Bender-Knuth transformation

from a perspective of hives
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Abstract

Kostka numbers K, are non-negative integers indexed by two partitions A and p. They equal to the
number of semistandard tableaux of shape A and weight x. Also they equal to the number of K-hives with
boundary edge label determined by A and p. Their basic property is Ky, = Kxo(,) for any element o of
the symmetric group. This is proved by constructing a bijection called the Bender-Knuth transformation
between semistandard tableaux. In this paper, we give a perspective of the Bender-Knuth transformation
through the hive model.

1 Introduction

Kostka numbers are important and classical numbers in combinatorics and representation theory. Let
A be a partition of n € N and p be a composition of n which is a partition not assuming the decreasing
order. In combinatorics, Kostka number K}, equals to the number of semistandard tableaux of shape
A and weight u. Also, when one expresses the Schur function sy as a linear combination of monomial
symmetric function m,,, Kostka numbers appear as the coefficients so that sy = > L Ky,m, , where A is a
partition of n and the sum is over all partitions u. In representation theory, Kostka numbers appear as a
multiplicity of irreducible representations. More precisely, let S* be Specht modules which are irreducible
modules of the symmetric group and M* be the permutation module. Then we have M* = D, K)\HS”\.

A fundamental property of Kostka number is that K, = K),(,) holds for any element o of the
symmetric group. In fact, this is shown by constructing a bijection between semistandard tableaux. The
bijection is called the Bender-Knuth transformation [2] which was also used to prove the Littlewood-
Richardson rule [12].
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On the other hand, the hive model was introduced by A.Knutoson and T.Tao [9]. It is a triangular
graph like (2). If a hive’s boundary edge label is determined and the hive satisfies some conditions, then
it is called K-hive. And we see that a K-hive 1-1 corresponds to a semistandard tableau. Hence, Kostka
number equals to the number of some K-hives.

In this paper, we give a perspective of the Bender-Knuth transformation from the hive model, namely,

we construct a bijection between K-hives corresponding to the Bender-Knuth transformation.

2 Definitions

2.1 Kostka number and related notation

In this section, we will define Kostka numbers and explain the Bender-Knuth transformation. Through-

out this paper, &,, is the symmetric group of degree n .

Definition 1

A= (A1,...,\) is called a partition of n € N if it satisfies \; € Z>o (i = 1,...,k), M1+ -+ Xz =n
and Ay > -+ > A\,. Also, each \; is called a part. We denote the sum of all parts by |A|. If A satisfies
conditions \; € Z>o and A\ + --- + Ay, = n (but not necessarily Ay > --- > \i) then it is called a

composition.

We define an action of &,, on compositions as follows. Let u = (u1,...,ux) be a composition of n.
Then, for 0 € &,,, 0 - X := (As(1)y -+ Ao(r))-

Definition 2
Let A = (A1,...,Ag) be a partition of n. The Young diagram of shape X is an array of n boxes having k

left-justified rows with row ¢ containing \; boxes for 1 <i < k.

Example 1
If n = 3, partitions of 3 are (3), (2,1), (1,1,1). Then the corresponding Young diagram are respectively

o 8

A Young diagram can be filled with a number per box.

Definition 3
Let A = (A1,...,Ax) be a partition of n and p = (p1, ..., ts) be a composition of n. T is a semistandard
tableau of shape A\ and weight p if it is an array obtained by filling in the boxes with positive integers

such that the number of ©’s” in T is p;, its rows weakly increase and its columns strictly increase.

Definition 4
Let A = (A1,..., ) be a partition of n and p = (1, ..., ps) be a composition of n. Kostka number Ky,

is defined as the number of semistandard tableaux of shape A\ and weight u, namely

K, = {Semistandard tablueaux of shape A and weight u}



Example 2
Let A = (3,2) and p = (2,1,2). Then Semistandard tableaux of shape A and weight u are

1[1]2] 1[1]3]
3[3 2[3

Then Kostka numbers K, = K(32) (2,1,2) = 2.
Also, we take another weight 1/ = (2,2,1) (= (23) - ), that is we consider the samistandard tableaux
of shape A = (3,2) and weight ¢/ = (2,2,1). Then they are

1[1]2] 1[1]3]
2[3 2[2

Thus KAMI = K(372)1(21271) = 2.
This example is not a special case. The following proposition shows this property of Kostka numbers.

Proposition 5 ([2], [11])
Let A be a partition of n and ji be a composition of n. Then for all 0 € &,, we have Ky, = Kyq(,)-

Proof We will construct a bijection between semistandard tableaux of shape A and weight p and
semistandard tableaux of shape A and weight o(u). It suffices to show the proposition in the case
o= (ii+1).

Take a semistandard tableau T of shape A and weight u. First, we fix blocks which are pairs ¢ and
i+ 1 in each column. We call the pairs fized and all other occurrences of 7 or i + 1 free. In each row,
switch the number of free i’s and ¢ + 1’s, more precisely if the row consists of k free i’s followed by [ free
1+ 1’s then replace them by [ free i’s followed by k free i + 1’s. Clearly, this is a bijection and the map

yields a semistandard tableau. The map is called the the Bender-Knuth transformation. 1

Example 3

We give an example of the Bender-Knuth transformation. Suppose A = (4,3), p = (1,3,2,1) and
o =(1,2). Then o(u) = (3,1,2,1). The left of (1) is a semistandard tableau of shape A\ and weight u,
and the right of (1) is a semistandard tableau corresponding to the left of (1) by the the Bender-Knuth

transformation. We can see that its shape is A and its weight is o(u).

1[2]2]3] 1[1]1]3]
2[3]4 2[3]4 (1)

Recall weight p controls the multiplicity of entries. We can check switching 1 and 2.

2.2 Hive
Now we introduce the hive model, see [1] and [7].

Definition 6

In the vertex representation, An n-hive graph is a labelling of an vertices of equilateral triangular graph.



The following is the example of 4-hive graph in the vertex representation.

ap3
/
ap2 a13
SN /N
ao1 a2 a23
SN /N / N\
apo a11 a22 a33 (2)

A hive graph has three different type rhombus (3) which are called the elementary rhombus.

a
VRN
a——9 b c b—a
ANIVARN NS SN S
c—d d d—c
left-learning upright right-learning 3)

Also, for the elementary rhombus (3) the rhombus inequality takes the following form (4).
b+c>a+d. (4)

A hive graph has other expressions which are very useful. The edge representation is a labelling of
all edges of a hive graph satisfying triangular conditions v = a 4+ § for elementary triangles (6) and

betweenness condition (7). If n = 4, hive graph in the edge representation is below

N\
Qp3 613
A— 713 —x
Qo2 B Q13 Bog
A— M2 —¥— 723 —N

Qo1 11 12 fPBaa Q23 f33
L— Y11 —L— You —N— Y33 —

Elementary triangles is below.
A~ — 7 —
a 6 o
L7 = v
(6)

Also, betweenness conditions are:

Qi-1j-1 2 Qi 2 Qim14, Big 2 Bij-1 = Bivigs Vi1 = Vig = Vitlj (7)
We can change the vertex representation to the edge representation in the following manner. In each
edge between neighbouring vertices labelled a and b, edge label determined by means of the difference
b—a if b is on the right of a. In the illustration of the edge representation (5), parameters o;j, Bij, Vij
is defined by ai; = a;; — a;j-1, Bij = i — Gi—15, Vij = Q5 — QG151
In the edge representation, the rhombus inequality takes the form of o > -, § > § in the labelling of
below (8).




To introduce another expression of the hive graph, we introduce some notations. For three different

elementary rhombi (9)

Yij

ﬂi,j—i+1,j

Yi+1,5

we define parameters L;;, U;; and R;; by

Lij = Bij—1— Biv1,j = Yij — Virl,j> (10)
Uij = aij — ai1,5 = Bij — Bij—1, (11)
Rij = aiq,j-1 — iy = Yij—1 — Vij- (12)

They are called the gradient of the corresponding left-leaning, upright and right-leaning rhombi, respec-
tively. Note that we can see L;; = i;ll Uik — Zi:l Uit1 k-

A gradient representation is a labelling of boundary edges and gradients of giving the gradients of one
or other of its three sets of right-leaning, upright or left-leaning elementary rhombi.

a3 B1 ag B1 ag B1
[e%) B2 le%) Uiz Bo Qg B2
Lo Ris3
% B3 a1 Ura U3 B3 a1 B3
Lo L3 Ry Ros
7 Y2 73 7 Y2 73 7 Y2 73

(13)

In a gradient representation, the rhombus inequalities change to L;; > 0,U;; > 0, R;; > 0, respectively.
Now we define K-hive which is a hive graph satisfying some condition. As will be seen, it 1-1 corre-
sponds to a semistandard tableau. If vertexes of a hive graph are integers we call it integer hive graph.
Definition 7
Let \ be a partition with [(\) < n and p be a composition with I(u) < n, also |A| = |u|. In the vertex
representation, a K-hive is an integer hive graph satisfying the rhombus inequality (4) for left-leaning
and upright (but not right-learning) with boundary edge labels determined by ap; =0 (i =0,...,n),
aip=p1+- -+ (G=1,....n),am=M+--+XN (i=1,...,n). We denote by H(A, u) the set of
K-hives with boundary edge labels determined by A and p.

If n = 4, K-hives take the right form of (14) also in the edge representation it takes the left form of (14).

0 A2

A1+ A

Al = [ul
m p1 + o Ha 2 3




Example 4
If X\ = (2,2,1) and p = (2,1,2), the left of (15) is a example of K-hive with boundary edge label
determined by A and u. Also, in the edge representation, we have the right of (15).

0 A
VAN 0 2
0 2 A= 2 =N
SN0 /N 0 2 0 2
i A=z X2 =N
0o 2 0 1 1 1

0 2

SN /N SN
0 ) 3 5 L9 N 1 N 9 N\

3 Relationship between Kostka numbers and hives

In this section, we show that the number of semistandard tableaux of shape A and weight u equal to
the number of K-hive with boundary edge label determined by A and p. Also, we explain the gradient

representations in detail. We will start with the following Lemma.

Lemma 8

Uii:)\i*ZUik:M*ZUki

i<k i>k
Proof We take a K-hive H and consider the semistandard tableau 7' corresponding to H. Since
T is semistandard, entries of ith row of T are grater than i. Then A\; = >, , Ujx. Thus we get
Uy = N\ — ZKk U;i. Also Since T is semistandard again, the entries i is in from the top to the ith row,

namely u; = Zkzi Ugi- Then we get Uy = p; — > Ukie ]

Proposition 9

Let A be a partition and p be a composition of n with {(A), () < n. Then we have Ky, = #H(\, 1).

Proof To prove it, we construct a bijection between semistandard tableaux of shape A and weight
1 and K-hives with boundary edge labels determined by A and p. We define a map from tableau T to a
hive graph H by

U;; = the number of j in ith row (16)

and adding boundary edge label A and p. Also, the inverse map is constructed in the following manner.
A and p determine shape and weight respectively. We can find entries of ith row as follows. From i + 1
to n can be seen directly from U;; (i < j <n). Since T is semistandard, the entries of ith row is greater
than ¢. Thus, it suffices to find the number of ¢, this is Lemma 8. Then, we arrange the entries in the
weakly increasing order from left to right.

Then, we have only to show that the map from T to H is a map from semistandard tableaux to
K-hives and its inverse is a map from K-hives to semistandard tableaux. Recall that U;; implies the

number of j in ith row and

J

j-1
Li; = Z Uik — Z Uit1,k
k=1 k

=1

= (# of entries < j — 1 in row i) — (# of entries < j in row i + 1).



Take T and the image H of the map, we show H is a K-hive, namely H satisfies rhombus inequality for
left-learning and upright. By definition, U;; > 0. Since T is semistandard, L;; > 0.

Conversely, take K-hive H and the image T of the inverse map. Since U;; > 0, each row of 1" contains
non-negative numbers of each distinct entry. Also since L;; > 0, the number of entries in ith row above

j’s in ¢ + 1th row is less than j. Then T is semistandard. ]

4 Bender-Knuth transformation from a perspective of hives

Now we give a perspective of the Bender-Knuth transformation from the hive model, namely, we give
another proof of Proposition 5. Concretely, our aim is to construct a bijection between hives. Consider

the situation such as:

Proposition 9

—_
—_
)
o
o
N

Proposition 5 ] ] Our aim

Proposition 9

[
[
w
o
—
N

(17)

In the Bender-Knuth transformation, it is constructed by swapping the number of entries in each row
after fixing some blocks. To reproduce this bijection, we will start by identifying the number of fixed
blocks from a K-hive.

Take 0 = (ss+ 1) € 6, and we consider the ¢th and ¢ + 1th rows which have fixed blocks. Now

possible situations for positions of s and s + 1 are:

S—T—l s+51| | | |s+51 | |s+1S | l

We call them type 1, type 2, type 3 and type 4 from left to right. The number of boxes up to a first fixed
box is 303 Uik = S5_, Uit1x in type 1 and type 2 and 337 Uy in type 3 and type 4, respectively.
On the other hand, the number of boxes up to a last fixed box is 22:1 Ui = Zzill Uit1, in type 1 and
type 3 and 22211 Ui+1k in type 2 and type 4, respectively. Now we denote by F:*! the number of fixed
boxes between the ith row and 7 + 1th row. If there is a fixed boxes between the ith row and i + 1th row,
then FZ**1 can be expressed by 3012 Uiyy p — 32071 Uk Otherwise, Fiit1 is defined as 0.



Definition 10

Set 0 = (s,5+ 1) € G,,. Let L;;, U;; and R;; be gradients of a H(\, ) € H™(\, ) and Li;, Uj; and
R;; be gradients of a H'(\, ') € H" (X, p). Then the map ¢: H™ (X, p) — H (N, o(p)) is defined as

follows: p' := o - u and
Uijir + Fp = F700 (=)
Ujj=Uijor — FR L+ FiFbt (j=s+1) (18)
Our main result is as follows.
Theorem 11
¢: HM (N, ) — H™ (N, 0(p)) is an involution.

Proof Clearly, ¢ is an involution, so we will check only the well-definedness, namely H (X, 1) is just a
K-hive. By definition, ' = o(u). Then it suffices to show that H'(\, p) satisfies the rhombus inequality
for upright and left-leaning. We have

s+1 s—1
Uils = Ujst1 + F;’Z+1 — F;._l’l = Ui’s_l,.l + F;’H_l — (Z Ui,k — Z Ui—l,k) (19)
k=1 k=1
s—1 s
=Fr Y Uiy =Y Ui =Fr ™ + Lig o >0 (20)
k=1 k=1
Similarly, we can get U; s41 > 0. Also
j—1 J
Lij = Z Uik — Z Uit1k (21)
k=1 k=1
j—1 J
= Z UiJf + Uz/s + Ui/,s-ﬁ—l - ( Z Ui+17k + Ui/-Q—l,s + Uz'/+1,s+l) (22)
k#s,s+1 k#s,s+1
Jj—1 J
=N UL - UL, >0 (23)
k=1 k=1
Thus H'(A, p') is a K-hive 1

Here let us calculate an involution ¢ in detail.

Example 5
Suppose that A = (3,2,0), p = (2,2,1) and 0 = (23) € S3. Take the left of (24), then the corresponding
K-hive is the right of (24).

2 2 1 2 2 1 (24)

where F01,2 = O, ng = O, U{Q = U13 = O, U{S = U12 = 1, U2/3 = U22 = )\2 — U23 = 1. We can see that it
agrees with (17).
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Conclusion

We gave a perspective of the Bender-Knuth transformation through the hive model (11). More

precisely, we constructed a bijection between K-hives. We have dealt with K-hives which are the hive

models corresponding to semistandard tableaux. On the other hand, the hive is related not only Kostka

numbers but also Littlewood-Richardson coefficients. It is called LR-hive. There is a relationship between

Kostka numbers and Littlewood-Richardson coefficients. If the relationship is described using the hive

model, we may get a good understanding of the relationship and the hive model.
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