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1 Introduction

This article deals with the singular points of the Kummer surface appearing in the Clebsch
top, a completely integrable Hamiltonian system describing the rotational motion of a
rigid body in an ideal fluid.

The rotational motion of the rigid body is described by the Kirchhoff equations, a
Hamiltonian system on the Lie-Poisson space (s0(3) x R?)". One can restrict the sys-
tem to an arbitrary symplectic leaf, which is a coadjoint orbit in (so(3) x R?®)" equipped
with the orbit symplectic form. Under the Clebsch condition, one obtains an additional
constant of motion apart from the Hamiltonian as well as the two Casimir functions and
hence the restricted system on the coadjoint orbit is completely integrable in the sense
of Liouville and hence (the connected component of) a generic common level surface is a
two-dimensional torus by Liouville-Arnol’d Theorem, see e.g. [4].

It has been known that the complexification of the common level surface is an Abelian
surface which is a double covering of a Kummer surface since the works by Weber [32]
on the basis of his work on the Jacobian #-functions and Kummer’s surfaces [31]. In fact,
Weber also gave the explicit solutions for the Kirchhoff equations restricted to a specific
coadjoint orbit under the Clebsch condition through Jacobian hyperelliptic functions for
an algebraic curve of genus two. See also [3].
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One considers such a Kummer surface described by an explicit homogeneous quartic
equation as given in [32, 3]. It is known that the Kummer surface can be embedded in CP?
as a singular quartic surface with 16 double (i.e A;) singular points, see e.g. [6]. Although
the Kummer surface is mentioned in [32, 3|, the precise positions of the 16 singular points
were not given. In the present article, the precise position of 16 A; singular points is
detected.

By means of the symbolic computations through the Grobner bases, the above compu-
tations are verified. Further, it is shown that the quartic surface admits 16 double points
if and only if the Clebsch condition is satisfied.

There are already many researches on the relations of rigid body dynamics to algebraic
geometry for example in [1, 25, 2, 7, 5, 15, 23, 27, 30]. On the other hand, there are
relatively fewer researches on the relations between the rigid body dynamics and the
Kummer surfaces, except for [32, 20, 3, 10] dealing with Clebsch top and [26] concerning
the Euler top, i.e. the free rigid body dynamics. The present paper, as well as [13], gives
a complementary accounts on the associated Kummer surfaces appearing in Clebsch top
under Weber’s condition.

As the separation of the variables and the integration in Clebsch top have been inves-
tigated well without Weber’s condition [20, 22, 29|, natural extensions of the present work
may be carried out in the general situation without Weber’s condition in future works.

2 The Clebsch top

In this section, we briefly describe the Clebsch top. See, e.g. [16, 13] for more details.
We consider the Kirchhoff equations
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where (K, p) = (K1, Ky, K3, p1,p2,p3) € R® x R* = R® and Iy, Iy, I3,m1,m9, mg € R are
parameters of the dynamics, which do not depend on the time t. The Kirchhoff equations
(2.1) and (2.2) are the Hamilton equations for the Hamiltonian

H(K,p)z%(Z[I(—f—i—Z%) (2.3)
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with respect to the Lie-Poisson bracket
{F,G} (K,p) = (K,VkF xVgG) + (p,VkF X V,G — VG x V,F)

o OF 0P\ o . (OF OF OF\
0K,” 0Ky 0K3)’ P 0p1’8p2’0p3 o

n (s0(3) x R*)" = RS, Here, Vg F = (
any F € C™ (R?).

By the general theory of Lie-Poisson systems [24, 28], one can restrict the dynamical
system of the Kirchhoff equation (2.1) and (2.2) to coadjoint orbits in (s0(3) x R3)", which
are generically defined as the common level manifolds for the two Casimir functions

C1 (K,p) = Kip1 + Kapa + K3ps, (2.4)
Cy (K, p) = pi + 1) + 5. (2.5)

Apart from the Hamiltonian H and C; and C5, the Kirchhoff equations (2.1) and (2.2)

admit an additional constant of motion

2 2 2 K2 K2 K2
L(K,p):—( b1 + D i D3 )+ Lo, 2 3 (2.6)
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under the Clebsch condition
mlfl (m2 — mg) + mgfg (m3 — ml) + m5]5 (ml — mg) = O, (27)

which is equivalent to the condition as follows:

, 1 V'L

v, e Rs.t. Vr =1,2,3, o v+ I L

Following Weber [32], we consider the specific coadjoint orbit C; = 0, Cy = 1 in this

article. The first condition is introduced to simplify the considerations, while the second

condition can be assumed without loss of generality. The Liouville-Arnol’d Theorem

(see [4]) implies that (the connected component of) the common level surface H = h,

L=1¢ C,=0,Cy=1is generically a (real) two-dimensional torus. In the next section,

we consider the complexification of this common level surface, from which a Kummer’s
quartic surface is obtained.

(2.8)

3 The Magri-Skrypnyk parameters and the associ-
ated Kummer surface

In what follows, we assume all the variables, the parameters, and the geometric settings
are complexified and consider them in the holomorphic category. According to [22], we

1 /
introduce the parameters jq, Jo, j3 by j, = E <\§—V_ — \/—l/>, T =1,2,3, where v, are
parameters appearing in (2.8).

Then, the two constants of motion H and L in (2.3) and (2.6) can be replaced by the

following functions C3 and Cj:

3 3 L.
Cy =Y {K2+(jr + o+ Js — 3 P2} 04=Z(J;K3+ﬁjﬂp3>. (3.1)
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By a straightforward computation, we see that the two functions C3 and Cj Poisson
commute. In fact, we can recover the original constants of motion H and L as suitable
linear combinations in the form ACy + XN C3 + N'Cy, A\, N, N € C.

Instead of the intersection of the four constants of motion C; = 0, C, = 0, H = h,
L = ¢, with some constants h, £, we consider the intersection of the four quadrics C; = 0,
Cy =0, C5 = c3, Cy = ¢4, where c3, ¢4 € C are certain constants.

By the elimination of the coordinates pq, ps, p3 from the system of equations C = 0,
Cy =1, C3 = ¢3, Cy = ¢4 and by the substitution X, /Xy, = k%, 7 = 1,2,3, we have the
following homogeneous irrational equations in X7, X5, X3, Xy:

\/Xl (€X4 + dQXQ — X5)+ \/XQ (mX4 + d5X5 — lel) + \/X5 (nX4 + lel — dQXQ) = 0

(3.2)
Here, d; = —1/(j2 —js), dy = —1/(j3 —j1)7 d3 = —1/(j1 —j2),
0 — Ji — csj1 + ca, _J3 — c3iy F _ Ji—cizta,
(j1 — J2)(J1 — Ja) (2 — J1)(j2 — Ja) (Jz — J1)(Jz — ja)
Note that
(+m+n=1 (3.3)
and 1 ) )
o= 4
a + 7 + a; 0 (3.4)

hold. See [13] for the details of the computations. The equation (3.2) is written in
polynomial form as

XU+ X3UZ + X3U2 — 2X, XoU Uy — 2X5 X3UyUs — 2X3X,UsU; = 0, (3.5)

where U1 = £X4 +d2X2 — d3X3, U2 = mX4 + d3X3 - lel, U3 = nX4 + d1X1 — dQXQ. The
equation (3.5) is a homogeneous quartic equation in X, Xs, X3, X, and hence it defines a
projectively algebraic surface in CP? whose homogeneous coordinates are (X; : X, : X
Xy).

4 Description of the 16 singular points on the Kum-
mer surface

In this section, we discuss the singular points of the quartic surface S C CP? defined
through (3.5).

First, we show the following proposition, which is stated e.g. in [19, p.1, Chapter 1,
§1]. We here give a proof quoting the modern account [9, Chapter 1, §1.2.3] on Pliicker’s
formula on the degree of the dual hypersurface of a hypersurface.

Proposition 4.1. A quartic surface in CP* has at most 16 double points. |

Proof. Given a quartic surface ¥ C CP? with § ordinary double points, the degree of the
dual surface XV C (CIP’?’)V, which is called the class of ¥ in [19], can be calculated as

deg¥¥ =4-(4—1)>—25 =36 —26
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by Pliicker’s formula [9, Example 1.2.8]. Note that deg X" is in particular even.

Now, we show that deg ¥V > 4, i.e. degXV # 0,2. If deg XY = 0, 2, however, we would
have deg (£Y)" < 0,2, respectively. By Reflexivity Theorem [9, Chapter 1, §2, Theorem
1.2.2] of the dual (hyper)surfaces, we have (XV)” = 3 and hence deg (8V)" = deg X = 4,
which is clearly a contradiction.

Thus, we have 36 — 26 > 4 <— § < 16. O

Remark 4.1. Instead of using the reflexivity of the dual (hyper)surfaces, we can prove
Proposition 4.1 by means of a Lefschetz pencil of genus three curves, similarly to [14, pp.
770-771, Chapter VI, §2]. We take a regular point P € ¥ and consider a pencil {H,} peCP!
of planes passing through P each of whose members H, contains at most one singular
point of ¥. Then, {H, N X} pcCP! is a Lefschetz pencil whose generic members are plane
quartic curves and hence algebraic curves of genus three. Now, we use the formula (see
[14, Chapter 4, §, p. 509, Proposition])

XX)=2x(H,NX)+T+06— N,

where x(X) is the Euler characteristic of 3, H, N X is a generic member of the pencil, T
is the number of planes in the pencil which are tangent to the surface ¥, and N is the
self-intersection number of a generic member H,NY of the pencil. Note that T'+ 0 stands
for the number of singular members in the pencil.

Since the minimal resolution of ¥ is a K3 surface and hence has Fuler characteristic
24, we have x(0) = 24 — . As a generic member H, N'Y of the pencil is a smooth plane
quartic curve and hence is an algebraic curve of genus three, meaning x (H, N ¥) = —4.
The number T' coincides with the degree deg XV of the dual surface XV, because the pencil
{H,} secpt induces a line in the dual projective space CP? and the tangent members of

the pencil correspond to the intersection of the line and the dual surface XV. By the
N+0

adjunction formula (or the genus formula), we have 3 = ——— 4+ 1 <= N = 4. For the
detail of the general formula, see e.g. [6, Chapter II, §11, p. 85, (16)] or [14, Chapter 4,
§1, p. 471].

Therefore, we have 24 —§ =2 (—4) + degX/ +0 —4 < § =18 —

hence 0 < 16, since ¥V < 4, as we have seen in the above proof. ¢

deg XV

, and

Although Kummer surfaces were introduced in the earliest reference [21], a Kummer
surface in the modern context is defined as follows:
We take a complex two-dimensional torus 1" which can be realized as the unramified
quotient of C? by a lattice A which is group theoretically isomorphic to Z*: T = C?/A.
Consider the involution 7 : C* 5 z — —z € C? given through the multiplication by —1
which clearly preserves the lattice A. Hence, we have the induced involution ¢ : T — T
which has 16 fixed points appearing at each of the half-period points relative to the
lattice A. The quotient surface T'/A is a complex surface with 16 rational double points
and the minimal resolution of this singular surface is a K3 surface which is usually called
a Kummer surface. (See e.g. [6, Chapter V, §16].)

However, we can also obtain Kummer surfaces as singular quartic surfaces in CP?.

Proposition 4.2. A quartic surface in CP* with 16 double points is a Kummer surface.
[ |



Proof. The minimal resolution S of the quartic surface S with 16 double points has the
trivial canonical bundle as we can prove using the adjunction formula [18, Proposition
5.3.11] that the canonical bundle Kg of S is trivial. Then, by a characterization of the
rational double points (see e.g. [18, Theorem 7.5.1]), we see that S has the trivial canonical
bundle wgz = Og.

By Lefschetz Theorem on Hyperplane Sections [6, Corollary 1.20.5], the fundamental
group of S is trivial, since m; (CP?) = {e}. Since the fundamental group of a complex
surface is not changed through a blowing up at a point, we have m;(S) = {e}. Thus, S is
a K3 surface. B B

Now, the 16 exceptional curves on S obtained through the minimal resolution § — S
form a set of 16 disjoint (—2)-curves and hence, by [6, Proposition VIII.6.1], S is a
Kummer surface. O

We explicitly detect the positions of the 16 singular points of S, which are not men-
tioned in [3, 32]. Although the method to find the 16 singular points is sketched in
Hudson’s book [17, Ch. VIII, §55], the precise position of all the singular points on the
surface is not given in terms of the precise homogeneous coordinates. Here, we follow
Hudson’s method to give the explicit homogeneous coordinates for all the 16 singular
points.

The method to find the double points is to transform the quartic equation (3.5) into
the normal form of A; simple singularity: £n = (2, where £, 7, ¢ are suitable local affine
coordinates around the singular point.

The following 14 double points can be found rather easily:

X1 =Xy=X3=0,
Xo=X3=U; =0, X=X, =U,=0, X1 =Xo=U3=0,
X1 =Uy=U3=0, Xo=Us=U; =0, Xyg=U=U;=0,
Uy =U; =Us;=0; (4.1)

Xl == Ul = X2U2 - X3U3 == 0,
X2 - U2 - X3U3 - X1U1 - 0,
X3 = U5 = XlUl - XQUQ = 0, (42)
Here, the systems of the equations (4.1) give the isolated double points
(X1:Xo: X5:Xy)=(0:0:0:1),

(1:0:0:0), (0:1:0:0), (0:0:1:0),
(0 : nds : —mds : dads), (—ndsz : 0:4dy : d3dy), (mdy: —Vldy :0: dydy),
(1/d1 . 1/d2 : 1/d3 : 0), (43)

respectively. The type of these singular points can be found through the following pre-
sentations of (3.5):
XUy (X Uy — 2X5Us — 2X3U3) + (XoUs — X3U3)?
XoUy(XoUs — 2X3Us — 2X,Uy) + (X3Us — X Uy)?
X3Us(X3Us — 2X,U;y — 2X0Us) + (X Uy — XoUs)?

0
0,
0



Next, we see that the surface S defined through (3.5) has the isolated double points
at the points which satisfy the equations (4.2), i.e.
(X1 X0 X3 Xy) =(0: 4B byy 0 —dafpy + d3m),
(g : 07920 —dsgys + diars), (4.4)
(CV3 : ﬁ& :0: —dloég + dgﬁg),

where each (0 : 81 : 71), (a2 : 0 @ ), (g : B3 : 0) is one of the two solutions to the
respective system of quadratic equations:

m {4+m n+/t n
d—ﬁ%—( + )51“/14'—/12:0,
3

dy ds dy
n o, m+n {+m [
- — —a; =0 4.5
dl "2 ( dg + dl ) Y202 + ds Qo ) ( )
v n+l m+n m o,y
d—2a3 - ( 4 + a5 )&355+d_165 =0,

To find other two double points of S, we consider the following presentation of the
quartic equation (3.5). As can be easily checked, the equation (3.5) can be rewritten as

AU? +2BU, + C =0
— (AU, + B)* = B? — AC, (4.6)

where

A=X?4+ X2+ X2 - 2X, X, — 2X0 X5 — 2X35X4,
B=XoZ(X) — X5+ X3) — X5V (X; + Xo — X3),
C = (XoZ 4+ X3Y)?,

Y =Us — U,

Z =U, —U,.

The discriminant can be computed as
B? — AC = —4X, X0 X5 (XY Z + XoZX + X3XY)

where we set X = Uy — Uz with which X +Y + Z = 0. The polynomial § := XY Z +
XoZX + X3XY is called in [17] as the equation of the cubic cone. By (4.6), the quartic
equation (3.5) is now written as

(AU, + B)? = —4X, X, X56. (4.7)

Note that the pOiIlt (Xl : X2 : X3 : X4> = (1/d1 : 1/d2 : 1/d3 : O), where U1 = U2 = U3 =
0, the cubic polynomial 6 vanishes. See (4.1) and (4.3).

We now consider the condition which permits a linear factor of the cubic polynomial
0. Taking a set of constant coefficients «, 8,7y, we assume that the linear form

OéUl —|—6U2+’7U3 (48)
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is a linear factor of the cubic polynomial 6, where at least one of «, 3, 7y is non-zero. Since
the quartic equation (3.5) is invariant through the transformation

X1 = pXy, Xo = qXo, Xg =1 X3, Uy = qrU;, Uy = rpUs, Us — pqUs, (4.9)

for arbitrary numbers p, ¢, 7. The transformation (4.9) induces the change of the parame-
ters (o, 8,7) — (qra, rpB, pqy) and gra+rpB+pgy = 0 for suitable p, ¢, r. Thus, without
loss of generality, we can assume that

a+pB+v=0. (4.10)

By (4.8) and (4.10), we have X =~Z, v X = aZ, oY = X and hence oy = 0 <—
(ByX1 + vaXs + afX3)aY Z = 0, meaning fvX; + yaXy + afXs = 0. Here, we used
the fact that each two of Uy, Us, Uz are not identically the same and hence X, Y, Z are not
identically zero.

As a consequence, if the plane alU;+Us+~Us = 0 is a factor of the cubic surface 6 = 0,
then SvX;+~vaXs+af X3 = 0 holds. In other words, if 6 is divisible by alUy + U, +~Us,
then there exists k € C satisfying

By X1+ yaXs + af X3 = k(aU; + U, + vUs),
i.e. there exists a, b, c € C such that aa = b5 = ¢y and
aXi+bXs + X5+ aU, + Uy +~Us =0 (4.11)
holds identically. The linear identity (4.11) can be written as
(@ —= (8 =7)d) X1+ (b— (v — @)d2) Xz + (¢ — (o = B)ds) X3 + (ol + S+ yn) Xy = 0
and hence we have
al+pm+yn =0, a=d(f—7), b=dy(y—a), c=ds(a—7).

As aa = bf = ¢y, we have

a(f—v)dy = B(y — a)dy, (4.12)
By — a)dy = y(a — B)ds, (4.13)
V(e = B)dy = a(B — 7)da. (4.14)
Clearly, (4.12), (4.13), (4.14) are dependent. For example, (4.14) follows from (4.12),

(4.13).
In fact, the equations (4.12), (4.13), (4.14) are equivalent to the following quadratic
equations in two of «, 3, 7:

v, n+l m+n m s

- g2 = 41
7 +( PR >a6+dlﬁ 0, (4.15)
m oo l+m n+/l n o,

= SO 41
d3ﬁ + ( a4 + s ) By + d2’y 0, (4.16)
n o, m+n {+m v,

— 4+ —a” = 0. 4.1
) +< 7 + a )fm—l—dga 0 (4.17)



By means of the relations (3.3), (3.4), and (4.10), however, we can show that the three
quadratic equations (4.15), (4.16), (4.17) are equivalent to each other.
The two double points are characterized by the equations

CLXl = OZUl, bX2 = BUQ, CX3 = ’)/Us, (418)

where (a : 5 :7) is a solution of (4.10) and (4.15) (or equivalently (4.16) or (4.17)). By
(4.11), we see that aX; + bXy + ¢X3 = aU; + fU; + yUs = 0 at these points. We can
check that (4.18) give points on the surface S, as, multiplying the quartic polynomial in
(3.5) by the square of aav = b3 = ¢y, we have
a2a2X1U1 + b2B2X2U2 + 02’72X3U3

— QGbCMBXlXQUlUQ — 2bC57X2X5U2U5 — QC(L’)/()ZXgXlUgUl

=a' X! + 0" Xy + Xy - 2a°° X7 X5 — 28 XIXE — 27a* XS X

—(CLXl + bX2 + CXg)(—aXl + bXQ + CX3)(CLX1 + bX2 — CX3)(CLX1 — bX2 + CXg) = 0.
By (4.7), we see that (4.18) represents two double points of the surface S. (Another proof
can be found in [19, Chapter 1, §12, p.22].)

To obtain the explicit homogeneous coordinates, we solve the equations (4.18) and we
have (X7 : Xo: X5 : Xy) = (a/dy : B/dy : v/d3 : 0).

To sum up, we have the following theorem.

Theorem 4.3. The quartic surface S defined through (3.5) admits the following 16 A,
singular points:

(X1:X5:X3:X4)=(0:0:0:1),
(1: OOO) (0:1:0:0), (0:0:1:0),
(0 : nds : —mds : dads), (—nds : 0: 4dy : d3dy), (mdy : —Ldy : 0 : dids),
(1/dy : 1/d2 1/ds : 0),
(0: 4By by 1 =dofB1 +dsm1), (2 : 0191 —dsgye +dis), (az:fs:0: —diag + dyfs),
(a/dy B/dQ t/ds : 0),

where (0 : B1 @ M), (a2 1 0 : %), (asz : B3 : 0) are the two solutions to the quadratic
equations (4.5), respectively, and (a : [ : 7y) are the two solutions of (4.10) and (4.15)
(or equivalently (4.16) or (4.17)). [ |

By Proposition 4.1, we see that these 16 singular points gives a maximal number of
double points on the quartic surface S. Further, we see that S is in fact a Kummer surface
by Proposition 4.2.

The computations of the explicit positions of the singular points on S can numerically
be verified by means of the computation with Grobner bases.

5 Clebsch condition and the number of double points

Let us denote by P the left-hand side of equation (3.5):
P=X{U} -2X, Xo U Uy =2 X3 X, Us Uy + X3Uy — 2 X9 X3 Uy Us + X3U3
and put H= X1 X2 X3 U1 U2 U3.



Lemma 5.1. Provided dydy + dsdy + d3z dy = 0, there exist two double points of P such

that H # 0. [ |
: T N R A B
Proof. Consider the double points T 0 | in Theorem 4.3 where (a: f:7) is
1 dy d3
one of the two solutions of (4.15) (<= (4.16) <= (4.17)). Recall that « + 5+~ =10
B .

as mentioned in (4.10). Clearly, we have P = 0 at dg Lt 0 ). Generically, a, 3,
1 dg dg
~ are non zero. Further, by (4.15) ( <= (4.16) <= (4.17)), we have U, = 0 <—
C+m+n

dT’ —|— dTH

Thus, we have ® = X, XoXsUyUslUs £ 0 at <2 2. 7o), 0
di dy dj

= 0, where {7,7',7"} = {1,2,3}. This is impossible, since £ +m +n = 1.

Proposition 5.2. P has generically 16 double points distinct from the origin if and only
if condition do dy +dz dy+d3 dy = 0 holds. In the case dy dy +d3 dy+d3 dy # 0, the number
of such double points falls to 14. ]

Proof. Let us search double points such that ® # 0 and dydy + d3d; + d3ds # 0. We
introduce two new variables w and d and consider the polynomial system

oP 0P OP OP

Sp={P
P {’8X1’8X2’8X3’8X4’

(d2d1+d3d1+d3d2)d—1,(I7w—1}.

If one chooses the monomial ordering (total degree followed by reverse lexicographic; see
[8]) w = tdeg(w,d,n,m,l,ds,dy, dy, Xy, X3, X5, X7) and compute a Grobner basis of Sp
with ordering w, it reduces to {1}. Hence, provided dyd; + dsdy + d3dy # 0, there are
no double points outside {® = 0}. We finally observe that the 14 points given by (4.3)
and (4.4) are on {® = 0}, while the two points considered in the proof of Lemma 5.1 and
appearing when dy dy + d3 d; + d3 dy = 0 are outside {® = 0}. O

To sum up, we have the following theorem.

Theorem 5.3. The quartic surface S defined through (3.5) admits the two singular points
(afql : B)dy = v/ds : 0) where (o : B :7) are the two solutions of (4.10) and (4.15) (or
equivalently (4.16) or (4.17)), only if the condition (3.4) holds. [ |

Since the condition (3.4) is a consequence of the Magri-Skrypnyk parameters which
can be introduced only if we have the Clebsch condition (2.7) ( <= (2.8)). Thus, we
conclude that we obtain a Kummer surface if and only if we have the Clebsch condition
(2.7) or equivalently (2.8) for the original parameters.
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