Higher uniruledness, Bott towers
and “Higher Fano Manifolds”
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Abstract

A sufficient criterion for higher uniruledness via Bott towers is given. This sufficient criterion proposes
new kinds of “higher Fano manifolds.”

1 Higher (uni)ruledness and Lower (uni)rationality

Let us recall a coupld of basic concepts of algebraic geometry:

- (uni)ruled and (uni)rational

For a projective n-dimensional variety X,

e X is uniruled (resp. ruled ), if there exist a (n — 1)-dimensional Z and a rational dominant
(resp. birational) map
P'xZ—-—>X,

May replace a rational dominant (resp. birational) map with an honest domiant (resp. bira-

tional) morphism.

e X is unirational (resp. rational ), if there exist a rational dominant (resp. birational) map

P" — — > X,

May NOT replace with an honest morphism!
-

Here, it would be self-evident to propose the following definition:
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— Higher (uni)ruledness: (uni-)k-ruled = (uni-)( — (n — k))-rational :Lower (uni)rationality —

For a projective n-dimensional variety X, and

1 <k <n, let us say:
X is uni-k-ruled or = uni-(k —n)-rational (resp. k-ruled or = —(n — k)-rational ),

if there exist a (n — k)-dimensional Z"~* and a rational dominant (resp. birational) map

PFx Zznk - - > X,

rational ————= O-rational —(n — k)-rational= k-ruled S 1-ruled ruled

R | |1

uni-0-rational ——> - .- ————> uni-( — (n — k))-rational = uni-k-ruled ———=> - - - ————> uni-1-ruled ———— uniruled

unirational

e These concepts are birational invariant.

e However... For k > 2, may NOT replace a rational dominant (resp. birational) map with an

honest domiant (resp. birational) morphism.

- J

Thus, it makes sense to consider the following

NON birational invariant properties also...
; k
- (uni)regular-R"-ruled ~N

Fix a rational k-fold R* (1 <1 < n). For a projective n-dimensional variety X, let us say:

X is uniregular-R*-ruled (resp. regular-RF-ruled ), if there exist a (n — k)-dimensional

Z"~% and a dominant (resp. birational) morphism

REx 7k 5 X.

e (learly,
regular-R*-ruled =——=——===> k-ruled = —(n — k)-rational

ﬂ ﬂ

uniregular-R¥-ruled ==> uni-k-ruled = uni-(—(n — k))-rational

e (uni)regular-R¥-ruledness’ are NOT birational invariant.
o J

Now the purpose of this paper is to report a sufficient criterion for uniregular-7*-ruledness, with 7% a

k-dimensional smooth projective toric variety, and so, for uni-k-ruledness (thus for higher uniruledness).

2 Past works for sufficient criteria for higher (uni-)ruledness

Let us start with Mori’s famous work:
S. Mori, Annals of Math. 79

Any Fano manifold X is covered by P! | i.e. any general point x € X is contained in the image of

a map from P!, which is an immersion at x.




Then, Kollar pointed out the following:

e uniruledness

For a projective n-dimensional variety X, TFAE:
e X is covered by P! .

e X is uniruled , i.e. there exists a (n — 1)-dimensional Z and a rational, dominant (i.e. the

image contains a non-empty open) map

P'x 7 - - > X,

N

To study a uniruled manifold, a standard method is to consider the following:

polarized minimal family of rational curves

-

e For a uniruled manifold X of dimension n, with x € X a general point,

v, C Hom(P!, X,0 + z)

irred. open

Go = Aut(P'), C Aut(P') = PGL(2,C)

0

(& D= f(?)

P! x V, —— U, = (P' x V) //Gy s X, (1)

Vo —— H, .=V, //Go

e By results of Miyaoka [Kol96, V,3.7.5.Prop] and Kebekus [Keb02, Th.3.3], every curve
parametrized by H, is immersed at x, and the subvarietry HS™&® parametrizing curves sin-

gular at x, is at most finite.

e There is a normalization onto its image (Kebekus [Keb02, Th.3.3,3.4] Hwang-Mok [HMO04] ) of
the finite morphism
To it Hy = P(Tx,) =P,
giving a polarization (H,,7O(1)) =: (H,, L), called a PMFRC ( polarized minimal family of

rational curves ) through z.

e Denote this situation by .

-

It turns out that PMFRC (H,, L,) possesses a very rich information about X :



s Cho-Miyaoka-Shepherd-Barron, Kebekus ~

For PMFRC (H,, L) of a uniruled manifold X, we know
l:=dmH,+2<(n—-1)4+2=n+1 (2)

becuase
e Hy = P(Tx ) 2P

is a finite morphism (Miyaoka, Kebekus).
If (2) becomes an equality, i.e. if
l:=dmH,+2=n+1,

then X = P
J

Here, let us compare Mori’s theorem and the theorem of Cho-Miyaoka-Shepherd-Barron and Kebekus:

Theorem ” Condition Conclusion in particular...
Mori c(X) >0 uniruledness | lowest uniruledness
Cho-Miyaoka-Shepherd-B i
B l:=dimH, +2=dimX +1 | X xpldnX highest ruledness
Kebekus

So, these two theorems suggest sufficent criteria, which give a hierachy of uniruledness, might be
expressed as possitivity of certain polynomial of ¢;(X) (1 < i < n) and some restrictions on ! := dim Hy,

or the pseudo-index of X :
ix =min{-Kx -C | C C X rational curve},

which enjoys
l:=dimH,+2 > ix (VxeX)

In fact, most past work which considered the hierachy of uniruledness were stated under such condi-

tions, i.e. in terms of ix or [ := dim H, + 2, and the so-called “higher Fano conditions”:

- Various definitions of “k-Fano” (de Jong-Starr (Harris)) ~
For k € N, let us call X

strong k-Fano ch;(X) >0 (1 <i<k),
k-Fano if qchy(X)>0(1<i<k-—1), chg(X)>0, , respectively.
weak k-Fano chy(X) > 0,ch;(X) >0 (2<i<k),

Note:

{degree d hypersurface X C P"*! | d¥ <n+1}

C {strong k-Fano’s} C {k-Fano’s} C {weak k-Fano’s}
- J

but confined to statements like

“Any general point of X is contained in the image of a generically injective morphism R¥ — X,

where R” is a some rational k-fold (which is in many cases just P¥). ”




And, the first attempt was given by de Jong-Starr:
de Jong-Starr, DukeJM 07

For any 2-Fano manifold, its general point is contained in the image of a generically injective mor-

phism R? — X for some rational 2-fold R?2.
(However, it is not clear what kind of rational 2-fold R? show up for each general point.)

To go furhter, Araujo-Castravet and Taku Suzuki chose to consider iterated PMFRC:

- Is H, Fano again? - Druel, Math. Ann. 2006 ~
D= f(t)
P! x V, —— U, = (P x V,) //Gy ———— X,

{o}xid< l l )

Vo ——— H, .=V, //Go
e The unique section o, characterized by
evy (0,(Hy)) = .
determines a divisor (line bundle)
Oy, (o), or simply, (04),
on U,, giving:
— Uy 2 P((72): O, (02)).

- T = (ro) (02T Tn) (o) ).
4

o Is H, Fano again? - ARAUJO-CASTRAVET, Prop.1.3 AJM 2012 —

e Let X be smooth complex projective uniruled,

e Let (H,, L;): PMFRC through a general point = € X.

Then, for any k > 1, (B; : j-th Bernouilli number with By = —4 )

Fundamental Formula

k in ‘
chi(H,) = Zﬂcl(LxVﬂ'“eV;(chk+1_j(X)) —%cl(Lz)k.




s suggested basic strategy ~
e Given a strong k-Fano X (ch;(X) > 0, 1 <14 < k), construct inductively a sequence of PMFRC’s:
X:HQ)—}HlHHQH"'Hk_l
so that X is strong (k — j)-Fano ( ch;(X) >0, 1 <1i <k —j).

e Araujo-Castravet did this for (strong) 2-Fano and (strong) 3-Fano, under some extra condition.

e Taku Suzuki did this for weak k-Fano ( ch;(X) > 0,ch;(X) > 0) for general k > 2,

under some extra condition.
\ J
Araujo-Castravet, AmerJM 12 N

~

e For any strong 2-Fano with ix > 3, its general point x € X is contained in the image of a
generaically injective morphism P? — X, if (H,, L,) 2 (P4, O(2)), (P', O(3)).

e For any 3-Fano with ix > 4, its general point x € X posseses a sequence of PMFRC’s:
X — H, — W), and is contained in the image of a generaically injective morphism P3 — X
if (He,Le) 2 (P, O(2)) and (W, My) 2 (P*, 0(2)), (P*, O(3)).
- J
- Taku Suzuki  (Nagaoka, M.) ~

For any weak k-Fano X with ix > k? — k + 1, its general point x € X its general point x € X

posseses a sequence of PMFRC’s:
Xw—H,="Hy+— -+ Hp_1,

and is contained in the image of a generaically injective morphism PF @ — X,
if Hy 2 Q4mHA [, o pdim Hi(] < < k).

(There 18 also a similar  k-Fano version, but still  with  ix >k*>—2k+1 and
if (Hiy Li) 3 (PY 1, 0(2)) (1 <i < k), (Hi—y, Li—n) 2 (PLOQ)) . (M)
. J

Thus, there are | two major drawbacks |:

e In general, we do not know appriori whether the assumptions on (H;, L;) are satisfied or not. So, we

can only claim X s covered by P* under these conditions, when we are fortunate!

e The condition ix > k% —k +1 (or ix > k% — 2k + 1) is too strong.

For instance, when X = P", as ix = n + 1, we can not apply these results to derive the trivial

uni-n-ruledness of P". even if we are fortunate!

Actually, our sufficient criterion for uniregular 7'-ruledness, with 7% a k-dimensional smooth projec-

tive toric variety, takes care of these two drawbacks appropriately.



3 How to avoid the extra conditions on (H;, ;)

Let us first axiomatize our situation:

- Height £ toric tower through z € X ~
For 1 <1 <k, a l-story highet k toric tower through z € X , schemetically denoted as:
T S My |7 My |7 LT My 1T M=X 3,
(For our applications, these occur as PMFRC’s: X = My — M1 +— -+ — My — My.)
consists of the following data: It starts at the first floor with a generically finite onto its image
morphism
pRL R
from a k — | + 1-dimensional smooth projective toric variety 75!+ to a variety M, such that:
if{=1: f*: 7% — M, = X is passing through x € X.
if [ > 2: for each 1 < m <[ — 1, there exists a diagram of varieties:
P(Em) — My sy
My,
such that
e P(&L) Iy M,, is a projectivized bundle associated with a rank 2 vector bundle &,,, admitting
a short exact sequence
0=, —En—1ll —0
with £, ()" global generated.
® ¢, is generically finite onto its image.
e For each 1 <m <[ — 1, there exists p,, € P(&,,) such that:
— fkmtrl 7h=l+l 5 My s passing through 7 (p) € M.
— Foreach2<m <I—1, em1(pm-1) = Tm(Dm):
P(gm) Pm
ﬂml
P(gm—l) 6——1> M, Pm—1H———>€n
— el_l(pl_l) =xe M =X.
In the definition of “Height k toric tower through = € X”, existence of such p,, € P(&,,) (1 <m <
1 —1) is always guaranteed if the ¢;—; image of any fiber of m;_; contains z € X = M; :
T Ee_1 (ﬂ'l__ll(ml_l)) C M; =X for any m;_1 € M;_;.
This follows immediately from the surjectivity of m, : P(€n) (1 <m <1—1) = M,, 1 <m <[1-1).
- J




A very important observation is that any I-story height k toric tower produces a simplest 1-story (i.e.

no ceiling | 7) height & tower, not merely a (I —1)-fold iterated P!-bundles over a toric k —[+ 1-fold
Tk—l-i-l:

s “Toric Tower Ceilings Removable” Theorem ~

If there is a I-story height k toric tower passing through x € X, then there is a generically finite onto
its image morphism
f:TF =X

from a k-dimensional smooth projective toric variety 7% to X, passing through x € X.

. J

Proof. if [ = 1: Nothing to prove.
if [ > 2: Starting at the first story with the generically finite onto its image morphism
pEEL TRl g

passing through 1 (p1), provided by the definition, we shall ascend the stories so that at the s-th
story (2 < s <) we have the generically finite onto its image morphism

fk—l+s . Tk—l+s N Ms
inductively construcing by the following pullback diagram:

fk—l+s

Tk—l+s —P ((fk—l+s)*gs_1) - ]P)(gs—l) - Ms

€s—1
J{ 775—1J/

k—l+s—1
- s M.
T ph—l4s—1 M-

From this, if f*~!*5=1 is generically finite onto its image morphism, passing through 7, (ps_1) (=
65—2(ps—2)

if s >3), we see immediately f¥~!** is also generically finite onto its image morphism, passing
through es_;(ps_1). Of course, we are not done yet. The problem is to show, if 7%~!*5~1 is smooh
toric, then TH=1+s =P ((fF=1+5)*£,_;) is still smooth toric. Then this can be shown in the following

order:

e Since the pullback preserves a short exact sequence of vector bundles (see e.g. Fulton-Lang p.104),

we have an exact sequence:
0= (f*F) (1) = fEH) En = (FF79) (1) = 0 (3)

e This extension (3) is classified by

Ext! ((FF77) (1), (FF719) " (lmy) = Ext! (Ou e, (f7) (1 @ (120) ™)
S (TR (P 0 (1)),
which is 0 by the Demazurre vanishing [Dem)] [Ful93, §3.5] [CLS], for:



TF=+s=1 is a smooth toric variety by the inductive assumption.
(fEIFs) (1L _ = (12_1)~1Y), a pullback of a globally generated line bundle I,_; & (17_;)~!, remains
globally generated.

Consequently, the extension (3) splits.

e Then we see:

(3) splits
~

TR S P E ) P W) @ () L),

which becomes a smooth toric variety [Oda78, §7] [CLS].

Finally, at the last {*" story (s = ), we find a generically finite onto its image morphism f* : 7% — M;,
passing through m;_1(p;_1) = = € X, from a smooh toric k-fold T, as desired.
O

The importance of having a toric manifold 7% in the above theorem is that, there are at most
countably many distinct isomorphism classes of toric manifolds. Actually, “Toric Tower Ceilings Remov-

abele” Theorem is used to deduce our sufficient criterion for uniregular-7%-rulednes:

s A sufficient criterion for uniregular-7*-rulednes ~N
For a a smooth projective variety X, suppose there is a subset S C X, which contains a non-emppty
open subset of X, whose arbitrary point « € S posseses a [-story height k toric tower through z:

TT, = (TF"' S My |7 My |7 - |7 Miy |~ My=X 3 a)
Let TF be the ceilings removed toric k-fold from T'T, by “Toric Tower Ceiling Removable” Theorem.
Then, X is uniregular-7*-ruled for some toric k-fold:
Th e {TF | z€5S}.
| Consequently, X is uni-k-ruled.
. J

Proof.

e Let A be the set of isomorphism classes of the toric k-folds which show up in {7;’g ’ zesS } .
Observe that: A is a countable set.

e Then, the evaluation morphism
H H <7;k X Homh"'(’ﬁk,X)) = H (7;’c X (HHomhi('ﬁk,X)>> - X,
TFEA hi TreEA h;

where h; runs over those generically finite onto its image components of Hom(7;*, X), is dominant,
for its image contains S which contains a non-empty open. Since the coproduct runs over a count-
able quasi-projective schemes , there is some 7, € A and h; such that the corresponding evaluation

morphism at a generically finite onto its image component

TF x Hom" (T*, X) - X



is dominant.
e Now we may take appropriate hypersections succesively to get a desired dominant morphism
TExzvk 5 X

for some n — k-dimensional Z"—*.

4 How to replace the too strong condition ix > k? —k+1 (ix >
k* — 2k: 1)

A*(X) = @o<k<n—dim xA¥(X), Chow ring of X, Ax(X) := A""*(X)

NF(X) = A¥(X)/ ~, Np(X):= Ap(X)/ ~, intersection quotients, i.e. modulo numerical equivalence
= NF(X)® Nip(X) — Z is a perfect pairing.

N*¥(X)g = N¥(X)@z R

Let us assume there exists a sequence of PMFRC’s X =: Hy — Hy + --- +— H;,_1 — H; as follows:

Ui — Hy == X (4)
|
Uy —= H,
-]
.H2

e
Uk —k> Hy 1

|

Hy,
U; —= Hi—lv
H;
This induces:
i
NT(X)R _*> Nr—l(Hl)R —J NT—Z(Hz)R o Nr_k+1(Hk—1)]R _*> N’r—k(Hk)R . 'Nr_i+1(H¢_1)R _*> Nr—i(Hi)R
T1x€] T2 €5 Tl « € Tiw€;

Here, to simplify notations, we have set:

T =mp.er, 1<Vk<i.

10



Thus, we have
T" :N"(Hj)g = N"""™(Hjsm) (0<m<r, 0<j<j+m<i)
Then, motivated by Suzuki’s work [Suz16], we made the following explicit calculation [Min17][Min18]:
4 M. N

Assume there exists a sequence of PMFRC’s

X'—>H1’—)""—)H1‘_1'—>HZ‘

such that T (c¢1(Lg—1)) =1 (2 < k <i). Then, for j > 1,5 > 1 we have

Chj (Hl)

min{dim X,i+;}

9(1,0); + Y T (chi(X)) g(i k) + Y T (chp(X)) ea(Li) " gl k); | er(Ls)

k=1 scalar ke=it1 degree 0

min{dim X,i+j}

9(i,0); + Y T (chp(X)) g(i k); | er(Liy + D T (chp(X)) g(i, k)jer (Lg)H7F,

k=1 k=i+1
scalar

(5)

where, using the Stirling number of the first kind [z —; q] (see e.g. [AIK14]),

—% k=0
. q
(=1)7k! i I K (NN k>1.i> k—i 1
g(l,k>3 _ 3! g=max{k—1,1} k (i+q)! IZ:;( ) l L)z max{ 2y } (6)
= c(J.q)
0 k>1,j <max{k—1i,1}
o %

In the above formula (5), we assumed j > 1, but the case j = 0, corresponding to chg(H;) = dim H;
can be taken care of by the following classically known result:
[AC12, p.92,15th line], quoted from [Kol96, TV.2.9]

For the sequence of PMFRC’s X =: Hy — Hy — ---— H;_1 — H;,

dim Hy, = cho(Hy) =T (chy (Hy_1)) — 2, (2<k <1i) (7)

We should also guarantee the condition T (¢i(Lx_1)) = 1 (2 < k <) is satisfied. For this, the following

result of Araujo-Castravet is crucial:

[AC12, Lem.4.5(1)]

For 2 < k < i, suppose
ChQ(Hk_Q) >0, dimHi_ 1 > 1, (8)

and Hy 1 2P He1 then T (¢;(Ly_1)) = 1.

All the above are already known to the author when the author announced [Min17][Minl18].

11



However, as was already emphasized, the resulting conclusions were too restrictive. Now, the idea fo

overcome this difficulty turned out to be very simple:
s BASIC STRATEGY ~

Rewrite (5) (7)(8) in the form

T degree d polynomial of chy(X) (1 < k <n) and the scalar [ := dim H; + 2 = T(c; (X)), | > 0.

May be regarded as a variable
(9)
This is because, Araujo-Castravet [AC12, Lem.2.7(3)] preserves “positiveness.” Thus, the condition
(9) is satisfied if the following holds:

degree d polynomial of chy(X) (1 <k <n) and the scalar [ := dim Hy +2 =T(c1(X)) | >0

May be regarded as a variable

0<d—i<dimH +1

essentially d — ¢ < dim H; <= dim H; — d+ 1 > 0, which is also taken care of along the same line.

(10)
Then we shall simply deﬁne| “N-Fano manifold” | to be one which satisfy (10)s correspond to those
(5)(7)(8) needed to inductively construct a sequence of PMFRC’s

X=Hyo—H{— - ---+— Hy_1— Hy

with H; (0 <i < N —1) Fano (also dim Hy > 0, and T(c;(L;)) = 1 (1 <i < N —2) ). Then, by

what we had shown in the previous section, we see immediately that any “N-Fano”is automarically

uni-NV-ruled.

J
Actually, it is easy to rewrite (5) in the form of (9); we only have to apply the following easy lemmas:
e Compare with [AC12, Lem.2.7(1)] [Suz16, Lem.2.10(2)] ~
e For any f(z) € Q[[y]], Py Py
Fla) =7 (r(25) 25) 1)
e For any A € @ysoN*(X), 9(y) € Q[ly]],
@ gla) =1 (19 (25)). (12)
Applying (11) (12) repeatedly, we obtain:
o (L) —r((264)7) u=o
Ti(ehy(X))er (L) =T" (che(X) (222)") (i < kp>0) (13)
) i—k+q
T*(chy(X))er (L)1 =T (chk(X) (=22) ) (i > kyq > 0)
- J

12



Applying (13), we can immediately rewrite (5) as follows:
o Polished version of ch;(H;) and a sufficient criterion for its positivity (M.) —
Assume there exists a sequence of PMFRC’s
X—H - ---—H,_ 1— H;

such that T (c1(Lg—1)) =1 (2 < k <i). Then, for j > 1,7 > 1, we have

ch; (Hi)

B ) min{dim X,i+j} L
- (g(i, 0); +,;T’“ (Chk(X))g(i,k?)j) er(Li)’ + S0 T (chi(X) g(i k)jer (L) T

k=i4+1
c i—k+j
g(i, k) jchy (X) ( l(lX)> J)

scalar

. c i+j i c i—k+j
=7 (g(i,on ( l(lX)) TS gl k) ehi(X) ( I(IX)) "
k=1

min{dim X,i+j}

" (g(i’o)j (01(lX))iH + > glik)jehi(X) (cl(lX)>kﬂ>

min{dim X,i+j}

k=i+4+1

k=1
. its  min{dim X,i+j} ; j ) q ikt
i i Cl(X)) + (=1)7k! i+q 1 L(D\,i c1(X) 7
—r(- 4 ( S : 3 L (o0 (D)) ehex)
Jt ! k=1 IV manth—i1) El+aor o (l> !
= c(4,9)
i min{dim X,i+j} J q Liayyg . i—k+j
Lo . (a)\t j L EDOY T+ c1(X) J
= (M) e e s HREROR [ e (22
J! =1 q=max{k—i,1} tTa

(14)
In particular, if dim H; > j, then we may conclude:

i(w)iﬂ?(1)jmm{d§m}k! > ZLCUr {”ﬂ chk<x>(“<x))i_k“ >0

) |
: k=1 g=max{k—1i,1} (i+q)! &

. ch;(H;) > 0.
When j = 1,2, and , (15) is simplified to the following forms:

<i+ z—|l—1> <Cl(zX))i+l +§ G fln!

— Chl(Hl) > 0

t+1
k

i—k+1
Chk(X)( I > +Chi+1(X) > 0

(16)
: [ aX)\"? &K i+1 i1 e (X)) R
z(_1+(7;+2)(i+1))< l > +k:2(i+2)! (2 ko1 L )chk(X)< l )
+Chi+1(X)<01(lX)>+2chi+2(X) > 0
— chy(H;) > 0.
(1)
> J

For dim H;, we have the following sufficient criterion:



s dim H; > d; sufficient criterion ~

dimH; >d; < dimH; —d;+1>0

<:>Ti<<—(i+di)+é><@>i+kz_;zl.]cbk ( ) +chz-(X)>>0 "
<:<—(i+di)+é>< ) S%[]cbk )( (zX)> +teh(X) > 0.

k=2

For the definition of “/N-Fano,”given a uniruled mfd X, for 1 < i < N — 1, we shall inductively

construct a sequence of PMFRC’s as follows:

X Hy - Hioy v H; (Hk . Fano, dimHy, > N —k (1<k<i—1); T(Ly_1) =1 (2§k§i—1))
29 either one of the following holds:
X Hy - Hy_y v H; = PdimHi (dim H; > N —i: WE ARE DONE IN THIS CASE!)

X’—)H1H1_1I—>H1I—>HH_1 (Hk F&nO,dlmHkZN—k(lngZ), T(Lk_l)zl (ZSkSZ))
(19)

Here, noticing that dimH; >0 =— dimH; ; >1 = dim H;_5 > 2, the extra conditions +«

needed are reduced to the following:

dimHizN—i, ChQ( i— 2)>0 Chl( )>0,
N——
only when i > 2

[ . ) i—k
(-N+9) (22) + i 4 ; chy (X) (282) T+ eni(X) > 0.

(For i = 1, replace this with [ > N + 1.)

. i1 i—1 0 Vik
(-2 (<1 ty) (220) 4o (2] | e | ] e (22)
19N ohi-1(X) (242 4 2¢hi(X) > 0

(For ¢ = 1, this condition should be omitted)
(For i = 2, replace this with chs(X) > 0.)

(This condition apperas exactly like this only for ¢ > 3.)

c i+1 1+ 1 . i—k+1
( H_z+1) (#) +Zk 2 z+|1)' ) chy.(X) (@) +ch;p1(X) > 0
(20)

Now, we are ready to define our “Higher Fano” manifolds:
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“N-Fano” manifolds
We call X a “N-Fano”, if X is a Fano manifold, i.e. ¢;(X) > 0 and the positivity conditions (20)
hold for 1 <¢< N — 1.

Of course, any “N-Fano” is uniregular-7¥-ruld for some toric N-fold 7V (actually, 7V can be taken
by a generalized Bott N-fold), and so, uni- N-ruled.

A detailed version will be put on the arxiv very soon.
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