The topology of the space of rational curves on a toric variety and related problems

山口耕平 (Kohhei Yamaguchi)

電気通信大学 情報理工学研究科 (University of Electro-Communications)

Abstract

We report about the recent joint work with A. Kozlowski [16] (cf. [15], [18]) concerning to the topology of spaces of rational curves on a toric variety and related problems.

1 Introduction

Spaces of maps. For connected spaces X and Y, let $\operatorname{Map}^*(X,Y)$ denote the space consisting of all base point preserving continuous maps from X to Y with the compact-open topology, and for each class $D \in \pi_0(\operatorname{Map}^*(X,Y))$, let $\operatorname{Map}^*_D(X,Y)$ denote the path-component of $\operatorname{Map}^*(X,Y)$ corresponding to the homotopy class D. When $X = \mathbb{C}P^1$ and Y is a complex manifolds, we denote by $\operatorname{Hol}^*_D(S^2,Y)$ the space of all base point preserving holomorphic maps $f \in \operatorname{Map}^*_D(S^2,Y) = \Omega^2_D Y$.

Convex rational polyhedral cones. A convex rational polyhedral cone is the subset of \mathbb{R}^m of the form

(1.1)
$$\sigma = \operatorname{Cone}(S) = \operatorname{Cone}(\boldsymbol{m}_1, \cdots, \boldsymbol{m}_s) = \{ \sum_{k=1}^s \lambda_k \boldsymbol{m}_k : \lambda_k \ge 0 \}$$

for some finite set $S = \{ \boldsymbol{m}_k : 1 \leq k \leq s \} \subset \mathbb{Z}^m$ and it is called *strongly convex* if $\sigma \cap (-\sigma) = \{ \boldsymbol{0}_m \}$, where we set $\boldsymbol{0}_m = (0, 0, \cdots, 0) \in \mathbb{R}^m$. When S is the emptyset \emptyset , we set $\operatorname{Cone}(\emptyset) = \{ \boldsymbol{0}_m \}$ and we may also regard it as one of convex rational polyhedral cones.

Fans and toric varieties. Let X be an m dimensional irreducible normal algebraic variety over \mathbb{C} . One says that X is a toric variety if it has an algebraic action of of an algebraic torus $\mathbb{T}^m_{\mathbb{C}} = (\mathbb{C}^*)^m$, such that the orbit $\mathbb{T}^m_{\mathbb{C}} \cdot *$ of some point $* \in X$ is dense in X and isomorphic to $\mathbb{T}^m_{\mathbb{C}}$. A toric variety X is characterized up to isomorphism by its $fan \Sigma$, which is a finite collection of strongly convex rational polyhedral cones in \mathbb{R}^m such that every face τ of $\sigma \in \Sigma$ belongs to Σ and the intersection $\sigma_1 \cap \sigma_2$ of any two elements $\sigma_1, \sigma_2 \in \Sigma$ is a face of each σ_k (k = 1, 2). We denote by X_{Σ} the toric variety associated to the fan Σ .

Polyhedral products and homogenous coordinates. Let K be a simplicial complex on the index set $[r] = \{1, 2, \dots, r\}^1$ and let (X, A) be pair of spaces such that $A \subset X$. Then define the polyhedral product $\mathcal{Z}_K(X,A)$ with respect to K by the union $\mathcal{Z}_K(X,A)$ $\bigcup_{\sigma \in K} (X, A)^{\sigma}, \text{ where } (X, A)^{\sigma} = \{(x_1, \cdots, x_r) \in X^r : x_k \in A \text{ if } k \notin \sigma\}.$ Note that the space $\mathcal{Z}_K(D^2, S^1)$ is usually called the moment-angle complex of K.

Definition 1.1. Let Σ be a fan in \mathbb{R}^m such that $\{\mathbf{0}_m\} \subseteq \Sigma$, and let $\Sigma(1) = \{\rho_1, \dots, \rho_r\}$ denote the set of all one dimensional cones in Σ .

- (i) For each integer $1 \leq k \leq r$, we denote by $\mathbf{n}_k \in \mathbb{Z}^m$ the primitive generator of ρ_k , such that $\rho_k \cap \mathbb{Z}^m = \mathbb{Z}_{\geq 0} \cdot \boldsymbol{n}_k$. Note that $\rho_k = \operatorname{Cone}(\boldsymbol{n}_k)$.
 - (ii) Let \mathcal{K}_{Σ} denote the underlying simplicial complex of Σ defined by

(1.2)
$$\mathcal{K}_{\Sigma} = \Big\{ \{i_1, \cdots, i_s\} \subset [r] : \operatorname{Cone}(\boldsymbol{n}_{i_1}, \cdots, \boldsymbol{n}_{i_s}) \in \Sigma \Big\}.$$

It is easy to see that \mathcal{K}_{Σ} is a simplicial complex on the index set [r].

(iii) Next, define the subgroup $G_{\Sigma} \subset \mathbb{T}^r_{\mathbb{C}}$ by

(1.3)
$$G_{\Sigma} = \{(\mu_1, \cdots, \mu_r) \in \mathbb{T}_{\mathbb{C}}^r : \prod_{k=1}^r (\mu_k)^{\langle n_k, m \rangle} = 1 \text{ for all } \boldsymbol{m} \in \mathbb{Z}^m \},$$

where $\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \sum_{k=1}^{m} u_k v_k$ for $\boldsymbol{u} = (u_1, \dots, u_m)$ and $\boldsymbol{v} = (v_1, \dots, v_m) \in \mathbb{R}^m$.

(iv) Consider the natural G_{Σ} -action on $\mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C},\mathbb{C}^*)$ given by coordinate-wise multiplication, i.e.

$$(\mu_1, \cdots, \mu_r) \cdot (x_1, \cdots, x_r) = (\mu_1 x_1, \cdots, \mu_r x_r)$$

for $((\mu_1, \cdots, \mu_r), (x_1, \cdots, x_r)) \in G_{\Sigma} \times \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*).$

Let $I(\mathcal{K}_{\Sigma}) = \{ \sigma \subset [r] : \sigma \notin \mathcal{K}_{\Sigma} \}$ and consider the orbit space $\mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma}$. Now recall the following result due to D. Cox.

Theorem 1.2 (D. Cox; [4], [5]). Let Σ be a fan in \mathbb{R}^m as in Definition 1.1 and suppose that the set $\{n_k\}_{k=1}^r$ of all primitive generators spans \mathbb{R}^m .

(i) Then there is a natural isomorphism

$$(1.4) X_{\Sigma} \cong \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma}.$$

(ii) If $f: \mathbb{C}\mathrm{P}^s \to X_{\Sigma}$ is a holomorphic map, then there exists an r-tuple D= $(d_1, \dots, d_r) \in (\mathbb{Z}_{\geq 0})^r$ of non-negative integers satisfying the condition $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_m$, and homogenous polynomials $f_i \in \mathbb{C}[z_0, \dots, z_s]$ of degree d_i $(i = 1, 2, \dots, r)$ such that the polynomials $\{f_i\}_{i\in\sigma}$ have no common root except $\mathbf{0}_{s+1}\in\mathbb{C}^{s+1}$ for each $\sigma\in I(\mathcal{K}_{\Sigma})$ and that the diagram

¹In this paper by a simplicial complex K we always mean an an abstract simplicial complex, and we always assume that a simplicial complex K contains the empty set \emptyset .

is commutative, where two map $\gamma_s: \mathbb{C}^{s+1} \setminus \{\mathbf{0}_{s+1}\} \to \mathbb{C}\mathrm{P}^s$ and $q_{\Sigma}: \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*) \to X_{\Sigma}$ denote the canonical Hopf fibering and the canonical projection, respectively. In this case, we call this holomorphic map f a holomorphic map of degree $D = (d_1, \dots, d_r)$ and we represent it as $f = [f_1, \dots, f_r]$.

(iii) If $g_i \in \mathbb{C}[z_0, \dots, z_s]$ is a homogenous polynomial of degree d_i $(1 \leq i \leq r)$ such that $f = [f_1, \dots, f_r] = [g_1, \dots, g_r]$, there exists some element $(\mu_1, \dots, \mu_r) \in G_{\Sigma}$ such that $f_i = \mu_i \cdot g_i$ for each $1 \leq i \leq r$.

Assumptions. From now on, let Σ be a fan in \mathbb{R}^m as in Definition 1.1, and assume that X_{Σ} is simply connected.² Thus, we can identify $X_{\Sigma} = \mathcal{Z}_{\mathcal{K}_{\Sigma}}(\mathbb{C}, \mathbb{C}^*)/G_{\Sigma}$, and we shall assume that the following condition holds.

(1.5.1) There is an r-tuple $D = (d_1, \dots, d_r) \in (\mathbb{Z}_{>1})^r$ such that $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_m$.

2 Spaces of rational curves on a toric variety

Let P^d denote the space of all monic polynomials $f(z) = z^d + a_1 z^{d-1} + \dots + a_{d-1} z + a_d \in \mathbb{C}[z]$ of degree d, and we set

(2.1)
$$P^{D} = P^{d_1} \times P^{d_2} \times \cdots \times P^{d_r}.$$

Now let $D = (d_1, \dots, d_r) \in (\mathbb{Z}_{\geq 1})^r$ be an r-tuple of positive integers satisfying (1.5.1) and consider a base point preserving holomorphic map $f = [f_1, \dots, f_r] : \mathbb{C}\mathrm{P}^s \to X_{\Sigma}$ of the degree D for the case s = 1.

In this situation, we make the identification $\mathbb{C}\mathrm{P}^1 = S^2 = \mathbb{C} \cup \infty$ and choose the points ∞ and $[1,1,\cdots,1]$ as the base points of $\mathbb{C}\mathrm{P}^1$ and X_{Σ} respectively. Then, by setting $z=\frac{z_0}{z_1}$, for each $1 \leq k \leq r$ we can view f_k as a monic polynomial $f_k(z) \in \mathrm{P}^{d_k}$ in the complex variable z. Thus we can identify the space $\mathrm{Hol}^*_D(S^2,X_{\Sigma})$ of all base point preserving holomorphic maps $f:S^2 \to X_{\Sigma}$ of the degree D with some spaces of r-tuples $(f_1(z),\cdots,f_r(z)) \in \mathrm{P}^D$ as follows.

Definition 2.1. (1) First consider the case that the r-tuple $D = (d_1, \dots, d_r) \in (\mathbb{Z}_{\geq 1})^r$ satisfies the condition (1.5.1).

In this case, for any r-tuple $D = (d_1, \dots, d_r) \in (\mathbb{Z}_{\geq 1})^r$ satisfying the condition (1.5.1), one can identify the space $\operatorname{Hol}_D^*(S^2, X_{\Sigma})$ with the space all r-tuples $(f_1(z), \dots, f_r(z)) \in P^D$ satisfying the condition

(†) For any $\sigma = \{i_1, \dots, i_s\} \in I(\mathcal{K}_{\Sigma})$, the polynomials $f_{i_1}(z), \dots, f_{i_s}(z)$ have no common root i.e. $(f_{i_1}(\alpha), \dots, f_{i_s}(\alpha)) \neq (0, \dots, 0)$ for any $\alpha \in \mathbb{C}$.

²One can show that the set $S = \{n_k : 1 \le k \le r\}$ of primitive generators spans \mathbb{Z}^m over \mathbb{Z} if X_{Σ} is simply connected. Thus the set S also spans \mathbb{R}^m and the assumption of Theorem 1.2 is satisfied.

Then define the natural inclusion map

$$(2.2) i_D : \operatorname{Hol}_D^*(S^2, X_{\Sigma}) \to \operatorname{Map}^*(S^2, X_{\Sigma}) = \Omega^2 X_{\Sigma}$$

by

(2.3)
$$i_D(f_1(z), \dots, f_r(z))(\alpha) = \begin{cases} [f_1(\alpha), \dots, f_r(\alpha)] & \text{if } \alpha \in \mathbb{C} \\ [1, 1, \dots, 1] & \text{if } \alpha = \infty \end{cases}$$

where we choose the points ∞ and $[1,1,\cdots,1]$ as the base points of S^2 and X_{Σ} .

Since $\operatorname{Hol}_D^*(S^2, X_{\Sigma})$ is path-connected, the image of i_D is contained in a certain pathcomponent of $\Omega^2 X_{\Sigma}$, which is denoted by $\Omega_D^2 X_{\Sigma}$. Thus we have a natural inclusion

$$(2.4) i_D: \operatorname{Hol}_D^*(S^2, X_{\Sigma}) \to \operatorname{Map}_D^*(S^2, X_{\Sigma}) = \Omega_D^2 X_{\Sigma}.$$

(2) Next we shall consider the general case.

Indeed, for each r-tuple $D=(d_1,\cdots,d_r)\in(\mathbb{Z}_{\geq 1})^r$ of positive integers, let H_D^{Σ} denote the space of r-tuples $(f_1(z), \dots, f_r(z)) \in P^D$ satisfying the condition (\dagger) . Note that $H_D^{\Sigma} = \operatorname{Hol}_D^*(S^2, X_{\Sigma})$ when the condition $\sum_{k=1}^r d_k \boldsymbol{n}_k = \boldsymbol{0}_m$ is satisfied.

Definition 2.2. (i) A map $f: X \to Y$ is called a homology equivalence through dimension N (resp. a homotopy equivalence through dimension N) if the induced homomorphism $f_*: H_k(X,\mathbb{Z}) \to H_k(Y,\mathbb{Z})$ (resp. $f_*: \pi_k(X) \to \pi_k(Y)$) is an isomorphism for any $k \leq N$.

- (ii) We say that a set $S = \{n_{i_1}, \dots, n_{i_s}\}$ is a *a primitive collection* if it does not span a cone in Σ but any proper subset of it does. Then define integers $r_{\min}(\Sigma)$ and $d(D,\Sigma)$ by
- $r_{\min}(\Sigma) = \min\{s = \operatorname{card}(S) \in \mathbb{Z}_{\geq 1} : S = \{\boldsymbol{n}_{i_1}, \cdots, \boldsymbol{n}_{i_s}\} \text{ is a primitive collection}\},$
- $d(D; \Sigma) = (2r_{\min}(\Sigma) 3)d_{\min} 2, \text{ where } d_{\min} = \min\{d_1, \dots, d_r\}.$

Atiyah-Jones-Segal type Theorem. The main purpose of this note is to report the following result.

Theorem 2.3 ([16]). Let X_{Σ} be a simply connected non-singular toric variety, and let $D = (d_1, \dots, d_r) \in (\mathbb{Z}_{\geq 1})^r$ be an r-tuple of positive integers such that $\sum_{k=1}^r d_k \mathbf{n}_k = \mathbf{0}_m$. Then the inclusion map

$$i_D: \operatorname{Hol}_D^*(S^2, X_{\Sigma}) \to \Omega_D^2 X_{\Sigma} \simeq \Omega^2 \mathcal{Z}_{\mathcal{K}_{\Sigma}}(D^2, S^1)$$

is a homotopy equivalence through dimension $d(D; \Sigma)$ if $r_{\min}(\Sigma) \geq 3$, and it is a homology equivalence through dimension $d(D; \Sigma) = d_{min} - 2$ if $r_{min}(\Sigma) = 2$.

Corollary 2.4. Let X_{Σ} be a simply connected non-singular toric variety, and suppose that there is an r-tuple $D_* = (m_1, \dots, m_r) \in (\mathbb{Z}_{\geq 1})^r$ of positive integers such that $\sum_{k=1}^r m_k \mathbf{n}_k = 1$ $\mathbf{0}_m$. Then for each $D=(d_1,\cdots,d_r)\in(\mathbb{Z}_{\geq 1})^r$ of positive integers, there is a map

$$j_D: H_D^{\Sigma} \to \Omega_D^2 X_{\Sigma} \simeq \Omega^2 \mathcal{Z}_{\mathcal{K}_{\Sigma}}(D^2, S^1)$$

which is a homotopy equivalence through dimension $d(D; \Sigma)$ if $r_{min}(\Sigma) \geq 3$, and a homology equivalence through dimension $d(D; \Sigma) = d_{\min} - 2$ if $r_{\min}(\Sigma) = 2$.

Related topics and problems. Finally we shall comment about the related topics.

Remark 2.5. (i) When $X_{\Sigma} = \mathbb{C}P^s$ with $s \geq 2$, we can obtain the more sharper result (see the detail in [13] and [14]).

- (ii) If X_{Σ} is compact, M. Guest [7] proved that the map i_D is a homotopy equivalence through dimension $d_{min} 1$ and this result is stronger than that of Theorem 2.3 when $r_{\min}(\Sigma) = 2$. In this reason the author and A. Kozlowski are wondering whether the map i_D might be a homotopy equivalence through dimension $d(D, \Sigma)$ even if $r_{\min}(\Sigma) = 2$.
- (iii) More generally one can consider the similar problem for the inclusion map i_D : $\operatorname{Hol}_D^*(\mathbb{C}\mathrm{P}^s, X_{\Sigma}) \to \operatorname{Map}_D^*(\mathbb{C}\mathrm{P}^s, X_{\Sigma})$ when $s \geq 2$, and this problem was really investigated by J. Mostovoy and E. Munguia-Villanueva in [21].
- (iv) One can consider the space of resultants related to the space $\operatorname{Hol}_D^*(S^2, X_{\Sigma})$ of rational curves on toric varieties and it seems very interesting to investigate whether a similar Atiyah-Jones-Segal conjecture holds for this space. Indeed, when $X_{\Sigma} = \mathbb{C}\mathrm{P}^s$, this problem was solved very nicely in [15]. In the subsequent paper [18], Kozlowski and the author will discuss about the homotopy types of the space of resultants related to toric varieties.

Acknowledgements. The author was supported by JSPS KAKENHI Grant Number 18K03295. This work was also supported by the Research Institute for Mathematical Sciences, a Joint Usage/Research Center located in Kyoto University.

References

- [1] M. Adamaszek, A. Kozlowski and K. Yamaguchi, Spaces of algebraic and continuous maps between real algebraic varieties, Quart. J. Math. **62** (2011), 771–790.
- [2] M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Commun. Math. Phys. **59** (1978), 97–118.
- [3] V. M. Buchstaber and T. E. Panov, Torus actions and their applications in topology and combinatorics, Univ. Lecture Note Series 24, Amer. Math. Soc. Providence, 2002.
- [4] D. A. Cox, The homogenous coordinate ring of a toric variety, J. Algebraic Geometry 4 (1995), 17-50.
- [5] D. A. Cox, The functor of a smooth toric variety, Tohoku Math. J. 47 (1995), 251-262.
- [6] B. Farb and J. Wolfson, Topology and arithmetic of resultants, I: Spaces of rational maps, New York J. Math., **22**, (2016), 801-826.
- [7] M. A. Guest, The topology of the space of rational curves on a toric variety, Acta Math. 174 (1995), 119–145.

- [8] M. A. Guest, A. Kozlowski and K. Yamaguchi, The topology of spaces of coprime polynomials, Math. Z. **217** (1994), 435–446.
- [9] M. A. Guest, A. Kozlowski and K. Yamaguchi, Stable splitting of the space of polynomials with roots of bounded multiplicity, J. Math. Kyoto Univ. **38** (1998), 351–366.
- [10] M. A. Guest, A. Kozlowski and K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity, Fund. Math. **116** (1999), 93–117.
- [11] A. Kozlowski, M. Ohno and K. Yamaguchi, Spaces of algebraic maps from real projective spaces to toric varieties, J. Math. Soc. Japan 68 (2016), 745-771.
- [12] A. Kozlowski and K. Yamaguchi, Spaces of holomorphic maps between complex projective spaces of degree one, Topology Appl. **132** (2003), 139-145.
- [13] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of coprime polynomials revisited, Topology Appl. **206** (2016), 284-304.
- [14] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of polynomials with bounded multiplicity, Publ. RIMS. Kyoto Univ., **52** (2016), 297-308.
- [15] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of resultants of bounded multiplicity, Topology Appl. **232** (2017), 112-139.
- [16] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of rational curves on a toric variety, Topology Appl. **249** (2018), 19-42.
- [17] A. Kozlowski and K. Yamaguchi, The homotopy type of spaces of real resultants with bounded multiplicity, preprint (arXiv:1803.02154).
- [18] A. Kozlowski and K. Yamaguchi, Spaces of resultants related to the rational curves on a toric variety, in preparation.
- [19] J. Mostovoy, Spaces of rational maps and the Stone-Weierstrass Theorem, Topology 45 (2006), 281–293.
- [20] J. Mostovoy, Truncated simplicial resolutions and spaces of rational maps, Quart. J. Math. **63** (2012), 181–187.
- [21] J. Mostovoy and E. Munguia-Villanueva, Spaces of morphisms from a projective space to a toric variety, Rev. Colombiana Mat. 48 (2014), 41-53.
- [22] T. E. Panov, Geometric structures on moment-angle manifolds, Russian Math. Surveys **68** (2013), 503–568.
- [23] G. B. Segal, The topology of spaces of rational functions, Acta Math. ${\bf 143}$ (1979), 39-72.

[24] V. A. Vassiliev, Complements of discriminants of smooth maps, Topology and Applications, Amer. Math. Soc., Translations of Math. Monographs 98, 1992 (revised edition 1994).

Department of Mathematics, University of Electro-Communications 1-5-1 Chufugaoka, Chofu, Tokyo 182-8585, Japan E-mail: kohhei@im.uec.ac.jp