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1 Introduction

In this paper, we study integrability of three-degree-of-Hamiltonian systems in Birkhoff
normal form. Let H be a real analytic function of 2 = (z,y) € R® x R and assume it has

the following power series expansion:

w
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where H represents homogeneous terms of degree j and w;, ws, ws > 0 are constants. The
Hamiltonian H is said to be in Birkhoff normal form if
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It is well known that there exists a formal symplectic transformation z = ¢(() such that
H o ¢ is in Birkhoff normal form. In this case, H o ¢ is called a Birkhoff normal form of H
and ¢ is called a normalization of H. If the equilibrium is non-resonant, i.e., wy, wo, w3 are
rationally linear independent, then the Hamiltonian vector field of the normal form H o ¢
is linear. On the other hand, the equilibrium is resonant, that is, w;, ws, w3 are rationally
linear dependent, the Hamiltonian vector field of H o ¢ may not be linear. Hence the set

R:={ywcZ]| Z’mwk =0},
k=1

which is called the resonance set of H, plays an important role in the normal form theory.
The number v := dimg Spang R is the resonance degree.

The central problem is to give a sufficient condition that the formal normalization ¢
is analytic in the neighborhood of the equilibrium. We fucus on the results related with
integrability. An m-degree-of-freedom Hamiltonian system is called analytically (resp.



meromorphically) integrable if there exist m analytic (resp. meromorphic) functions H; =
H,H,,...,H, such that {H;, H,} = 0 for j,k = 1,...m. Ito [4, 5] showed that if
a Hamiltonian with the resonance degree v < 1 is analytically integrable, then there
exists an analytic normalization of H. Zung[11] proved without any assumptions about
resonance degrees that if a Hamiltonian is analytically integrable, then it has an analytic
normalization. This means that an integrable system is transformed to an integrable
normal form in the analytic framework. However, a Hamiltonian in Birkhoff normal form
may not be integrable: there exists an analytically nonintegrable Birkhoff normal form
with resonance degree v > 2, while Birkhoff normal forms with v < 1 are always integrable
(see [5]).

The purpose of the paper is to study integrability of (1) in Birkhoff normal form with
resonance degree 2. We assume (wy,ws,ws) = (1,2,w),w = 1,2,3 or 4 and that (1) is
in Birkhoff normal form and a cubic polynomial. Integrability and dynamics of these
systems have been studied (see [1, 3, 10]). Our Hamiltonian systems for w = 1,2,3 and 4
can be analytically transformed into the following Hamiltonian systems, respectively:

H = alps(p} — a}) + 2p1q1¢2] + blp2 (93 — 43) + 2p30342), (w-1)
H = alp2(p} — @) + 201q1¢2) + blps (07 — ;) + 2p1q1gs), (w-2)
H =alp:(p; — @) + 2p1¢1g2) + bps(p1p2 — @1g2) + @3(q1p2 + p1ga)], (w-3)
H = alps(p} — ¢7) + 2p1¢1ga] + b[ps(p3 — 43) + 2p24043), (w-4)

where a,b € R are parameters, by some time-dependent transformation

x; = cos(w;t + &;)q; + sin(w;t + d;)p;,
yj = —sin(w;t + 0;)q; + cos(w;t + 6;)p;,
where 0; are constants. Without loss of generality, we can assume that a,b > 0 and that
a>b>0 for (w-1).
A Hamiltonian in Birkhoff normal form has a first integral H2. Moreover, the Hamilto-
nian (w-2) has another first integral
a’ + b*
2
Hence we need only to study the case of w = 1,3, 4. It is apparent that (¢ + p3)/2 is a

(P} + q7) + (aga + bgs)* + (aps + bps)*.

first integral when b = 0. Moreover, the Hamiltonian (w-1) has a first integral

q1P3 — D143



when a = b and
2

1
(q1ps — p1Q3)2(p§ + q§) +2 5172 (q§ — p?,) — G243D3

when a = 2b. Hence we already know that (w-3) and (w-4) are integrable when p :=
b/a =0 and (w-1) is integrable when p = 0,1/2, 1.

The Morales-Ramis theory[9] is a powerful tool to prove nonintegrability. Consider a
general Hamiltonian system:

:=JDH(z), z€C™xC™, 2)

where J is an m x m symplectic matrix

J:< 0 Em>
—E, 0

Let z = Z(t) be a particular solution of (2). We obtain the variational equation (VE)
along z = 2(t)

&= JD*H(2(t))n.
Moreover, when the Hamiltonian system has first integrals or invariant plains, the varia-
tional equation can be reduced to a system of less linear equations called normal varia-

tional equation (NVE). As in introduced in the next subsection, we can define the differ-
ential Galois group G for a system of linear differential equations.

Theorem 1.1. (/9]) Let G be the differential Galois group of (NVE) of (2) along z = 2(t).
If a Hamiltonian system (2) is meromorphically integrable, then the identity component
G° of G is commutative.

Using the Morales-Ramis theory, Christov[2] stated that (w-1), (w-3) and (w-4) are
nonintegrable if they are not already known to be integrable as above. However his proof
contained some errors. Following his approach and correcting the errors, we obtain the
following theorem.

Theorem 1.2. Let yp=0b/a. The following hold:
If (w-1) is meromorphically integrable, then p=0,3/10,1/2,3/4,9/10, or 1.
If (w-3) is meromorphically integrable, then =0 or u is written as

L2
=4/ — 1/2 <1
/L 1/2]{_1, EeQand1/2 <k < (3)

If (w-4) is meromorphically integrable, then p = 0.



By this theorem, parameters for which (w-4) is integrable or nonintegrable are com-
pletely determined. However, it is unknown whether or not (w-1) for p = 3/10,3/4,9/10
is integrable and (w-3) for p written by (3) is integrable, although these systems are
thought to be nonintegrable.

In Section 2, we review some of the standard facts on the differential Galois theory. In
Section 3, we show the sketch of the proof of the main theorem.

2 Preliminaries

Consider a system of linear differential equations on a Riemann surface I"
y=Ay, A€ Mat(n, M(T)), (4)

where M(T") is the set of meromorphic functions on I'. The set M(T") is a differential field
with a derivation § = £. We have an extension of differential fields L > M(T') called the
Picard-Vessiot extension for (4) and the differential Galois group G := DAut(L/ M(I")) =
{o € Aut(L/M(T)) | oo =000}

If we fix a fundamental matrix @, then we have a faithful representation of G on the
general linear group as

R: DAut(L/M(T')) = GL(n,C), o+ M,,

where GL(n,C) is the group of n X n invertible matrices with entries in C. This repre-
sentation is not unique and depends on the choice of the fundamental matrix ®, but a
different fundamental matrix only gives rise to a conjugated representation. Fixing the
fundamental matrix, we can identify the image R(G) C GL(n, C) as the differential Galois
group G. Let G C GL(n,C) be an algebraic group. Then it contains a unique maximal
connected algebraic subgroup G°, which is called the connected component of the identity
or identity component.

Let S C I' be the set of singularities in the entries of A. We also refer to a singularity of
the entries of A as that of (4). Let ¢y € I' \ S. We prolong the fundamental matrix ®(t)
analytically along any loop ~ based at t; and containing no singular points, and obtain
another fundamental matrix vy x ®(¢). So there exists a constant nonsingular matrix M,
such that

v * B(t) = () My

The matrix M},; depends on the homotopy class [7] of the loop v and is called the mon-
odromy matriz of [v].



Let m1(I'\ S, tg) be the fundamental group of homotopy classes of loops based at ty,. We
have a representation

R:m(T\ S,t)) = GL(n,C), [1] — M.

The image of R is called the monodromy group of (4). As in the differential Galois
group, the representation R depends on the choice of the fundamental matrix, but the
monodromy group is defined as a group of matrices up to conjugation. In general, a
monodromy transformation defines an automorphism of the corresponding Picard-Vessiot
extension. Hence the monodromy group is a subgroup of the differential Galois group. A
singular point ¢ = ¢ of (4) is called regular if for any sector a < arg(t —t) < b with a <b
there exists a fundamental matrix ®(¢) = (¢;;(¢)) such that for some ¢ > 0 and integer
N, |¢i;(t)| < clt =t as t — ¥ in the sector; otherwise it is called irregular. A system (4)
is said to be Fuchsian if all singularities are regular. The following is useful to compute
the differential Galois group of Fuchsian equations.

Theorem 2.1 (Schlessinger). Assume that a system (4) is Fuchsian. Then the differential
Galois group of (4) is the Zariski closure of its monodromy group.

Finally, we review some ways to determine whether the identity component G° of the
differential Galois group is solvable for a second order differential equation

d*x dx

12 +P1(2)% +p2(2)r =0, pi(2),p2(2) € C(2). (5)
Using transformation x = exp(—% [ p1(x)dx)y, this equation is transformed into

d*y 1 , 1ldp

i r(2)y, r(z) =—pa(z) + lel(z) + 5%(2)- (6)

It is easy to see that G° of (5) is solvable if and only if that of (6) is solvable. Using
Kovacic’s algorithm|[8], we can determine whether G° of (6) is solvable or not. Since we
need many pages to write down the algorithm completely, we show the special case of the
algorithm in order to prove nonintegrability of (w-4).

Proposition 2.2. Assume r(z) € C(z) has only poles of order 2 alt z = ay,...,ay, 0.
Let b, = lim,_.7(2)(z — ¢)?,¢c = ai1,...,an and by = lim,_,o 7(2)2%. If the following
conditions are all satisfied, then the identity component G° of the differential Galois group
of (6) is not solvable:

(i) Let oFf = 5 + 3/1+4b.. For each families s(ai),...,s(ay),s(c0) € {+,—}, the

number
N
s(o0) _ s(ay)
sy E g
j=1

18 not a non-negative integer.



(ii) Let
E.={2+k\/14+4b. | k=0,£2}UZ, c=ay,...,ay,o0.
The all elements of Eq,, ..., E,

an > oo QTE €VEN.

(111) There exists c € {aq,...,ay,00} such that /1 + 4b. ¢ Q.

If (5) has only three regular singular points, Kimura’s theorem [7] is more useful than
Kovacic’s algorithm to determine the solvability of G°. If z = a € C is a regular singular
point, the solutions of the algebraic equation

XX-1)4+aX+c=0, ¢ =Ilm(z- a)jpj(z).

z—a

are called the characteristic exponents of z = a. If 2 = 0o is a regular singular point, the
solutions of the algebraic equation

X(X+1)—aX+e6=0, c¢=1lmp2).

Z—00

are called the characteristic exponents of z = oo.

Theorem 2.3 (Kimura’s theorem). Assume (5) has only three regular singular points
and let o, B, be the differences of characteristic exponents at these three singular points.
Then the identity component G° of the differential Galois group of (5) is solvable if and
only if either (A) or (B) holds:

(A) at least one of the four numbers a+ 5+, —a+ B+, a— B+, a+—7 isan
odd;

(B) the numbers a or —cv, 8 or —f and vy or —v belong (in an arbitrary order) to some
of the following fifteen families:



1|i+10|54+4m| C
2 5+l|s+m|s+n
312410 s+m|s+n|l+m+ne2
413414 m|1+n
5 2+1|t4m|i+n|l+m+ne2Z
6 |24+1|s4+m|i+n
T 2+1|i4m|s+n|l+m+ne2Z

8|2+ t+m|i+n|l+m+ne2k

9|5+ 2+m|t+n
10 2410|5+m|34+n|l+m+ne2Z
11 §+l §+m %+n l+m+ne2Z
1212410 |5+m|34+n|l+m+ne2Z
Blt+l|t4+m|t+n|l+m+ne2Z
s+ 2+m|s+n
5 2+l 24m|s+n|l+m+ne2Z
Here, I, m,n are integers.
3 Sketch of the proofs
3.1 Caseofw=1
The Hamiltonian system of (w-1) is
G =2a(pip2 + Q142), P =2a(qip2 — P1g2),
5 :a(p%—q%)+b(p§—q§), P2 = —2ap1q1 — 2bpsgs,
gz = 2b(p2p3 + q2G3), Ps = 2b(p2gs — qaps)-

This has a particular solution of the form

Q) = —V2igp(t), @) =325, ¢t) =0,
pi(t) = V2ipa(t),  pa(t) = —§omaye pa(t) =0,




where p is Weierstrass’s p function

4C* H2(q(t), p(t
27 2a

The normal variational equation for g3 = p3 = 0 is

d (f) _ <2qu<t> 2bp (1) ) (5) -
dt \n 20pa(t) —2bga(t) | \n)

By the transformation z = ¢/(2at), we get

nz . 2Cu
a4 <5> _ < g 9(z2+93>> <5>
I pz )
dz \1 TO0G24gs)  3(2tes) /) \

where 1 = b/a. We rewrite the equation as a second order equation

d*¢ N 54z df 9u(AC*(u—1) +9(u + 3)2%)
dz? 2722 —4C?dz (2722 — 4C?)?

=0,

which has three regular singular points at z = j:%gC, oo. The characteristic exponents
of z = :I:%gC are %,u, —%u and those of z = oo are %,u, 1— %,u. Thus the differences of
the characteristic exponents are a = %,u, b= %u and y=1— %,u.

Proposition 3.1. Assume p # 0, the differential Galois group of (7) is solvable if and
only if p=3/10,1/2,3/4,9/10, 1.

Proof. We use Kimura’s theorem to prove the proposition. Since 0 < u <1, a++~v =
1+§,u and —a+ 4+ = 2u/3 can not be odd. If a+ 5 —~v =2u—11is odd, u = 1.
Hence this equation falls into (A) only when p = 1.

Since the difference of the exponents have same denominator, this equation does not
fall into cases of 2,4,5,6,7,8,9,10,12,14,15. If this equation falls into case 1, then
2u/3 = 1/2, i.e., p = 3/4. If this equation falls into case 3, then 2u/3 = 1/3, i.e.,
w = 1/2. If this equation falls into case 11, then —2u/3 = 2/5 — 1, i.e., u = 9/10. If this
equation falls into case 13, then 1 — 2u/3 = 4/5, i.e., u = 3/10. Hence this equation falls
into (B) only when = 3/10,1/2,3/4,9/10.

O

Remark 3.2. Equation (7) is Fuchsian equations on a torus. Generally, it is difficult
to compute monodromy matrices of equations on a torus. Christov[/2] computed local
monodromy matrices and stated that G° is not commutative. However, non-commutativity
of the local monodromy matrices does mnot mean non-commutativity of the monodromy
group M. Moreover, G° may be commutative even if M is not commutative.



3.2 Case of (w-3)

The Hamiltonian system for Hamiltonian (w-3) is

i = 2a(pip2 + q1q2) + b(p2ps + 2q3), D1 = 2a(p2qr — p1q2) + b(q2ps — P2q3),
G =a(pi—q})+ b(pips + a1as), P2 = —2ap1q1 + b(q1ps — p1g3),
43 b(p1p2 — Q1Q2) Pz = —b(thpz + p1QQ)-

This has a particular solution of the form

a(t) = \/\g;is C0sh(lbsFt)’ ¢(t) = \/ii tanh(bsF't),  g5(t) = \/252+3 cosh(lbsFt)

pl@) = 07 D2 (t> 07 p3(t> = 07

where § = — V21 ”\/;_1 and F is a number such that F' = H?(q(t), p(t)).

Using the invariant plain p; = p, = p3 = 0 and the first integral H?, we obtain (NVE)

d (&) _ (56p—V2s)g(t) BESDBBEN (g
dt \ & %b(QSQ—i-?))qg(t) _@(b(t) &)

By the transformation z = 1 (tanh(bF'st) + 1), we can reduce the NVE to the hypergeo-
metric equation

d°¢ 11\ d¢ 1 k-1
W_k<g+x—1> d:v+[k(aﬂ_l_(x—l)?)+2x(x—1)]€2_0

= K <
where k = eyt Note that & is not a real number for 0 < p < 1 and 1/2 < k <1

for 1 < p. The characteristic exponents of x = 0,1 are 1,k and those of z = oo are

—2k + 1, —2. Since this hypergeometric equation is reducible, the identity component of
G is always solvable. Hence we can’t use to Kovacic’s algorithm and Kimura’s theorem
in order to prove nonintegrability of (w-3).

We compute the differential Galois group directly by using the monodromy matrices.
When k # 1, we obtain

1 11 .
Moy = ! , My = K=
0 kK 0 K

from the formula for monodromy matrices of a reducible hypergeometric equation [6].

Lemma 3.3. Let G be the differential Galois group of (NVE). If k € Q, then G is
commutative. If k ¢ Q, then G° is not commutative.

Proof. Let M = (My, M;) be the monodromy group. By the Schlessinger theorem, we
obtain G = M.



If k € Q, then there is N € N such that ¥ = 1. In this case,

GzMC{(é a)labe(CbN }
GOC{<(1) Cf)mec}

If k£ is not a rational number, then « is not a root of the unity. Hence

w5-{( e
GzMD{(é 2>|aec*}.

Noting that G° = (M) is a normal subgroup of G and M; € G°, M, € G, we have

11—
My My M, = (o ”) e

Hence,

and G° is commutative.

and thus

K

11—k

1
The matrix (0 ) is not commutative with M; and then GY is not commutative. [

K

3.3 Case of (w-4)

The Hamiltonian system for Hamiltonian (w-4) is

@ =2a(q1q2 + p1p2), P = 2a(p2qi — p1ge),
G2 =a(p? —q}) + 2b(paps + @), D2 = —2ap1qr + 2b(q2ps — p2qs),
43 b(p% - qg)? P3 = —2bpaqs.

This has a particular solution of the form
@(t) =0, g¢()= %p(ibl\/ﬁt)a g3(t) =

-
! (ibV/2 i
pi(t) =0, poft) = —%%, p3(t) = 72612@)7

where @ is Weierstrass’s elliptic function, which satisfies

, 4C? ivV2H,(q(t), p(t
O =40" = g5, gs=—7— C=-— 2(4(t), p(t))

£0.

S



The normal variational equation is written as

: c /5 0 (ibV3t)
i(f)z _Z\/_M?, (ibv/2t) Z\/§M2p(ib\/§t) (5)

(zbf t) . c
at Vs VW) \

By the transformation z = ¢/(iby/2t), the equation is transformed into

& 2T 407 dE 6(2Tpz® — 2TV2iC2% 4+ 12uC 2 + 4v/2iCP)
dz2 (2722 —4C?)dz 2(2722 — 4C?)?

£=0. (8)

To determine wether G° of this equation is solvable or not, we use Kovacic’s algorithm.

272244C2

2(272=40%) )1, this equation become

By the transformation £ = exp(% f

d*n

Tz =@

2y — (2434 21621 — 216V2IC=" + (216 + 96u2)C222 + 32 iC — 16"
I 22(2722 — 4C?)? '

Proposition 3.4. For u # 0, the identity component G° of the differential Galois group
of (8) is not solvable.

Proof. Poles of r(z) are x = 0, :I:Q\/Qgc, oo and the those orders are all 2. Let a. = :I:—Q‘/Qgc.
The coefficients are

3 2 1
b:— ba :ba :booz——Q—__
0 47 + — 9/’L 4
We obtain aj = % +1, oz;i =af =af = 1 + 2‘f,m Hence the imaginary part of

as(0) _ g0 _ gslar) _ gele-)

e a4 a—

is non-zero, and condition (i) of Proposition 2.2 holds.
We have Ey = {—2,2 6} E. = {2}. Hence condition (ii) holds.

Since /1 + 4b,, —/17 ¢ Q, condition (iii) holds. O
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