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1. INTRODUCTION

A smooth map f : R?> — R? is called an excellent map if for any p € R?, there exist local
coordinates (z,y) centered at p and local coordinates centered at f(p) such that f is locally
described in one of the following forms:

(1) (z,y) — (2,9),
(2) (z,y) = (2,9°),
(3) (z,y) = (2,y° +zy).
A point in case (1) is a regular point. Points in cases (2) and (3) are called a fold and a cusp,
respectively. Denote by C°°(R? R?) the set of all smooth maps R? — R? equipped with the
C*>-topology. In [7], Whitney showed that the set of excellent maps is dense in C*°(R? R?).
It’s known that there is a relation between the topology of surfaces and the topology of the
critical locus of a map, see [5, 1]. Fukuda and Ishikawa also studied the number of cusps of
stable perturbations of generic map germs [1]. They showed the number of cusps modulo 2 is a
topological invariant of generic map germs. Moreover, the number of cusps modulo 2 depends
only on the topology of surfaces.
Let f(z) be a complex polynomial such that f(0) = 0. Then there exist a positive integer k and
a complex polynomial g such that f(z) = z¥g(z) and ¢(0) # 0. We call k the multiplicity of f at
the origin. We consider certain perturbations of complex polynomials and calculate explicitly the
number of cusps of perturbations by using multiplicities of singularities of complex polynomials.
We identify C with R2. Then f(z) defines a real polynomial map

fRP =R (2,y) — (Rf(2,1),Sf(z,y)),

where z = x + v/—1y. Assume that the origin 0 of C is a singularity of f. We define a linear
perturbation f; of f as follows:

fi(z) = f(2) + t(a+1ib)z,

where a,b,t € R,i = /=1 and 0 < |t| < 1. Note that a linear perturbation f; of f is not
a complex polynomial, but is a 1-variable mixed polynomial in the sense of Oka [4]. We now
regard a mixed polynomial map f; : C — C as a real polynomial map (Rf;, Sf;) : R? — R2. If
f(2) = 2™, Fukuda and Ishikawa showed that the number of cusps of a linear perturbation of f
is congruent to n + 1 modulo 2, see [1, Example 2.3]. If a and b lie outside the union of zero
sets of analytic functions determined by a,b and f, f; is an excellent map for 0 < |¢t| < 1, see
Lemma 2. The main theorem is the following [2].

Theorem 1. Let f(z) be a complex polynomial and k be the multiplicity of f the origin. Suppose
that k > 2. If a linear perturbation f; of f is an excellent map for 0 < |t| < 1, then the number
of cusps of fi|u is equal to k + 1, where U is a sufficiently small neighborhood of the origin.
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2. SINGULARITIES OF POLYNOMIAL MAPS

Let g = (g1, 92) : U — R? be a polynomial map, where U is an open set. Set .J = 83(?;’%) , G =

—88((9; ’?;])) for 1 = 1,2. We define the algebraic set G’ as follows:

d(G1,J)  0(Ge,J)
G = eU|J =G =G = L = ——~ =0y.
{(x,y) | J(z,y) = Gi(z,y) = Ga(z,y) Az, y)  Oz,y) }
In [3, Proposition 2] and [6, Proposition 2.2], Krzyzanowska and Szafraniec showed the following
proposition:

Proposition 1. The algebraic set G’ is empty if and only if the set of singularities of g consists
of either fold singularities or cusps. Moreover, the number of cusps of g is equal to the number

of {(z,y) € U | J(z,y) = Gi(z,y) = Ga(2,y) = 0}

3. MULTIPLICITY WITH SIGN

Set z = x4+ iy. Then a pair of real polynomials (g1, g2) defines a mixed polynomial g(z, z) as
follows:

9(2,2) = g1(w, y) + iga(,y)

B (z+2 2—2)+, (z+2 z—?)
I\ Ty Ty R\ Ty )

Suppose that w is a mixed singularity of a mixed polynomial g, i.e., the gradient vectors of g1
and gy at w are linearly dependent over R. Then we have

dg |99
i(w)‘ - ‘82(1”)"
see [4]. Let a € C be an isolated root of g(z,z) = 0. Put
Si(a)={z€C|Jz—al =<},

where ¢ is a sufficiently small positive real number. We define the multiplicity with the sign of
the root o by the mapping degree of the normalized function

g 1 1

= : S (a) = S

lgl ¢

We denote the multiplicity with the sign of the root a by ms(g, ).
We say that « is a positive simple root if o satisfies

o] > | 2 )|

Similarly, « is a negative simple root if o satisfies
99 dg
—(a)| < |=(a)|.
8z( )‘ 82( )‘
In [4, Proposition 15], « is a positive (resp. negative) simple root if and only if ms(g,a) = 1

(resp. ms(g, ) = —1).
Consider a family of mixed polynomials g;(z,z) = 0 for go = g and ¢t € R. Oka showed the
following proposition, see [4, Proposition 16].

Proposition 2. Let {Pi(t),...,P,(t)} be the roots of g:(z,zZ) = 0 which are bifurcating from
z = a. Then we have

Z§=1 ms(gt, Pj(t)) = ms(g, ).
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4. THE EXISTENCE OF LINEAR PERTURBATIONS WHICH ARE EXCELLENT MAPS

Let f(z) be a complex polynomial. Assume that f(0) = 0 and the origin of C is a singularity
of f. Set f1 = Rf and fo = Sf. We take a,b € R. Then a linear perturbation f; of f is defined
by fi(z) = f(2) + t(a +ib)Zz, where 0 < |t| < 1. Note that f; is equal to

fi(z) = f(z) + t(a+ ib)z
= f1(2) + t(az + by) +i{f2(2) + t(bz — ay)}.

Then f; defines a real polynomial map from R? to R? as follows:

ft : RQ - RQ? (%,y) = (fl(xvy) +t(aw + by)vf?(xvy) + t(bx - ay))

We calculate J, Gy and Gz of f;. By the Cauchy-Riemann equations % 8f 2 — %];1 and %];2 = %]2,
J is modified as
S et [Tt G
=de
‘9f2 +tb Bfg ~ta
N - T S Y
‘82 (a”+%)
Since f is a complex valued harmonic function, 8%% = —a—‘z%y. Then we have
8f1 9f1
+ ta - +tb
Gl det %y 9J
83: By

df1 df1\2\ 9*f1 dfi0fi & fi
2<<8x> (8_3/) >8x8y+4(‘3x Oy Oyoy
+2t{a<% 0*f %82f1) —b(—% *fi | 0fi Ph )}

Ox 0xdy * dy Oydy Oxr Oydy * Oy Ox0y
8fl ofr _
GQ = det ( aJ_l_ tb Bxa_J ta)
Bz dy
o (Y (U0 PR 0505
N Oz y Oydy Oxr Oy 0xdy
of1 O*f1 | 0f1 O*f1 oft 0*°f1 | 0f1 O*f1
+ 2t{a< Dz Hydy + a_yamay) + b( Ox 0xdy + dy ayay) ’

If G7 and G4 are equal to 0 at (z,y), then (x,y) satisfies the following equation:
2 2
(=G + (5 )3 Ga) - G )
0 0 of1 0%f1 02
() )
2 2
: (G () )5 G) - G

OfiN2  (0f1\2\0f1 0*f1 0*f
_2<_3<%) + (8_y) >8_y8:n8y ayay]
=0.
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Set real polynomials ¢1,¢2 and ® as follows:
o=(-2(G) () S G - G2) )
() 5 (50)) 5 by
w=(-() 5 ) B G - (G5}

of of of1 0*f1 9*f
_2<_3<8_:U1)2 * (8_;) >8_y18x3; ayaly’

® = ap1 + boa.
Suppose that G; and G9 are equal to 0 at (z,y). By the equation (1) and the definitions of

¢1,¢02 and @, ®(z,y) is also equal to 0. To show the existence of linear perturbations which are
excellent maps, we consider the intersection of ¢7'(0) and ¢5*(0).

Lemma 1. Let U be a sufficiently small neighborhood of the origin 0 of C. Assume that U
satisfies {w € U | %( )= 0} = {0} and {w € U | 8Zaz( w) = 0} C {0}. Then the intersection
of ¢71(0),¢51(0) and U is equal to {0}.

To study singularities of f;, we define the mixed polynomial G; as follows:

Gy =G +1iGy
_(Of oJ of 2\ 0J
_<8z+t( T b))ay (&z (a+1b))8m'
Since g‘] is equal to 3 (% — ig—‘;), gi and 8‘] are equal to
oJ 2%8_.]_ ?Ran af 82f8_f+ 82f8_f
dxr 0z 092020z 02020z = 02020z
Q 93 oJ 93 0% f af (82]" af  02f 8f)
dy 0z 020z 0z \02020z 020z 0z
where z = x + iy. Thus G, is equal to
Of\2 O°f L 0P Of
2 (@) 020z + 2ti(a +ib) 020z 0z

Suppose that z satisfies Gi(z) = 0 and af( )8 ( ) # 0. By the above equation, z satis-
fies J(z) = 0. Since the multiplicity k& of f at the origin is greater than 1, G¢(0) = 0 and

%5(0)88—:9%(0) = 0. Thus we have

2
{zem@( )=0.2() %0 8a§<z>¢o}
(=€ U\ {0} | Gu(=) = 0} € J(0).

Similarly, we define the following mixed polynomial:

9G 0G, 0G2  0Ga

— oz 0 : oz 0
Ht = det a_J 6_‘y] +1 det 8_J ﬁ
ox oy dy

(e eyl

0

Q
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The differentials of GG; satisfy the following equations:
0Gy  1/0Gy  0Gs i 10Gy  0Gq oGy  1,0Gy  0Go i 10Gy  0G
32—2(8x+8y)+ ( ) 82—2<8x 83/) 2<8x+8y>'
Then we have

Oz oy

_ (0Gy  0G\ 9J 0Gy  0G\ 0J
Ht_(82+8z)8y (82_32')895
_ 0G0 0J 0G (0 .9J
T 0z (83/ Z%) 0z (8y —H(‘)_w)'
Since g‘] — zgi 2z"g‘] and a‘] + za‘] = 2i%s 3‘] , Hy is equal to
8_f)282_f JE=ARNT
0z/ 0z0z 020z 0z 02020z
af 02 0?f\2 of o3
fo*f {_( f ) Lof o }

H, = —4(

+4t(a+ Zb)& 020z 020z 0z 02020~

Note that J(0) = %(Oﬂ2 —t2(a® 4+ b%) # 0 for t # 0 and (a,b) # (0,0). By the definitions of
G4 and Hy, we have

{2 € U\ {0} | Gu(z) = Hi(z) = 0}
{2 U J() = Gi(2) = Ga(2) =

9(G1,J) 9(Ga, J)
z) = zZ) = 0 .
o) 9= o) ="

By using Lemma 1, we show the existence of a linear perturbation f; of f which is an excellent
map for generic (a,b).

Lemma 2. For a generic choice of (a,b), fi|u is an excellent map.

Let w be a singularity of f and U, be a sufficiently small neighborhood of w. By changing
coordinates of U, and f(U,), we may assume that w = 0 and f(w) = 0. So we can apply
Lemma 2 to any singularity of f. Thus we can check that f; is an excellent map for 0 < |t| < 1
if a and b are generic.

5. CALCULATION OF THE NUMBER OF CUSPS

To calculate the number of cusps of f;, we study zero points of G; and differentials of G;.

Lemma 3. The set {z € U | G¢(z) = 0,z # 0} is the set of positive simple roots of Gy for
(a,b) # (0,0) and 0 < |t| < 1.

Assume that f; is an excellent map for 0 < |¢t| < 1. We calculate the number of cusps of Fi|y.
By Proposition 1, the number of cusps of f;|y is equal to

#H{z e U|Gi(z) =0,z #0}.

Set {z € U | G¢(2) =0,z # 0} = {wy, ..., w,}. We denote the multiplicity of sign by m4(Gy, w;)
for j =1,...,v. By Proposition 2 and Lemma 3, we have

(0o m(Grwy) ) +m(Ge,0) = v+ my (G, 0) = my(Go, 0).
The multiplicity ms(Go, 0) is equal to
3f 2 %f 5f 2 9%f
deg|( —
82 8282 82 020z

=2(k—1)— (k—2)

L S1(0) — S1>



where S}(0) = {z € U | |2| = ¢} and 0 < ¢ < 1. By the definition of Gy, for any ¢ # 0, ms(Gy, 0)
is equal to

52 2
fof 0*f of
deg<2tz(a+zb 9205 az/‘% a +1ib) azaz 3,

—k—2—(k—1)

. S1(0) — 51>

where 0 < g; < e. Thus the number v of cusps of f;|y is equal to k + 1.
We estimate the number of cusps of f; in R2.

Corollary 1. Let f; be a liner perturbation of a complex polynomial f in Theorem 1 and n =
deg f. Assume that n > 2. Then the number of cusps of fi belongs to [n + 1,3n — 3|. In
particular, the number of cusps of fi is at least three.

6. EXAMPLES

In this section, we construct a perturbation of a complex polynomial which has (n 4 1)-cusps
and also a perturbation which has (3n — 3)-cusps.

Example 1. Let f(z) = 2" and fi(z) = 2" + t(a + ib)Z be a perturbation of f which is an
excellent map. Then Gi(z) is equal to

Gi(z) = —2in3(n — 1)22"722" 2 4 2tn*(n — 1)(a +ib)2" 22"~
= —2in?(n — 1)|z]*" " Hnz" — t(a + ib)z}.

Set z =re" and a4 ib = €™, where T > 0. Then we have
—2in?(n — 1)r*4{nrnem? tTrei(L_a)}.

Assume that z # 0 and G¢(z) = 0. Then z satisfies

tT\ 7et L+ 25
() e
n n+1

9

for 7 =0,...,n. Thus the number of cusps of fi is equal ton + 1.

Example 2. Let f(z) = 2" 4 z. Then the number of singularities of f is equal to n — 1 and the
multiplicity at each singularity of f is equal to 2. Let fi(z) = 2"+ z+t(a+1b)Z be a perturbation
of f which is an excellent map. By the same argument as in the proof of Corollary 1, the number
of cusps of fi is equal to 3n — 3.

7. NON-LINEAR PERTURBATIONS

7.1. Perturbations of f;. Let f; be a linear perturbation of f which is an excellent map. We
fix a,b and ¢t. Let g(z,z) be a mixed polynomial which satisfies %(0) = %(0) = 0. In this
subsection, we study a perturbation of f;:

fr.s(2) = f(2) +t(a+1ib)Z+ sg(z, Z),
where 0 < |s| < |t| < 1. Since |s] is sufficiently small, we can show the following theorem.

Theorem 2. The set of singularities of f; s consists of either fold singularities or cusps and the
number of cusps of fis is constant for 0 < |s| < [¢t| < 1.
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7.2. Lower bounds of the numbers of cusps of non-linear perturbations. Let h(z, z)
be a mixed polynomial which satisfies 2(0) = 0 and \%(0)] # %(0)\. We define a perturbation
f,n of a complex polynomial f as follows:

ft,h(’z) = f(Z) + th(zv Z)a
where 0 < |t| < 1. Set hy = Rh, ho = Sh and

Of1 4 4Ohy _L 8_hl
Jop=det | % it a i .

Then any singularity of f; ;, belongs to Jt_h (0) Assume that ft,h satisﬁes the following conditions:
(i) fin is an excellent map for 0 < || < 1,

(ii) any cusp of f;j is a simple root of Gy p, where

8f1 Ohy Bfl 8h1 8f1 ah2 Bfl 8h2
L4 ¢om +t ) +t92 + t 92
Gth —th( Jth r 3J >+zdet< &]th aJth )

t,h
“ox By ox oy

of Oy Oh 0J;, h
a3 )
0z +t82 0z +2ys 8z 0z
Since f; 5 is an excellent map, the intersection of Jt}Ll(O) and (Mt 2)=1(0) is empty by Proposi-
tion 1. Let U be a sufficiently small neighborhood of the origin. Then the number of cusps of
Jtnlu is equal to the number of {z € U | Gy 4(2) =0, 5 8, “L(z) # 0}. We define

_ 1 150> 15H0)]
—1 |Z20)] < |52(0)|
Theorem 3. Let f, ), a perturbation of a complex polynomial f which satisfies the condition (i)

and the condition (ii). Then the number of cusps of fiplu is greater than or equal to k — 0,
where k is the multiplicity of f at the origin.
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