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Abstract. In general, a Hamiltonian system is nonintegrabe if chaotic dynamics
occurs. However, chaotic dynamics may not occur even if it is nonintegrable. Here
we are interested in the following question: Does chaotic dynamics occur in a Hamil-
tonian system when it is nonintegrable? We review some previous results related
to this question for two-degree-of-freedom Hamiltonian systems with saddle-centers
and homoclinic orbits. We also state some extensions of the results to a higher-order
approximation, heteroclinic orbits and more- or infinite-degree-of-freedom systems.
In particular, the extended theory shows that Arnold diffusion type motions can
occur in three- or more-degree-of-freedom systems.
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1 Introduction

1.1 Background

Consider n-degree-of-freedom Hamiltonian systems of the form
i=J,DH(x), z&R™, (1.1)

where H : R" — R is smooth or analytic, J,, is the 2n x 2n symplectic matrix

0 id,
%_<4% o)

and id,, is the n x n identity matrix. Letting z = (¢,p) € R™ x R", we rewrite (1.1) as

¢=D,H(p,q), p=—-DgH(p,q), (1.2)

which has a well-known form in mechanics when ¢ and p are position and momentum,
respectively. We begin with the definition of integrability for (1.1) (see, e.g., Section 3.2
of [24]).

Definition 1.1. The Hamiltonian system (1.1) is (Liouville) integrable if there exist n
scalar functions Fy(z) (= H(x)), F3(x), ..., F,(z) such that

(i) DFi(x),...,DF,(z) are linearly independent a.e.;
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(i) [Fi, F})(x) = DEy(2) ,DF(x) = 0.

It is a well-known fact the dynamics of integrable Hamiltonian systems are very simple
as stated in the following theorem (see, e.g., Chapter 10 of [3] for the details).

Theorem 1.1 (Liouville-Arnold). Suppose that Eq. (1.1) is integrable and let F(x) =
(Fy(x), ..., Fy(x)). If the level set F~1(c) is connected and compact for some ¢ € R",
then the dynamics of (1.1) on F~'(c) are diffeomorphic to a linear flow on T".

Let ¢; denote the flow of (1.1) and let v(¢) be a periodic orbit in (1.1). The stable and
unstable manifolds of v(t), W=(~(t)) and W"(v(t)), are defined as

W2(y(t)) = {x € R" | lim inf |¢y(x) —~(s)[ = 0},

t—+o0 seR
W((0) = {x € B[ lim_inf y(x) — 7(s)| = 0},
Assume that W3(v(t)) and W"(y(¢)) are of dimension n. In this situation we state the

well-known Smale-Birkhoff homoclinic theorem (see, e.g., Section 5.3 or [12] or Section 26
of [33]) as follows.

Theorem 1.2. IfW3(v(t)) and W™ (~(t)) intersect transversely on the (2n—1)-dimensional
level set H=*(c) for some c € R, then chaotic dynamics occurs: There exists a chaotic
invariant set A containing

(i) countably many periodic orbits;
(il) uncountably many bounded nonperiodic orbits,

(iii) a dense orbit.

From Theorem 1.1 we see that if chaotic dynamics occurs, then Eq. (1.1) is nonin-
tegrabe. However, chaotic dynamics may not occur even if it is nonintegrable. So we
are interested in the following question: Does chaotic dynamics occur when Eq. (1.1) is
nonintegrable?

As an example, we consider a two-degree-of-freedom system

By =1y, Ty =14, o3=—T—crs—dr], o4=—Ty— 2cT1T9, (1.3)

with the Hamiltonian H = (24 x3+23+13) +cxyx3+3dai. Eq. (1.3) is a generalization
of the Hénon-Heiles system [13], which was discussed in many references (see [30] for an
carlier list of such references). A numerically computed chaotic orbit in (1.3) for ¢ = 1,
d = —1and H = 1/6, which was actually treated by Hénon and Heiles [13], is displayed
in Fig. 1. It is a well-know fact that Eq. (1.3) is integrable for ¢/d = 0,3,1 (see,
e.g., [9]). The noninetgrability of (1.3) was shown for ¢/d # 0, %, 5,1 by Ito [17,18] earlier
and for ¢/d = 5 by Morales-Ruiz et al. [27] more than two decades later. The Ziglin
theory [45] was used in the former work while the Morales-Ramis (or Morales-Ramis-
Simo6) theory [24,26,27], which was regarded as an extension of the Ziglin theory based
on differential Galois theory [5,29], was used in the latter. See Section 3.2 for an outline
of the Morales-Ramis theory. On the other hand, the occurrence of chaos in (1.3) was
proved by Grotta Ragazzo [10] for ¢/d # 0, %, %, %, 1. He used asymptotic properties of
special solutions to stationary Schrdodinger equations and a theorem of Lerman [19] for
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Figure 1: Numerically computed chaotic orbit in (1.3) for ¢ = 1, d = —1 and H = 1/6:
(a) Its projection onto the three-dimensional (x1, 29, x3)-space; (b) its projection onto the
two-dimensional (x1,x3)-space on the three-dimensional Poincaré section at o = 0.

two-degree-of-freedom Hamiltonian systems with saddle-centers and homoclinic orbits. A
different method based on a fundamental idea of Melnikov’s method [12, 33|, was also
developed for such systems and used to prove the same result in [34]. See Section 2.2 for
an outline of the method. Moreover, it was shown by an extension of the method in [41]
that Eq. (1.3) exhibits chaotic dynamics for ¢/d = %. Thus, the nonintegrability is closely
related to the occurrence of chaos in (1.3) although the occurrence of chaos for ¢/d = 3
is still an open problem.

1.2 Object of this review

In this article, we review some previous results [34,37] related to our question for two-
degree-of-freedom Hamiltonian systems with saddle-centers,

&= JD.H(z,y), y= IDyH(zy), (r,y)e€R>xR? (1.4)

where H : R? x R? — R is C"™! (r > 3) except that it is analytic when we discuss the
nonintegrability of (1.4). Note that J; is the 2 x 2 symplectic matrix

0 1
= (0.

(A1) For any z € R* D, H(0,0) = D,H(z,0) = 0;

(A2) J;D2H(0,0) has a pair of positive and negative eigenvalues, and there exists a
homoclinic orbit (z,y) = (2"(),0) such that lim; 4o z"(t) = 0 (see Fig. 2);

(A3) JlDZH (0,0) has a pair of purely imaginary eigenvalues.

We assume the following on (1.4):

It follows from (A1)-(A3) that the z-plane, {(x,y) € R? x R? | y = 0}, is invariant under
the flow of (1.4); the origin (z,y) = (0,0) is a saddle-center; and by the Lyapunov center
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Figure 2: Homoclinic orbit z"(¢) on the z-plane ~ Figure 3: Periodic orbits near the origin

theorem (e.g., [1,22]) there exists a family of periodic orbits near it (see Fig. 3). The
periodic orbits have two-dimensional stable and unstable manifolds, which may intersect
transversely on the level set H'(c) for some ¢ € R. Hence, by Theorem 1.2 chaotic
dynamics may occur in (1.4).

We also state some extensions of the above results to a higher-order approximation in
[41]. heteroclinic orbits in [31], and more- or infinite-degree-of-freedom systems in [35, 38].
In particular, the extended theory shows that Arnold diffusion type motions, which is
not slow but very similar to well-know Arnold diffusion [2,20], can occur in three- or
more-degree-of-freedom systems. Moreover, a buckled beam, which was studied as an
carly example of infinite dimensional systems having chaotic motions by Holmes and
Marsden [16] (see also [14,23]) when it is subjected to damping and periodic external
force, is shown to still exhibit chaotic motions even when it is not subjected to them.

The outline of this article is as follows: In Section 2 we describe the Melnikov-type
method developed in [34] for detection of chaos in the two-degree-of-freedom Hamiltonian
system (1.4). We begin with the standard Melnikov method [12,33] and end with briefly
illustrating the theory for an example including (1.3) as a special case. In Section 3 we
describe the result of [37] on a relationship between nonintegrability and chaos for (1.4).
Necessary parts of the differential Galois theory and Morales-Ramis theory are also briefly
provided. We state several extensions of [31,35,38,41] for the above results in Section 4
and finally give some comments on future work in Section 5.

2 Detection of Chaos

2.1 Standard Melnikov method

We begin with the standard Melnikov method. See Section 4.5 of [12] or Section 28 of [33]
for the details. Consider two-dimensional time-periodic systems of the form

i = J,DH(z) +eg(z,t), x€R? (2.1)

where 0 < e <1, H:R? 5 Rand g : R?xXR — R? are C"*! and C" (r < 2), respectively,
and g(z,t) is T-periodic in t (T > 0) for any x € R%. We assume that the origin z = 0
is a hyperbolic saddle and has a homoclinic orbit z®(#) in (2.1) with £ = 0. It follows
that when € > 0 is sufficiently small, near x = 0 there exists a hyperbolic periodic orbit
7:(t) which has two-dimensional stable and unstable manifolds, W*(v.(¢)) and W"(y-(t)).
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Figure 4: Perturbed phase space for (2.1)

We can approximate orbits on Ws(~.(¢)) and W%(7.(t)) as = a®(t — t9) + ££(t), where
& = £&(t) is a solution to the variational equation

€= JD2H(2"(t — to))€ + g(a"(t — to), t).

See Fig. 4. The signed distance d(ty) between W*(~.(t)) and W (v.(¢)) near z = x®(—t)
and ¢ =0 mod T can be estimated as

ilt0) = o + O

where
M(to) = / DL H (" (£),0) - g("(£), ¢ + to)dt

[o.¢]

and the dot represents the inner product. We call M (ty) the Melnikov function.

Theorem 2.1. If M(ty) has a simple zero, then for € > 0 sufficiently small W3(~.())
and W'(~.(t)) intersect transversely.

Using the Smale-Birkhoff homoclinic theorem [12,33] (see also Theorem 1.1) and The-
orem 2.1, we see that if M (ty) has a simple zero, then chaotic dynamics occurs in (2.1).

2.2 Melnikov-type method

We now consider the two-degree-of-freedom Hamiltonian system (1.4) under assumptions
(A1)-(A3), and describe the Melnikov-type method developed in [34]. See [34] for the
details. The Hamiltonian H(z,y) is assumed to be C™* (r > 3).

As stated in Section 1.2, there exists a family of periodic orbits near the saddle-center
at (z,y) = (0,0). Let 7.(t) denote a periodic orbit of the family such that max;eg |7-(t)| =
O(g), where 0 < ¢ < 1. We can approximate orbits on the two-dimensional stable and
unstable manifolds of v.(t), W*(7.(t)) and W¥(v.(t)), as & = a(t —to) +%£(t), y = en(t),
where (&,1) = (£(t),n(t)) is a solution to the variational equation

§ = JD2H(2"(t — t0). 0)& + g(2"(t — to),n) + O(e),
i = JiD2H (z"(t — t0), 0)n + O(e),



where g(x.1n) = 3$JD,D2H(x,0)(n,n). Applying an argument used in the standard Mel-
nikov method, we see that the signed distance d(ty) between W3(7.(t)) and W"(7.(t))
near (z,y) = (2"(—tp),0) is estimated as

M(ty)

DxHExh(—to),O) +0(e),

d(to) =

where M(ty) is the Melnikov function given by

M(to) = / DL H((1),0) - g2 (6), (¢ + to))d.

—00

We can also see that

d
SID2E(a(0),0) i+ t0). it + )]
= —2D, H (" (), 0)(n(t +to), n(t +to)) - g(x"(t), n(t + t0)),
so that -
M(ty) = —%Dzﬂ(xh(t% 0)(n(t +to),n(t + to))
See [34].
Let W(t) and ®(t) be, respectively, fundamental matrices of
0 = JiDyH(z"(t),0)n (2:2)
and
i = JiDRH (0, 0)y (2.3)

such that ®(0) = idy. Let By = limy_,1o, ®(—1)U(t) and let By = BL.B~". We can write
n(t) = U(t — to) BZ'®(to)mo + O() with o (# 0) € R?, which satisfies

O (t)no as t — —o0;
n(t) —
(I)(t — to)Bo@(to)ﬂo as t — oo.

Thus, the Melnikov function is rewritten as

M(to) = qo(no) — qo(Bo®(to)m0), mo(#0) € R?,

where go(n) = 3D2H(0,0)(n,n) for n € R?. We obtain the following theorem.

—2
Theorem 2.2. If M(ty) has a simple zero, then for ¢ > 0 sufficiently small W*(7.(t))
and W"(7-(t)) intersect transversely on the level set H'(c) with ¢ = H(7.(t)).

Using Theorem 1.1 and Theorem 2.2, we see that if M(t;) has a simple zero, then
chaotic dynamics occurs in (1.4).



2.3 Example

We apply the method of Section 2.2 to a two-degree-of-freedom system with the Hamil-
tonian

/31 n+1

H(z,y) = 3(=a1 + W) + =i + 50aiyn + 5 (23 +45) + O(wy). - (24)

It includes the Hénon-Heiles system (1.3) as a special case of n = 2 in which

B = 2c 52:2(d—c)7 Bgzu(c+d)

1+ 2 1+ p? NAEST

P L Vit e LY P
_\/57 10 — %2 ) n= C

/ 2
/Blzda B2:207 /83207 w = 1_5

if ¢/d < 1/2. We easily see that assumptions (A1)-(A3) hold and

9 1 1/(n-1) n—1
2" (t) :(<n2—;1 ) sech?/ (=) (n 5 L‘) :
1\ /b 1 1
(n2—;1 ) sech?/ (=) (%1‘) tanh <n 5 1‘)) (2.5)

M(ty) = w2b(\/1 + b2 cos(2wty + ¢o) + b),

QL

if ¢/d > 1/2 and

We compute

where
cos? /o /2
sinh? 27w/ (n — 1)
cosh® my/—a /2

sinh? 27w/ (n — 1)

if o0 > 0;

if 0 <0,

and . .
_ 8%+ )+1

U_—ﬁl(n—1)2 .

B, (=17
f1 " 2(n+1)

then M (to) has a simple zero so that by Theorem 2.2 chaotic dynamics occurs. The same
condition was also obtained by Grotta Ragazzo [10] although his approach was valid
only for a restricted class of two-degree-of-freedom Hamiltonians of the form H(q,p) =
Ip|* + V(g) with ¢,p € R? (cf. Eq. (1.2)), where V/(¢) is a C"' function. Note that
condition (2.6) holds for (1.3) when ¢/d # 0,1, %,2 1.

)99 409

We see that if

0e+1), LeN, (2.6)



3 Nonintegrability and Chaos

3.1 Differential Galois theory

We present such an introductory material of differential Galois theory as needed below.
See [5,29] for thorough explanations of the theory.

Let K be a differential field endowed with a derivation 0, and consider linear systems
of the form

oy = Ay, A € gl(n,K). (3.1)

Let Ck := {a € K| da = 0} be the field of constants of K. For instance, when K = C(¢),
then Cx = C. A differential field extension I O K is a field extension such that L is a
differential field and the derivations on L and K coincide on K. Let = be a fundamental

matrix of (3.1). A differential field extension L D K is called a Picard-Vessiot extension
if

(i) L is generated by K and entries of =;
(i) Cp = Ck.

We now fix a Picard-Vessiot extension L. O K and a fundamental matrix = with entries
in L. Let o be a K-automorphism of L, i.e., a field automorphism of L such that d(o(a)) =
0(da) for any a € L and o(a) = a for any a € K. Since do(2) = 0(JE) = 0(AE) = Ao (2),
we see that o(Z) is another fundamental matrix of (3.1). Hence, by a fundamental result
of linear differential equations, we have o(Z) = =M, for some M, € GL(n,Cp). A
group of K-automorphisms of LL is called the differential Galois group Gal(L/K) of (3.1).
An algebraic group G C GL (n,Cp) generally has a unique irreducible component of G
containing the identity element, which is called the identity component G°. We denote
the identity component of Gal(L/K) by Gal(L/K)°.

3.2 Morales-Ramis theory

We consider (1.1) as a complex Hamiltonian system. Let Z(f) be a nonconstant particular
solution to (1.1). We write solutions to (1.1) near T(¢) as x = T(t)+0¢ with & € C?", where
0 < 0 < 1. Substituting this expression into (1.1) and keeping the resulting equation up
to O(0), we obtain the variational equation of (1.1) around Z(t),

€ = J,D*H(z(t))¢. (3.2)

Let G° be the identity component of the differential Galois group for (3.2). The following
theorem was proved in [26] (see also [24]).

Theorem 3.1 (Morales-Ruiz and Ramis). If Eq. (1.1) is meromorphically integrable near
T(t), then G° is abelian.

It follows from Theorem 3.1 that if G° is not abelian, then Eq. (1.1) is meromor-
phically nonintegrable. We write solutions to (1.1) as z = Z(t) + 6§W + 1626¢@ + ...
to obtain higher-order variational equations like (3.2). Morales-Ruiz et al. [27] extended
Theorem 3.1 and obtained a stronger necessary condition for meromorphic integrability of
(1.1) with the differential Galois group for the linearization of the higher-order variational
equations. See [27] for the details.



3.3 Relationship between nonintegrability and chaos

We return to the two-degree-of-freedom system (1.4). The Hamiltonian H (z,y) is assumed
to be analytic. The variational equation of (1.4) around (z"(¢),0) is given by

£ = J,D2H(z"(1),0)¢, n=J,D2H(a"(t),0)n, &neC (3.3)

We call the first and second equations of (3.3) the tangential and normal variational
equations, respectively. Let G° be the identity component of the differential Galois group
for the normal variational equation when the domain of the independent variable ¢ is
restricted to a neighborhood of R U {£o00} in a Riemann surface (see [25,37,42,43] for
the details). It follows from Theorem 3.1 that if G° is not abelian then Eq. (1.4) is
meromorphically nonintegrable near (z"(¢),0). Furthermore, we can prove the following
theorem [37].

Theorem 3.2. If G° is not abelian, then for € > 0 sufficiently small W5(y.(t)) and
WU (7. (1)) intersect transversely on the level set H *(c) with ¢ = H(v.(1)).

A similar result for a restricted class of two-degree-of-freedom natural Hamiltonian
systems was obtained by Morales-Ruiz and Peris [25] earlier based on the result of Grotta
Ragazzo [10]. Thus, if G° is not abelian, then not only the system (1.4) is nonintegrable
but also chaotic dynamics occurs.

We now apply Theorem 3.2 to the Hamiltonian (2.4). The normal variational equation
around the homoclinic orbit (2.5) becomes

. . n+1 n—1

m="mn, nn=—|w+ M sech? t) | m, (3.4)
23 2

which is transformed to the Gauss hypergeometric equation

d?¢ 2iw d¢ 2iw 2iw
3(1—5)@%—(1%—” 1)(1—25)£—( —p) (n_1+p+1>—0 (3.5)

n—1

under the change of variables

g — 5 SBn+1)
pP= 2(\/_ 1)’ ﬁl(n_ 1)2

Note that the singular points s = 0 and 1 in (3.5), respectively, correspond to ¢ = oo
and —oo in (3.4). Using an argument in Section 5 of [37], we see that when w > 0, if
condition (2.6) holds, then the identity component of the differential Galois group of (3.5)
is not abelian, so that G is not abelian. Using Theorem 3.2, we reobtain the result of
Section 2.3.

where
+ 1.



Figure 5: Heteroclinic orbit z"(¢) on the 2-plane.

4 Several Extensions

4.1 Higher-order Melnikov method

We consider the two-degree-freedom system (1.4). Let W(t) and ®(t) be, respectively,
fundamental matrices of (2.2) and (2.3) with ®(0) = idy, as in Section 2.2. Recall that
By = limy_,4oc ®(—1)¥(t) and By = B B~". Let

q;(z,m) = D} H(x,0)(n,...,n), j=0,1,...,

Jj+2

(7 +2)!
K(v) = / Tl (), U(0)0) — (0, (1) By o)dt

+ / [q1 (2" (), ¥ (t)v) — q1(0, P(t) B_v)]dt.

—0o0

We define the first- and second-order Melnikov functions as

M (to) = 40(0,m0) — qo(0, Bo®(to)10)
and
My(to) = — ®(to)no - DL H(0,0)B_JiD, K (B~ ®(to)10)
+ q1(0, @(to)n0) — q1(0. Bo®(to)mo),
respectively, where 79 (£ 0) € R% In this situation, we can prove the following [41].

Theorem 4.1. If Mi(ty) = 0 and Ms(ty) has a simple zero, then for ¢ > 0 sufficiently
small W3(v:(t)) and W*(v.(t)) intersect transversely on the level set H='(c) with ¢ =

H(7(t)).
Using Theorem 4.1, we can show that chaotic dynamics occurs in (1.3) when ¢/d = 3.

See [41] for the details.

4.2 Heteroclinic orbits

We still consider the two-degree-freedom system (1.4) but assume the following instead

of (A1)-(A3):
(A1) For any z € R?* D,H(z,0) = 0 and for some x4 € R? D, H(z.,0) = 0;
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(A2’) J;D2H(2+,0) has a pair of positive and negative eigenvalues, and there exists a
heteroclinic orbit (z,y) = (z"(t),0) such that lim; , 1. z"(t) = 7+ (see Fig. 5);

(A3’) JiD;H(z4,0) has a pair of purely imaginary eigenvalues, iws and —iw..

It follows from (A1’)-(A3’) that the z-plane is invariant under the flow of (1.4); there are
two saddle-centers at (z,y) = (z+,0); and by the Lyapunov center theorem (e.g., [1,22])
there exists a family of periodic orbits near each saddle-center (cf. Fig. 3). Let vy .(¢)
denote periodic orbits of the families such that max;er |v4.0) — (#+,0)] = O(e). The
periodic orbits vy .(¢) have two-dimensional stable and unstable manifolds, W*(yy (1))
and W"(v1:(t)). So W"(v_-(t)) may intersect W*(y4 .(t)) transversely on the level set
H™(c) for ¢ € R when H (v, .(t)) = H(y_.(t)) = ¢ for some ¢ € R.
Let W(t) and ®,(t) be, respectively, fundamental matrices of

i = LD H(z"(t),0)n and 9= J,DH (zx,0)1

such that ®.(0) = idy. Let By = tlig1 ®.(—t)U(t) and By = B,B~'. We define the
—4oco

Melnikov function as

M(to) = q-(no) — 4+ (Bo®(to)mo), mo(s£0) € R?,

where ¢ (1) = $D2H (21, 0)(n,n) for n € R?. In this situation, we can prove the following
[31].

Theorem 4.2. If M(ty) has a simple zero and H(v+.(t)) = H(y—.(t)) = ¢ for some
c € R, then for e > 0 sufficiently small W*(~_ (t)) intersects W*(y4 (1)) transversely on
the level set H '(c).

Suppose that there also exists a heteroclinic orbit from (x,0) to (z_,0) and the cor-
responding Melnikov function has a simple zero. Then, as in Theorem 4.2, W"(y, (%))
intersects W(v4c(t)) transversely. Thus, there exist transverse heteroclinic cycles yield-
ing transverse homoclinic orbits to 7. .(t) (see, e.g., Section 26.1 of [33]). Hence, by
Theorem 1.2 chaotic dynamics may occur in (1.4).

Let G° be the identity component of the differential Galois group for the variational
equation of (1.4) around (z,y) = (z"(¢),0) (cf. Eq. (3.3)). We have the following result
similar to Theorem 3.2.

Theorem 4.3. Suppose that H(z,y) is analytic and wy = w_. If G° is not abelian and
H(v4:(t)) = H(v-c(t)) = ¢ for some ¢ € R, then for e > 0 sufficiently small W"(~_ .(t))
intersects W¥(y, (t)) transversely on the level set H™*(c).

See [43] for the proof. A result of [42] on Bogoyavlenskij nonintegrability [4] of gen-
eral systems (which are not necessarily Hamiltonian) near homo- and heteroclinic orbits,
along with Theorem 4.2, were used there. The statement of Theorem 4.3 does not nec-
essarily hold for wy # w_: W"(y_.(t)) may not intersect W(y4.(t)) even if Eq. (1.4) is
nonintegrable. See [43] for the details.
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4.3 Three- or more-degree-of-freedom Hamiltonian systems

We consider (n + 1)-degree-of-freedom Hamiltonian systems of the form
i=JD,H(z,y), v=J.D,H(x,y), (z,9)€R*xR>" (4.1)
where n > 2, H : R2xR*" — R is C"! (r > 2n+4). We make the following assumptions:
(A1”) For any x € R?, D,H(0,0) = D, H(x,0) = 0;
(A2”) J;D2H(0,0) has a pair of positive and negative eigenvalues, and there exists a
homoclinic orbit (z,y) = (z%(¢),0).

(A3”) J,D2H(0,0) has n pairs of purely imaginary eigenvalues +iw;, j = 1,...,n, sat-
isfying the nonresonant condition

k-w=Fkw 4+ -+ kw, #0
for k = (ky,...,k,) € Z™ such that 1 < |k| :Z?:1|kj| < 4,

It follows from (A1”)-(A3”) that the z-plane is invariant under the flow of (4.1) and the
origin (z,y) = (0,0) is a saddle-center. We can also show that there is a symplectic
transformation (z,y) — (s,u, I,%) € R x R x R™ x T" such that the Hamiltonian H is
expressed as

H(s,u, I,¢) =Asu+w-I+3(Al-1)+g(s,u,I,1)

near the origin, where A is an n x n matrix, and g : R x R x R® x T" — R is C"! for
I # 0 and of higher order than 2 in s,u and I. Moreover, we assume the following;:

(A4”) A is nonsingular.

Using the invariant manifold theory [7,8] (see also [32]) and a version of the KAM theorem
[28], we see from (A4”) that a Cantor set of n-dimensional invariant tori which have
(2n + 1)-dimensional stable and unstable manifolds exists near the origin. See [38] for
more details.

Let W(t) and ®(wt) be, respectively, fundamental matrices of

i = J Dy H (z"(t),0)n and 5= J,DJH(0,0)n

such that ®(0) = id,. Let B+ = limy_+o ®(—wt)¥(t) and By = B.B~'. We define the
Melnikov function as

M(97 7”) = CIQ(T) - qO(BO(D(Q)T)a re R:L- = H(07 00)7
j=1
where qo(n) = $D2H(0,0)(n,n). In this situation we have the following theorem [38].
Theorem 4.4. Suppose that M(0;r) has a simple zero at 0 = 0y for some r € R} fized.
Then the unstable manifold of an invariant torus near the origin intersects the stable
manifold of another invariant torus near the origin transversely on the level set H(c)
for some ¢ € R. Here the projections of the two invariant manifolds onto the y-space are
close to {e®(0)r | 0 € T"} and {e®(0)By®(6y)r | 0 € T"}, where € > 0 is sufficiently

small..
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Figure 6: Transition chain

Let N > 1 be an integer and suppose that M (6;7) has a simple zero at § = 7 € T"
forr=ri €R?,j=1,...,N—1, such that ®(67)ri*! = By®(6?)17 for some 67 € T". Let
W*(7;) and W*(.7;), respectively, denote the (2n + 1)-dimensional stable and unstable
manifolds of .7 for j = 1,..., N. Using Theorem 4.4, we can find N invariant tori
A, ..., Iy such that W"(.7;) intersects W*(.7,41) transversely for j =1,...,N — 1, on
the level set H '(c) for some ¢ € R such that H(.7;) = ¢, j = 1,...,N. We refer to the
sequence of invariant tori .77, ..., 9y as a transition chain. See Fig. 6. So we see that
there exists an open set of points arbitrarily close to .77, connected by trajectories with
points arbitrary close to Zy through points near .7}, j = 2,..., N —1. This is very similar
to Arnold diffusion, which occurs in nearly integrable systems [2,20], although the drift
speed is not slow. See [38] for more details. Numerical evidence for Arnold diffusion type
motions in a three-degree-of-freedom system was also provided in [36].

4.4 Undamped, buckled beam: An infinite-degree-of-freedom
Hamiltonian system

We now consider an undamped, buckled beam with hinged ends, shown in Fig. 7. We
adopt the following mathematical model of the beam as in [16]:

1
i+ u" + {F — Ii/ (u')QdC] u" =0, (4.2)
0

where u represents the transverse deflection, the prime and overdot represent partial
differentiation with respect to z and ¢, respectively, and " and « represent the compressive
force and stiffness due to “membrane” effects, respectively. The boundary condition is
given by u(0) = u(1) = 0 and «”(0) = «”(1) = 0. Especially, the distance ¢ between the
hinged ends is non-dimensionalized such that ¢ = 1. Eq. (4.2) is an infinite-dimensional
Hamiltonian system with the symplectic form

Q((U17 ﬂ1)7 (Ug, ’LLQ)) = /0 (’(:Lgul — QlllLQ)dZ
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Figure 7: Buckled beam

and the Hamiltonian
2

H(u, ) = /0 1 E(u)? - g(u')Q + %(U")Q} az+ [ /0 1(u’)2dz]

We assume that 72 < I' < 472, so that only the first mode u = sin 7z is unstable.
Let

n+1

u = Z aj, sin j;mz, (4.3)
I=1

where j; = 1l and j; e N, [ =2,...,n+ 1, with j; < -+ < j,.1. Note that Eq. (4.3)
satisfies the boundary condition. Substituting (4.3) into (4.2), we obtain

n
N 2 E 52 .2 ) ..
L1 = T2, L2 = T1 — <‘Ll + Jm+lym> Iy,

m=1

: (4.4)
U= Yntts Untl = —WiY — Jim (l% + ZJ’%H'%) y, [=1,...,n,
m=1

which is an (n + 1)-degree-of-freedom Hamiltonian system of the form (1.4) and (4.1) for
n =1 and n > 1, respectively, where

(jipam)? =T

r—m2 7’
We also show that assumptions (A1)-(A3) or (A17)-(A3”) without the nonresonant con-
dition hold. Assuming the nonresonant condition for n > 1 and applying Theorems 2.2

and 4.4 to (4.4) for n =1 and n > 1, respectively, we prove that chaotic vibrations occur
n (4.2). See [35] for the details. We remark that assumption (A4”) holds if

Wi = Jit1 I=1,...,n.

1
2+ % meN, ie., ji #6,204,6930,235416, . . .

The case of n =1 was also studied in [11] earlier.
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5 Future Work

Finally, we give some comments on future work. First of all, one may raise the open
problem of determining whether the Hénon-Heiles system (1.3) exhibits chaos for ¢/d = 1.
Especially, it makes the problem difficult that there exists only a degenerate saddle-center
at which the Jacobian matrix has a double zero eigenvalue. To overcome this difficulty,
the Lyapunov center theorem has to be extended. Since Eq. (1.3) is nonintegrable as
stated in Section 1.1, it seems natural to expect that chaotic dynamics occurs then. A
numerical simulation presented in [27] also supports this conjecture. Some preliminary
result was obtained in [39].

Second, extensions of the results stated in Sections 2 and 3 to reversible systems with
saddle-centers:

i=f(r), xeR™,

where there exists a linear involution R : R* — R?" (R? = idy,) such that Rf(x) +
f(Rzx) = 0. Reversible systems have some similar properties as Hamiltonian systems,
e.g., the statement of the Lyapunov center theorem holds (see e.g., [6]), but may not have
a first integral, so that their trajectories may not be restricted to a lower-dimensional
space than the phase space and more complicated behavior may occur. Some preliminary
result was obtained in [40].

As described in this article, for Hamiltonian systems with saddle-centers and homo-
or heteroclinic orbits, especially in the two-degree-of-freedom case, we now understand
a relationship between nonintegrability and chaos to some extent. However, when a
Hamiltonian system with homo- or heteroclinic orbits has only hyperbolic saddles at
which all eigenvalues of the Jacobian matrix are real, it is not so clear whether it can
exhibit chaotic dynamics even for the two-degree-of-freedom case. No essential progress
in this direction has been made since the work of Holmes [15] in 1980. For instance, for the
heavy top, which has been one of important dynamical systems since the time of Euler
and Lagrange, the problem of nonintegrability was completely solved by Ziglin [44, 46]
(see also [21,47]) but the occurrence of chaos in a special case with only such a hyperbolic
saddle is still an open problem. So a new theory for detecting chaos and discussing
a relationship between nonintegarbility and chaos in Hamiltonian and non-Hamiltonian
systems (e.g., reversible systems) with such hyperbolic saddles is expected.

References

[1] R. ABRAHAM, J. E. MARSDEN, Foundations of Mechanics, 2nd ed., Addison-Wesley,
Redwood City, 1978.

[2] V. I. ARNOLD, Instability of dynamical systems with many degrees of freedom, Sov.
Math. Dokl. 5, 581-585, 1964.

[3] V. I. ARNOLD, Mathetnatical Methods of Classical Mechanics, 2nd ed., Springer,
New York,1989.

[4] O. BOGOYAVLENSKIJ, Extended integrability and bi-Hamiltonian systems, Comm.
Math. Phys., 196 (1),19-51, 1998.

15



[5]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T. Crespo, Z. HAJTO, Algebraic Groups and Differential Galois Theory, American
Mathematical Society, Providence, RI, 2011.

R. L. DEVANEY, Reversible diffeomorphisms and flows, Trans. Amer. Math. Soc.,
218, 89-113, 1976.

N. FENICHEL Persistence and smoothness of invariant manifolds for flows, Indiana
Univ. Math. J., 21 (3), 193-225, 1971.

N. FENICHEL Asymptotic stability with rate conditions, Indiana Univ. Math. J., 23
(12), 1109-37, 1974.

A. GORIELY, Integrability and Nonintegrability of Dynamical Systems, World Scien-
tific, New Jersey, 2001.

C. GROTTA RAGAZZO, Nonintegrability of some Hamiltonian systems, scattering
and analytic continuation, Comm. Math. Phys., 166 (2), 255-277, 1994.

C. GROTTA RAGAZZO, Chaotic osillations of a buckled beam, Int. J. Bifurcation
Chaos, 5 (2), 545-549, 1995.

J. GUCKENHEIMER, P. HOLMES, Nonlinear Oscillations, Dynamical Systems, and
Bifurcations of Vector Fields, Springer, New York, 1983.

M. HENON, C. HEILES, The applicability of the third integral of motion: Some
numerical experiments, Astron. J., 69 (1), 73-79, 1964.

P. HOLMES, A nonlinear oscillator with a strange attractor, Philos. Trans. Roy. Soc.
London A, 292 (1394), 419-448, 1979.

P. HoLMES, Periodic, nonperiodic and irregular motions in a Hamiltonian system,
Rocky Mountain J. Math., 10 (4), 679-693, 1980.

P. HoLMES, J. E. MARSDEN, A partial differential equation with infinitely many
periodic orbits: Chaotic oscillations of a forced beam, Arch. Rational Mech. Anal.,

76 (2), 135-165, 1981.

H. Ito, Non-integrability of Hnon-Heiles system and a theorem of Ziglin, Kodai
Math. J., 8 (1), 120-138, 1985.

H. ITO, A criterion for nonintegrability of Hamiltonian systems with nonhomoge-
neous potentials, Z. Angew. Math. Phys., 38 (3), 459-476, 1987.

L. M. LERMAN, Hamiltonian systems with loops of a separatrix of a saddle-center,
Selecta Math. Sov., 10 (3), 297-306, 1991.

P. LocHAK, Arnold diffusion: A compendium of remarks and questions, in Hamil-
tonian Systems with Three or More Degrees of Freedom (C. Simé ed.), Kluwer, Dor-
drecht, 1999, pp. 168-183

16



[21]

22]

[23]

[24]

[25]

[26]

[27]

[31]

32]

[33]

[34]

[35]

[36]

A. J. MACIEJEWSKI, M. PRzZYBYLSKA, Differential Galois approach to the non-
integrability of the heavy top problem, Ann. Fac. Sci. Toulouse Math. (6), 14 (1),
123-160, 2005.

K. R. Meyer, D. C. Offin, Introduction to Hamiltonian Dynamical Systems and the
N-Body Problem, 3rd ed., Springer, New York, 2017.

F. C. Moon, P. J. HOLMES, A magnetoelastic strange attractor, J. Sound Vib.,
65 (2), 275-296, 1979.

J. J. MORALES-RuUI1Z, Differential Galois Theory and Non-Integrability of Hamilto-
nian Systems, Birkhauser, Basel, 1999.

J. J. MorALEs-Ruiz, J. M. PERIS, On a Galoisian approach to the splitting of
separatrices, Ann. Fac. Sci. Toulouse Math. (6), 8 (1), 125-141, 1999.

J. J. MorALES-RuU1Z, J. P. RAMIS, Galoisian obstructions to integrability of Hamil-
tonian systems I, Methods Appl. Anal., 8 (1), 33-96, 2001.

J. J. MorALEs-Ruiz, J. P. Rawmis, C. SiMO, Integrability of Hamiltonian systems

and differential Galois groups of higher variational equations, Ann. Sci. Ecole Norm.
Sup. (4), 40 (6), 845-884, 2007.

J. POScHEL, Uber Invariant Tori in Differenzierbaren Hamiltonschen Systemen,
Bonn Math. Schr. Vol. 20, Universitat Bonn, Bonn, 1980.

M. VAN DER Put, M. F. SINGER, Galois Theory of Linear Differential Equations,
Springer, Berlin, 2003.

D. L. Rop, R. C. CHURCHILL, A guide to the Hénon-Heiles Hamiltonian in .
Singularities and dynamical systems (Irklion, 1983), 385395, North-Holland Math.
Stud., 103, North-Holland, Amsterdam, 1985.

T. SAKAJO, K. YAGASAKI, Chaotic motion of the N-vortex problem on a sphere:
I. Saddle-centers in two-degree-of-freedom Hamiltonians, J. Nonlinear Sci., 18 (5),
485-525, 2008.

S. WIGGINS, Normally Hyperbolic Invariant Manifolds in Dynamical Systems,
Springer, New York, 1994.

S. WIGGINS, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd
ed., Springer, New York, 2003.

K. YAGASAKI, Horseshoes in two-degree-of-freedom Hamiltonian systems with
saddle-centers, Arch. Ration. Mech. Anal., 154 (4), 275-296, 2000.

K. YAcAsAKI, Homoclinic and heteroclinic behavior in an infinite-degree-of-freedom
Hamiltonian system: Chaotic free vibrations of an undamped, buckled beam, Phys.
Lett. A, 285 (1-2), 55-62, 2001.

K. YAcasaki, Numerical evidence of fast diffusion in a three-degree-of-freedom
Hamiltonian system with a saddle-center, Phys. Lett. A, 301 (1-2), 45-52, 2002.

17



[37]

[45]

[46]

[47]

K. Yacasaki, Galoisian obstructions to integrability and Melnikov criteria for chaos
in two-degree-of-freedom Hamiltonian systems with saddle centres, Nonlinearity, 16
(6), 2003-2012, 2003.

K. YAGAsAKI, Homoclinic and heteroclinic orbits to invariant tori in multi-degree-of-
freedom Hamiltonian systems with saddle-centres, Nonlinearity, 18 (3), 1331-1350,
2005.

K. YAGAsakI, Existence of horseshoes in the generalized Hénon-Heiles system under
degenerate condition, ENOC-2005, Eindhoven, Netherlands, 7-12 August 2005, 12-
311.

K. YAcasaki, Chaos and diffusion in four-dimensional non-conservative, reversible
system with saddle-centers, ENOC-2005, Eindhoven, Netherlands, 7-12 August 2005,
13-312.

K. YAGAsAak1, Higher-order Melnikov method and chaos for two-degree-of-freedom
Hamiltonian systems with saddle-centers, Discrete Contin. Dyn. Syst., 29 (1), 387
402, 2011.

K. YAGASAKI, S. YAMANAKA, Nonintegrability of dynamical systems with homo-
and heteroclinic orbits, J. Differential Equations, 263 (2), 1009-1027, 2017.

K. YAGASAKI, S. YAMANAKA, Heteroclinic orbits and nonintegrability in two-
degree-of-freedom Hamiltonian systems with saddle-centers, SIGMA Symmetry In-
tegrability Geom. Methods Appl., 15, 049, 2019.

S. L. Z1GLIN, Splitting of the separatrices, branching of solutions and nonexistence
of an integral in the dynamics of a solid body, Trans. Moscow Math. Soc., 41 (1),
283-298, 1982.

S. L. Z1GLIN, Branching of solutions and nonexistence of first integrals in Hamilto-
nian mechanics I, Funct. Anal. Appl., 16 (3), 181-189, 1982.

S. L. Z1GLIN, Branching of solutions and nonexistence of first integrals in Hamilto-
nian mechanics II, Funct. Anal. Appl., 17 (1), 6-17, 1983.

S. L. Z1GLIN, The absence of an additional real-analytic first integral in some prob-
lems of dynamics, Funct. Anal. Appl., 31 (1), 3-9, 1997.

Kazuyuki Yagasaki

Department of Applied Mathematics and Physics, Graduate School of Informatics,
Kyoto University,

Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 JAPAN.

E-mail address: yagasaki@amp.i.kyoto-u.ac.jp

18



