfying

, p+u—1 xilcmileJrl (1 _ (le‘R;H,l Hj::L M(Qky;)De”)Q) N
F)=| ] ) L) Fey). ()
k=u Iz‘CmiRk“ (1 _ (é‘mi/RkH Hj:1 M(Qkyj) i,j) )

Let P be a positive integer divisible by D and let
= W) = (0P (1< <),
We choose a sufficiently large P such that the following two properties are both satisfied:
(a) If (€1, ..., €i5) # (€1, ..., €us), then ijl e;; P # 2;21 ey P
(b) F*(2) = F(zf/D,...,zg/D,...,zfs/D,...,z,fS/D) € Q(z1,...,2,) \ {0}.

Then by (9), F*(z) satisfies the functional equation

Y
F*(2) = F*(OP2), 10
@=L () )

where ¢; = Z;=1 e;;P7 (1 <i <r). Therefore by Lemma 4 we see that

xi’cmi/Rk+1 (1 _ CQmiRk+1X2£i)
xicmiRk+1 (1 _ szi’RkﬂX%i’)

X

€Q

for any k (u < k < p+u — 1), where X is a variable, and F*(z) € Q. Hence ¢; = (;
and (il = milen (y <k < p+u—1). Thus (eq,...,¢65) = (ei,...,ens) by
the property (a), and (*™ = (*™ since g.c.d.(Rg, Riy1,-- -, Riyn_1) = 1 for any k& > 1.
Hence ¢? = ¢% by (8) and so ¢; = g since 0 < Argq; < 7 (1 < i <r). Then m; = my,
and the functional equation (10) becomes 2! F*(z) = o, F*(Q"z). Since [*(z) € Q" we
have 2 = %, and the assertion is proved.

Now let S be a maximal subset of {1,...,r} such that (2¥,¢;) = (a},qy) for any
i,7 € S, which is equivalent to a? = z%,, m; = my, and (e;, ..., €;) = (€1, ..., €rs). Fix
aXe€ Sandlet & =25, m=m, and ¢; = e,; (1 <j <s). Then 27 = ¢, m; = m, and
(€1, ..., €is) = (e1,...,es) for any i € S and by Lemma 3 there exits a G(y') € Q(y')
satisfying



ptu—1 CmRk+1
Gy) = ¢ G(QY)
kl_‘[b 1— (CmRk“ H M(Qk )DBJ)Z

(o)

ptu—1 k mR+1 l De;
< 3 (Zx>H 7 Mim M)

e 1= (cmmes T, M(Qy)Pe)

k=u €S
ptu—1 CmRkJrl -, /
+¢ > aTiy) =) aTi(y),
k=u 1 — <CmRk+1 [[5-, M(QFy )Deﬂ) ics i€s

where ¢; (i € S) are algebraic numbers not all zero. Then

(HM )My > (G(y’) + Zqﬂ(@/)) € Qy)

i€S

satisfies the functional equation

pF+u—1 CmRkH HS . M(Qky/')ﬂ)ej

G - G (Qy)
)
1
+ Hj:l M(D(Q — E>_1Q“y;)€j
pt+u—1 k C’le+1 H - M(Ql )De]
X Cz‘xf_“ﬂ | (11)
5 <2; >£[1 (¢mwss TL5_, M(@y)Pes )

Let P be a positive integer and let ¥ = (y5y,...,v),) = (zfj, o ,z,fj) (1<j<s). We
choose a sufficiently large P such that

H(z)=G*(zF,... 20 20 20 e Qe ... 20).

Y ¥n )

Then by (11), H(z) satisfies the functional equation

ptu—1
ngkHM(ka)QDZ .
A(z) = ¢ ( kli[ 1— (CmRkJrlM(ka)Dé)Q) H(Qz)

ptu—1 k
k " CleH M(QlZ>DZ
M(D(Q E —1Quz)t Z (Z cit +l> H 1 — (¢mBen M(Q1z) D0

=u €S l=u

where £ = »7*_, e;P7. Letting H(z) = A(z)/B(z), where A(z) and B(z) are coprime
polynomials in Q[zy, .. ., z,] with B # 0, and letting M (D(Q—E)~'Q%2) = M, (z)/M>(z),
where M, (z) and My(z) are coprime monomials in Q[zy, ..., z,], we have

p+u—1

Az)B@2)Mi (=) [] (1— (CmR’f“M(Q’“z)DZ)Q)

k=u



p+u—1

= EA(X2)B(z)Mi(z)" [] ¢ M(QFz)*"

k=u
+u—1
. pz <Z Cixfu+1> )B(sz M2 ZHCmRzHM Ql )
k:z+u iES l=u
x H ( (Cm R M(QF 2)PY) ) (12)
=k+1

In what follows, let u be sufficiently large. By the condition ®(2) < 0, the root p of
®(X) such that R, = bp* + o(p*) with b > 0 (c¢f. Remark 4 in [6]) satisfies p > 2
and hence Rp,1 > 2Ry for all sufficiently large k. Then the componentwise inequal-
ity (Rn,...,R)D(Q— E) Q"= (R,,...,R)D(Q — E)' = (Ryyn, .-, Rur1)D(2 —
E)™' < D(Rusn, -, Ruy1) holds and so z; - - - 2, M1 (2)* divides M (Q42)P¢ = M (DQ"z)*~.
In what follows, p is replaced with its multiple if necessary. We can put the great-
est common divisor of A(QPz) and B(QPz) as z/®  where I(p) is an n-dimensional
vector with nonnegative integer components, by Lemma 5. Then B(QFz) divides
B(z)M,(2)"2"® T[22 M(92F2)2P¢ by (12). Therefore B(z) is a monomial in 2y, ..., 2,
by Lemmas 1 and 6. Since p and u are independent, the right-hand side of (12) is divisible
by z1 -+ 2, M (2)'B(Qz) and thus A(z) is divisible by 2; ---z,. Since A(z) and B(z)
are coprime, B(z) € Q. 1If A(z) ¢ Q and if p is sufficiently large, then by Lemma 7,
deg, A(z) > max{deg, A(z), degy M>(z)‘}, which is a contradiction by comparing
the total degrees of both sides of (12). Hence A(z) € Q. Then by (12), we see that
Y ics it =0 (u<k<p+u—1)andso s Cirk =0 (1 <k <p). Hence z; = xy
for some distinct ,i" € S since ¢; (i € S) are not all zero. Then (x;,¢;) = (zs, ¢v), which
is a contradiction, and the proof of the theorem is completed. O
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