RECENT RESULTS ON INTERSECTION SPACE
COHOMOLOGY

J. TIMO ESSIG

ABSTRACT. In this article, recent results on the theory of intersection
spaces and their cohomology groups are reviewed. The focus is on
the construction of intersection spaces for non-isolated singularities and
stratification depth greater than one as well as on the de Rham, sheaf
theoretic and algebraic approaches towards intersection space cohomol-
ogy. At the end, a list of open problems is provided.

1. INTRODUCTION

This survey article is meant to be an update of the survey [7] of Banagl and
Maxim. In that article, the authors give an overview of the construction of
intersection spaces for complex projective varieties with isolated singularities
and their relation to deformations of singularities. Moreover, they point
out why intersection space homology is the correct homology theory for
type IIB string theory of conifolds, while Goresky-MacPherson’s intersection
homology is the correct homology theory for type IIA string theory, making
both to a so called mirror-pair for Calabi-Yau threefolds.

In this paper, the focus is on the progress in the intersection space homol-
ogy theory that was made since Banagl-Maxim’s survey paper was published.
I will distinguish between the following three approaches.

(1) Construction of actual intersection spaces. In particular, the results
of Banagl and Chriestenson in [5] on intersection spaces for depth
one spaces with nonisolated singular set, of Klimczak in [21] and
Wrazidlo in [25] on generalized intersection spaces with fundamental
class and of Agustin-Bobadilla in [1] on intersection space pairs of
spaces with stratification depth > 1 are reviewed.

(2) De Rham models for intersection space cohomology. This part con-
tains outlines on the de Rham models of Banagl in [4] and the author
in [17] describing intersection space cohomology via a complex of dif-
ferential forms on the smooth part/blowup of the pseudomanifold.
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Moreover, I review the analytic approach to intersection cohomology
using L?-cohomology of Banagl and Hunsicker in [6].

(3) The third part contains Agustin-Bobadilla’s sheaf theoretic approach
of [1] and Geske’s algebraic approach of Geske in [19].

Conventions and Notation: Throughout the paper, the terms “singular
space” and “pseudomanifold” denote a Thom-Mather stratified pseudoman-
ifold, e.g. a Whitney-stratified complex projective variety.

Note, that we follow the notation of Agustin-Bobadilla when we talk about
truncation and cotruncation both of spaces and differential form complexes.
For example, the notation for the homology truncation in degree k of a space
L is L< which would be L_ (1) in Banagl’s notation.

2. INTERSECTION SPACES

Intersection spaces have been first constructed in [2] for singular spaces
X with isolated singularities or trivial link bundles. For X" = M Usn
||; cone(L;), where M is an n-dimensional compact manifold with boundary
OM =| |, L; and the L; are the links of the singularities, the intersecion space
is a finite CW complex defined as IPX = M Uy cone (| |, cone((Li)Sq—(n))) .
As reviewed in [7], the CW complexes (Li)gq-(n) come with structural maps
(fi)<qn) : (Li)<gn) — Li and are called the Moore-approximations or ho-
mology truncations in degree g(n) of the links L;.

For X = M Uppnr=px1, (B % cone(L)), with connected singular set B of
codimension b < n, the intersection space is defined as IPX := M Uy
cone(B x L<gp)). The truncation of the link is performed fiberwisely before
the product is coned off. This construction gives the basic idea, how to
generalize the construction to twisted link bundles.

2.1. Equivariant Moore approximation and intersection spaces. In
[5], Banagl-Chriestenson perform fiberwise truncation of twisted bundles by
a systematic machinery, called equivariant Moore approximation, to con-
struct intersection spaces. For a topological group G, a G-space X and any
integer k, a degree k equivariant Moore approximation of X is a G-space X<y,
together with a G-equivariant map f<j : X<, — X, such that the induced
map H,(f<) : Hr(X<) — H,(X) on homology is an isomorphism for r < k
while H,(X<gp)) = 0 for r > k. There are obstructions on the existence
of equivariant Moore approximations and Banagl-Chriestenson give some
examples where those exist: Oriented sphere bundles with vanishing Euler
class (see [5, Proposition 12.1]), trivial group actions on simply connected
CW complexes ([5, Example 3.5]), cellular group actions with vanishing or
injective cellular boundary operator ([5, Example 3.6]) and symplectic toric
4-manifolds ([5, Proposition 12.3]).

The equivariant Moore approximations can be used to perform fiberwise
truncations of twisted bundles as follows. Let 7 : E — B be a fiber bundle
of closed manifolds with closed fiber L, structure group G and all spaces
compatibly oriented. Suppose, that there is a degree k equivariant Moore
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approximation f<j : L<p — L. Let Ep — B be the underlying principal
bundle of 7, that is & = Ep xg B. Then, there is a fiber bundle m<;, :
ft<iE := EpxgL<j, — B together with a bundle morphism Fcy, : ft<;E —
FE induced by the map f<j and we call the pair (ft<yE, F<}) a fiberwise
k-truncation of the bundle E.

Banagl-Chriestenson use the fiberwise truncation to define intersection
spaces for pseudomanifolds X of depth one with singular set a closed smooth
manifold B of codimension b and twisted link bundle. The Thom-Mather
control data give rise to a decomposition X = M Ugys T, with M a com-
pact manifold with boundary OM = E, the total space of the (twisted)
link bundle 7 : F — B with fiber L, and T a tubular neighbourhood
of the singular stratum B C X. Let p and ¢ be dual perversities. If a
degree @(b) equivariant Moore approximation of the link L exists, the in-
tersection space is defined as IPX := M Uy cone Jt<gm) £ = coneT<qw),
where 7<) ft<gw)E — M is the composition of Fgp) with the inclusion
E = OM < M. Note, that there are obstructions on Poincaré duality for
intersection spaces of complementary perversities. Banagl-Chriestenson in-
troduce a set of so called “local duality obstructions”, that is a set of certain
cup products in the (n—1)st cohomology group of E. To describe these local
duality obstructions, let ft-g4)E be the homotopy pushout of the diagram

T<q(b) Feq) .
B «—— ft<gn)E — E (see [5, Definition 2.1]). It has the structure

of a fiber bundle 744 : flsgpE — B and comes with a vertex section
o: B = ft.gu)E and a bundle morphism ¢4y : £ — ftq4)E. Banagl and
Chriestenson denote by Q) E = cone(o) the mapping cone of o, which
contains ftsgp) £ as a subspace, embedded as §-q0) : flsqm £ — @>q0)E-
Let Csqp) : £ — Q>q@)F be the composition of cg4) and &sq4)- If both
degree G(b) and p(b) equivariant Moore approximations of the fiber L of the
bundle FE exist, the local duality obstructions of 7 : E — B in degree ¢ are
then defined as the following subset of H"~(E).

{C2a(@) U Coy(0) & € HHQuqy B, w € B (Qup B}

Theorem 2.1.1. [5, Theorem 9.5] Let X™ be a compact oriented two strata
pseudomanifold of dimension n with singular set B of codimension b with
link bundle L - E — B. Let p and q be complementary perversities. If the
degree @(b) and p(b) equivariant Moore approximations of L exist and the
local duality obstructions of the link bundle E — B wvanish in all degrees,
then there is a global Poincaré duality isomorphism

H'(IPX) = H,_,(IX).

Finally, generalizing the same statement for product link bundles and iso-
lated singularities (see [2, Theorem 2.28]), Banagl-Chriestenson show that
for a Witt space X such that an appropriate equivariant Moore approxima-
tion of the link exists, the intersection form of the intersection space can
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be chosen to be symmetric and such that its signature equals the Goresky-
MacPherson-Siegel signature of intersection homology ([5, Corollary 11.4]).

2.2. Intersection spaces with fundamental class. In [21], Klimczak ex-
pands the concept of intersection spaces for pseudomanifolds with isolated
singularities to tackle the problem, that for Banagl’s intersection spaces
Poincaré duality only manifests as equality of the Betti numbers of com-
plementary degrees, and not, as for manifolds, as an isomorphism between
homology /cohomology groups induced by a cap product with a fundamental
class. By exploiting the rational Hurewicz theorem, he shows that for sim-
ply connected links, one can glue an n-cell near the singular set to obtain a
Poincaré duality space that is homeomorphic to Banagl’s intersection space
plus an n-cell. This gluing produces a fundamental homology class, which
means that cap product with this class is an isomorphism.

In [25], Wrazidlo applies Klimczak’s ideas to depth one pseudomani-
folds with nonisolated singular set as in [5] that satisfy the Witt conditions
Hgim(r;)/2(Li) = 0 for the links L;. For these spaces, gluing the n-cell near
the singular stratum is obstructed by a condition on the rational Hurewicz
homomorphism. As shown in [25, Theorem 6.3], this obstruction is strongly
related to Banagl and Chriestenson’s local duality obstructions. Both are
equivalent if the dimensions of the bases and links of the link bundles are
related in a certain way.

2.3. Agustin-Bobadilla’s intersection space pairs. In [1], Agustin and
Bobadilla provide a method to generalize the construction of intersection
spaces to pseudomanifolds of arbitrary stratification depth. Their idea is
to modify the pair (X, Sing(X)) inductively to produce a sequence of inter-
section space pairs. As the procedure advances, tubular neighbourhoods of
strata of increasing codimension are replaced by fiberwise cones on fiberwise
homology truncations of their link bundles. In each step, the construction
is obstructed by the existence of a fiberwise truncation of the respective link
bundle. It is not unique and follows the scheme of obstruction theory: The
choices made at each step might obstruct the following steps in the induc-
tive construction. If it is possible to make choices such that the procedure
terminates, Agustin and Bobadilla say that “the intersection space pair ex-
ists”. Their construction is different from the ones for depth one spaces
described in the previous sections: Since they want to sheafify the intersec-
tion space construction, that is give a constructible sheaf complex on the
pseudomanifold with hypercohomology the intersection space cohomology,
Agustin-Bobadilla need special homotopy models for the pseudomanifold
that contain the intersection spaces as subspaces. Their intersection spaces
are only homotopy equivalent to those of Banagl, in general, which can be
seen in Example 2.3.1.

Since the notation in the general setting is rather involved and technical,
Agustin-Bobadilla’s construction is reviewed explicitly for the example of the
three strata pseudomanifold X = cone(cone(T?)). Note, that this singular
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space can be restratified to a pseudomanifold with two strata, but since
intersection spaces depend on the explicit stratification of a pseudomanifold,
this is not a problem. The notation used is borrowed from [1]. Since the
link bundles are trivial in this example, the obstructions for the existence of
an intersection space pair vanish.

Example 2.3.1. Let X = cone(cone(T?)) with filtration X = X4 D X1 =
cone(c) D Xog = {C}, with ¢ = the cone point of the inner cone and C =
the cone point of the final cone.

As perversity, we take the upper mid-
dle perversity p = m. Let m denote
the lower middle perversity, which is
dual to m. In the first part of the Xo
example, the intermediate intersection cone(T?)

space pair (IT'X, X1) is constructed.
The subscript “3” refers to the fact
that the pair is derived from the previ- 72 >
ous step (that is from the pseudoman- }*{1}
ifold X itself) by replacing the link

bundle of the stratum of codimension FIGURE 1. cone(cone(T?))
3 by its fiberwise truncation in degree

m(3).

Xo

\7’9*
4
S )

cyl(601) = X U eyl ((U?)So) b
F1GURE 2. Construction of the intermediate intersection space

To construct the intermediate intersection space IT'X, we first derive a
homotopy model X5 ~ X of X that contains I§'X as a subspace. In Figure
2, the construction of X3 is illustrated. The link bundle of the intermediate
stratum X1\ Xo = (0,1) is the trivial bundle of = (9T X1) \ Xo = T? x
(0,1) — (0,1). The cutoff value for the link T? is m(3) = 0. As explained
in [2, Example 2.2.8], a suitable homology truncation of T? in this degree is
T<o = {P} — T?, with P a zero cell of T?. Since the bundle is trivial, a
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suitable fiberwise truncation of o9 in degree 0 is (09) <o : {P}x(0,1) — (0, 1)
with bundle morphism ¢9 : {P} x (0,1) < T? x (0,1). To construct X},
one adds cyl((a?)gg) x [0,1] to X, as shown in the first picture of Figure 2.
The additional dimension for the cylinder is depicted pointing into the page.
The cylinder on the intermediate stratum X; \ Xo is contained in this space
as s1(X1\ Xo) x [0,1] via a vertex section s : X1\ Xo < cyl((09)<o) -

Collapsing the sets s1(x) x [0,1], z € X1\ Xo to points and taking the
union with the bottom stratum X yields the homotopy model X3, illustrated
in the second picture of Figure 2. Shrinking the cylinder cyl(cyl((a‘?)go))
induces a map w3 : X5 — X. It becomes a homotopy equivalence if one
endows X% with the topology generated by all open sets on X5\ Xo and all
the sets ﬂé_l(U) for U C X open. The intermediate intersection space,
illustrated in the first picture of Figure 3, is the following subspace of X},
where ft<o (0TX1\ Xo) x [0,1] = cyl(¢?) C eyl (cyl((09)<0)) in unison
with Agustin-Bobadilla’s notation.

X = (X\TX) U egltef) U eyl ((00)<0 ) x {0}

To construct the final intersection space pair, one has to truncate the

3 N (To) N IPX — I X

"X

FIGURE 3. The intermediate intersection space I7*X and the
truncation of the link of X

link bundle of Xo in the pair (I§*X,X1) in degree m(4) = 1. The to-
tal space of that bundle is 6773_1(TX0) NIPX = T2 x [%,1) U{P}x{l} I,
2
with I a closed interval. Exploiting [2, Example 2.2.8] once more, the pair
(OIT'TXp)<1 = (Té1 x {3} UI,pt) C on; 1 (TXy) is a suitable choice for
the desired truncation. It is illustrated as the red line and the small red circle
in the second picture of Figure 3. The truncated bundle projection is denoted
by (08)<1 : (OIFTX0)<1 — Xo and the accompanying bundle morphism by
9 : (OINTXo)<1 — 87r3_1TX0 N (I§"X, X1). To construct the homotopy
model X} of X that contains the final intersection space pair, one takes the
union of X4 and cyl((0d)<1) x [0,1] as shown in the first picture of Figure 4.
This space is called cyl(6y) in Agustin-Bobadilla’s notation and contains the
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subspace Xg x [0, 1], embedded via the vertex section s : Xo — cyl((ag)gl) .
Collapsing so(Xo) x [0,1] C cyl(8p) to a point gives the homotopy model
X4 ~ X, ~ X. The final intersection space I™X, shown in the second
picture of Figure 4, is the union of IT"X \ 7r3_1(TX0) (yellow part) with
the subspaces cyl(¢3) = (Om3 T Xo)<1 x [0,1] (orange hatched surface) and
eyl ((08)<1) (red dotted surface) of cyl(6p).

I™X = (II'X \ w5 TX0) U cyl(6d) U cyl ((ag)§1> ¢

The subspace I™ X1 C I™X is illustrated by the green line in the picture.

s50(Xo) x [0,1]

\
cyll@o)

A—f‘ ,

77X,

v/ o
Cyl(eo) - X3 U (Cyl((UO>S1> X [07 1]) The pair (Iﬁl)(7 IﬁLXl)

FIGURE 4. The final intersection space pair (I™X, I"™X})

At the end of the example, it is
worth pointing out that the method
introduced by Banagl in [3] to con-
struct interesction spaces for some
classes with stratification depth two
is applicable in this setting. To per- v
form Banagl’s construction, one re-
moves from X tubular neighbour-
hoods TX1 of X1 \ Xo and TXy
of Xo to get a manifold M =
T2 % (0, 1]2 with two boundary parts
that both look like T? x (0,1]. One
then takes suitable truncations of
the boundary parts in the respective
degrees and takes the mapping cone of the inclusion of the union of these
truncations. The resulting intersection space is illustrated in Figure 5.
Note, that in contrast to Agustin-Bobadilla’s construction, the singular set
Sing(X) = X1 has no one dimensional heritage in this intersection space.

(?@’\’
(0

N g} ]
75

FIGURE 5. Banagl’s "X

To end this section, it should be pointed out that there is no Poincaré
duality theorem for Agustin-Bobadilla’s intersection space pairs, yet. This
issue will be discussed in more detail in Section 4.1.
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3. INTERSECTION SPACE COHOMOLOGY WITH DIFFERENTIAL FORMS

3.1. Pseudomanifold of depth one. In [4], Banagl introduces an ap-
proach to intersection space cohomology via differential forms. It is compa-
rable to the description of intersection cohomology via differential forms of
Goresky-MacPherson-Brylinski, presented in [12].

A depth one pseudomanifold is said to have geometrically flat link bundles,
if for each singular stratum > C X the fiber Ly, of the link bundle p : 0Ty, —
32, where Ty, is a tubular neighbourhood of ¥ in X, is a closed manifold that
can be endowed with a Riemannian metric such that the transition functions
of the bundle are locally trivial and the structure group of the bundle is
contained in the isometries of Ly;. For example, each trivializable bundle is
geometrically flat. For such spaces, Banagl defines the complex of fiberwisely
cotruncated multiplicatively structured forms ft-xQ%,s(0T%) C Q°*(9T%).
First, the cotruncation 7-1Q°(Ly) C Q°(Ls;) in degree k is defined as

7ok Q% (Ly) == -~ = 0 = ker, = Q" 2(Ly) = QF3(Ly) — ...

with d,4 the dual of the boundary operator d with respect to the inner product
induced by the Riemannian metric ¢ on Ly. By the Hodge Decomposition
Theorem, the cohomology of this complex coincides with the cohomology of
Ly; in degrees greater than k, while it vanishes in other degrees.

Let {Ua},cr be a trivializing atlas of the bundle p : 9Tz — X. Then,
a differential form w € Q°(9T%) is called multiplicatively structured and
fiberwisely cotruncated in degree k, ie. w € ft-,Q%,5(9T%), if and only
if Yoo € I it holds that wl,-1(y,) = &4 >, 7in; A 57, for some n; €
Q*(Ua), 75 € m>102°(Ly). The featured maps are the trivialization ¢, :

U, X Ly =N p~Y(Uy), and the two projections m; : U, x Ly — U, and
my 1 Uy X Ly, = Ly. A form w € Q°(X,,) is contained in the intersection
form complex QI3(X), if for any singular stratum 3 C Sing(X) of codi-
mension b with tubular neighbourhood 7%, it holds that W|TzﬁXTeg = 7*n
with n € ftoquQs(9Tx), where m : Tx, N Xpeq = 9T x (0,1) — Ty is
the projection. Banagl proves that the cohomology groups of intersection
form complexes for complementary perversities satisfy Poincaré duality in
the classical sense.

Theorem 3.1.1. [4, Theorem 8.2] Let p and g be complementary perversities
and X" an n-dimensional compact and oriented depth one pseudomanifold
without boundary. Then, integration of wedge products of forms induces a
nondegenerate bilinear form

/ CHY QX)) x H'(QIZ(X)) = R, ([w], [n]) . wAn.

Banagl also proves that for pseudomanifolds with isolated singularities
X, the de Rham cohomology groups H"(QI3(X)) are isomorphic as vector

spaces to the reduced cohomology groups ﬁT(IﬁX ;R) of the intersection
space IPX with real coefficients, see [4, Theorem 9.11]. This statement is



SURVEY ON INTERSECTION SPACE COHOMOLOGY 9

generalized in [23], where Schléder and the author use pullback constructions
in the category of DGAs to show that the de Rham theorem can be lifted
to the cohomology rings. Moreover, in [16], the author generalized Banagl’s
de Rham Theorem 3.1.1 to depth one pseudomanifolds with product link
bundles ¥ X Ly.

3.2. L?-description of intersection space cohomology. In [6], Banagl
and Hunsicker give a Hodge theoretic description of intersection space co-
homology via extended weighted L?-harmonic forms. Their approach is in
the spirit of Cheeger’s approach to Poincaré duality on singular spaces. In
[13, 14, 15], Cheeger works with L?-cohomology with respect to conical met-
rics on the regular part of a pseudomanifold and proves Poincaré duality.
He shows that for pseudomanifolds with only even dimensional strata (that
statement was later generalized to Witt spaces) the space of L2-harmonic
forms is isomorphic to the linear dual of Goresky-MacPherson’s middle per-
versity intersection homology.

Banagl and Hunsicker work with depth one pseudomanifolds with (con-
nected) singular stratum ¥ and product link bundle ¥ x L. They find a
Riemannian metric g on the regular part X,., of X, which is very different
from Cheeger’s conical metric, and a special space of L?-harmonic forms that
is isomorphic to the de Rham cohomology groups H*(QI3(X)) and, by [16],

therefore also to the reduced singular cohomology groups H *(IPX) of the in-
tersection spaces. The type of metric they use is called product type fibered
scattering metric, the space contains all extended weighted L?-harmonic
forms. For a weight ¢ and a metric g, a differential form w € LgQ‘(XTeg)
is c-weighted, ie. w € L8 (X,eg), if ereg |lz~w]||g dvol, < oo, where
|| - |lg denotes the pointwise metric on the space Q°(X;¢4) induced by the
metric g. The space ZECLEQ;(XTE!]) can be completed to a Hilbert space with
respect to the inner product (o, ). := meg a A x7% x4 B. Let 0, denote
the formal adjoint of the de Rham boundary operator d with respect to this
inner product and Dy . := d+d4.. Then, a form w € LgQ;(XTeg) is extended
c-weighted L%-harmonic, i.e. w € HE,(Xreg, g, ¢), if w is (¢ — €)-weighted for
all € > 0 and Dy w = 0. The Hodge description of intersection cohomology
via extended weighted L?-harmonic forms is then given by the following the-
orem. To prove this theorem, Banagl and Hunsicker use conifold transitions,
that were outlined in [7].

Theorem 3.2.1. [6, Theorem 1.1] Let X be a pseudomanifold of depth one
with singular stratum X C X of codimension b that admits a product link
bundle ¥ x L. Let grs be an associated product type fibered scattering metric
on the regular part X,eq = X \ X. Then, there is an isomorphism

[ (] ~ o b 7]
H (QIﬁ(X)) = Hext (Xr697 Gfss 5 -1 —p(b)) :
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3.3. Pseudomanifolds of depth two. In [17], the author extends the
intersection form complex QI3 to depth two pseudomanifolds with filtration
X =X, D X,p D Xo = {x0}, three strata X \ X,,—p, Xp—p \ Xo and
Xo and geometrically flat link bundle for the middle stratum X,,_; \ Xp.
Q15 is defined on the blowup X of
X that is constructed by remov-
ing first half a tubular neighbour-
hood T X of Xy C X from X and
then half a tubular neighbourhood
TX, p of X3\ Xo. The leftover
is a compact manifold with corners
X, with compact boundary parts
E, W, glued along their common
boundary. The halves of the tubu-
lar neighbourhoods that are not re-
moved from X induce compatible
collars ¢ : E x [0,1) — X and FIGURE 6. The blowup of the 3-
ew : Wx[0,1) = X. Compatibility Strata space X = cone(cone(T*))
means, that the restriction of ¢y to

OW x[0,1) is a collar of 9W = JF in E and vice versa. These collars are il-
lustrated for the example X = cone(cone(7?)) from above in Figure 6. Note,
that W is the blowup of the link Ly of Xg, which is itself singular (with two
strata). In the example X = cone(cone(7?)), W = T2 x (0,1] = cone(T?).
To define the intersection forms complex QI5(X), we need to cotruncate
the intersection form complex QI5(Lo) in degree g(n). This can be done

by choosing a complement €7 +1 of the image of the boundary operator
imd € QI (W) and set

Togm QIS (Lo) 1= - - = QIFL L QI 2oy

With ft-74)Q0s(£) defined as in Section 3.1 and 7 : Ex[0,1) = E, my :
Wx[0,1) — W the first factor projections, the complex QI3(X) in the depth
two setting is then defined as follows.

QI (X) = {w € QX) ichw=7pn, nc ftsgm)Wus(E) and
chow = ThyC, C € T>q_(n)m,;(L0)}

The cohomology groups of QI3(X) satisfy Poincaré duality in the same sense
as in the depth one setting.

Theorem 3.3.1. [17, Theorem 7.4.1] For complementary perversities p and
q, integration induces nondegenerate bilinear forms

/:HI;)-"(X)XHI;_’"(X)%R, ([w],[n])H/)_{w/\n.
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4. OTHER APPROACHES TO INTERSECTION SPACE HOMOLOGY

4.1. Intersection space cohomology via sheaf theory. The sheaf the-
oretic approach to intersection cohomology, motivated by Deligne and intro-
duced by Goresky and MacPherson in [20], is very powerful. Not only has it
been used to prove Poincaré duality and topological invariance of intersec-
tion cohomology for topological pseudomanifolds, it has also led to a proof
of the Kazhdan-Lusztig conjecture via D-modules, relating representation
theory and intersection cohomology. The axiomatic definition has another
advantage: It makes it easy to check, whether a new approach computes
intersection cohomology or not.

With these promising results in the back of one’s mind, an analogous
sheaf theoretical description for intersection space cohomology is desirable.
In [4, Section 6], Banagl shows that his intersection form complex QI3 gives
rise to a complex of soft sheaves on X with global hypercohomology the de
Rham cohomology H*(QI3(X)). Agustin-Bobadilla follow a more axiomatic
approach in their paper. Based on their iterative construction of intersection
space pairs, they derive a constructible complex of sheaves IS5 and show
that its global hypercohomology is the cohomology of the intersection space
pair. Moreover, in [1, Section 6], they introduce a set of properties, called
the IS3-properties in the following, acting as an analogue to the axioms for
intersection cohomology of [20, Section 3.3]. A sheaf complex satisfying these
properties will be called an IS%—conlpleX. There are three main differences
from intersection cohomology:

(1) Except for the case of isolated singularities, an IS3-complex cannot
be a perverse sheaf complex.

(2) The IS;-properties do not fix an IS3-complex of sheaves up to quasi-
isomorphism.

(3) In unison with the other approaches to intersection space cohomol-
ogy, there does not always have to be an ISj-complex.

If the intersection space pair exists, then the above complex IS3 is an IS3-
complex. The sheaf theoretic approach is more general, though (see e.g.
[1, Section 9.1]). Agustin-Bobadilla give necessary and sufficient conditions
on the existence of an IS;E—sheaf complex. Their construction is inductive,
starting on the regular stratum. In the k-th step, an ISj-complex (IS3)x—1
on Uy := X \ X,_ can be extended to a complex satisfying the axioms
on Uy if and only if the following distinguished triangle in the derived
category splits.

. . » . " . +1
qu(k)]zlk*(lsp)k—l — ]k@k*(lsp)k—l — T>q(k)]k@k*(lsp)k—1 [_>]

The maps i : Uy — Ugy1 and ji : Xy g1 \ Xpn—g—2 — Uy are (open and
closed) inclusions. If this triangle splits, one has to choose such a splitting
to proceed. The obstruction at each step might, as for the construction of
the intersection space pairs, depend on all the previous choices. If X is an
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algebraic variety, Agustin-Bobadilla show that the construction can be lifted
to the category of mixed Hodge modules on X: If an ISJ-complex exists,
it is a mixed Hodge module, i.e. its global hypercohomology groups have a
mixed Hodge structure (see [1, Theorem 8.3]).

Finding an answer for the Poincaré-duality question, raised in Section 2.3,
does not become easy when using the sheaf theoretic approach. Though the
Verdier dual of an IS3-complex is an IS3-complex ([1, Theorem 10.1]), this
does not imply global Poincaré duality. Agustin-Bobadilla have a partial
answer for a two strata space X¢ of dimension d with singular set Xy_j. If
an intersection space for a given perversity p exists, the intersection space
complexes IS]:7 are parametrized by the vector space

Ep := hom (75 g(0) Jks 1k Ql Uy » T< () I T 18 Qur, )

(see [1, Corollary 7.6]). An element IS3 € Ej is called a GIS; or general
intersection space complex of X with perversity p, if the hypercohomology
groups of IS} are minimal compared to the hypercohomology groups of all
complexes in Ej, that is dim (Hi(X, IS%) = mingecg, Hi(X,S*). Provided
the existence of such a GIS; IS3, Agustin-Bobadilla prove that the Verdier
dual IS} := DIS3[—d] is a GISg, with g the dual perversity of p, and that
there is an isomorphism

H' (X, TS3) = hom (Hd—i(X, 1S?), R)

of Q-vector spaces for all i, see [1, Theorem 10.6]. It is not clear, what
the conditions are that determine the existence of such a GIS5-complex and
how it can be constructed. It is interesting to know, whether the intersection
space of Banagl-Chriestenson in the setting of [5] or the intersection form
complex QIS of [4] give rise to GISy-complexes. Because of the iterative na-
ture of Agustin-Bobadilla’s construction, a generalization of their Poincaré
duality theorem might need a sequence of complexes with minimality condi-
tions for the hypercohomology groups at each step of the construction. This
seems involved and it might be a good idea to check, whether the complexes

ﬁj; and QI3 of [17] satisfy such minimality conditions, first.

4.2. Geske’s algebraic intersection spaces. In [19], Geske establishes a
different approach to intersection space homology. He uses a local to global
technique to construct a chain complex, the homology of which general-
izes intersection space homology and satisfies Poincaré duality over com-
plementary perversities, at least if certain duality obstructions vanish. His
approach is applicable to all compact orientable Whitney stratified pseu-
domanifolds that are contained in a real/complex analytic manifold. In
particular, that class contains all complex projective varieties. His starting
point is the following observation: The (fiberwise) homology truncations of
[2, 5] are related to the intersection homology groups of the tubular neigh-

bourhoods T of the singular strata. For spaces with isolated singularities,

with link truncation f : 0T<g(,) — 9T, the composition He(0T<g(n)) ELN
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H,(dT) — IHE(T) is an isomorphism. For the pseudomanifolds considered
in [5], see Section 2.1, with singular set 3 of codimension b, the composition
Ho(ft<gpOT) — He(OT) — ITHJ(T) of (F<g))« and the induced map of
the inclusion 0T < T is also an isomorphism, see [5, Proposition 6.5].

For a more general compact, orientable Whitney stratified pseudomani-
fold X, contained in a real/complex analytic manifold, the theory of subana-
lytic sets gives rise to a tubular neighbourhood T of the singular set Sing(X).
If the stratification depth is greater than one, this tubular neighbourhood
is not related to the tubular neighbourhoods induced by the Thom-Mather
control data, a priori. For depth one pseudomanifolds, both notions are sim-
ilar. Geske points out, that one of the obstructions to the existence of an
intersection space is the surjectivity of the map He(0T) — IHL(T) on ho-
mology. In many cases, this map is not surjective, so Geske replaces TH{(T)
by im (He(0T) — IHY(T)) . He introduces the notion of a p algebraic inter-
section approximation for T, which is a pair (A,, fe), consisting of a chain
complex A, and a chain map f, : Ae = Co(0T) such that the composition

(1) Ho(As) L5 HW(OT) — im (HL(OT) — THF(T))

on homology is an isomorphism (with field coefficients for all homology
groups). Such p algebraic intersection approximations always exist, see [19,
Proposition 4.5]. For two complementary perversities p and g and corre-
sponding algebraic intersection approximations (A%, fJ') and (AZ, fd), there
is always a local duality isomorphism D : H,(cone f7) = H""=1(A%). To
lift that duality isomorphism to the algebraic intersection space cohomology
groups, the following diagram must be commutative.

Hn—r—l(aT) ; Hn—r—l(A‘?)

%T =Tp

H,(9T) ——— H,(cone(f%))

Geske calls that the local duality obstructions, which makes sense since
these obstructions are equivalent to Banagl-Chriestienson’s local duality ob-
struction for depth one pseudomanifolds. This follows from [5, Proposition
6.9] and [19, Proposition 4.7]. For Witt spaces of even dimension with
p = @ = m = m the middle perversity, the algebraic intersection approx-
imations to 7' can be chosen such that this obstruction vanishes, see [19,
Theorem 4.9]. Globally, Geske defines the algebraic intersection space I f.ﬁX
with respect to the perversity p as the algebraic mapping cone of the com-
position AL — Co(8T) = Co(X \ T) with T = T\ 9T of f¥ followed by a
subcomplex inclusion. By a purely algebraic argument, he can then lift the
local duality isomorphism to a global Poincaré duality isomorphism if the
local duality obstructions vanish.
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Theorem 4.2.1. [19, Theorem 5.1] If the local duality obstructions vanish
for (A%, f8) and (AL £1), there is a non-canonical Poincaré duality isomor-
phism

D: Hy(IpX) = H" (119 X).

Given the differences between his and Agustin-Bobadilla’s approaches to
generalizing intersection space homology to pseudomanifolds of stratifica-
tion depth greater than one, Geske calculated the homology groups of both
approaches for the example of a projective cone of an irreducible degree
three nodal hypersurface with one isolated singularity. He finds that the
homology of the intersection space pair vanishes, while the homology of the
algebraic intersection space does not, see [19, Section 6]. That means that
the two theories do not compute the same homology.

The duality isomorphism of Theorem 4.2.1 is constructed by choosing
sections

T

vl :im (Hi(lng) — HIU(X\ T)) — H'(I5X).

s :im (HT(I 5 X) = Ho(X ~ T, aT)) — H(I;5X) and

Geske proves in [19, Theorem 6.5], that for a Witt space X of even dimension
n = 2m, there are choices of these sections for p = § = m = m such that
the signature induced by the Poincaré duality isomorphism is exactly the
Goresky-MacPherson-Siegel signature for intersection homology, see [24].

5. OPEN QUESTIONS

The end of this survey article is a list of open questions concerning inter-
section space cohomology theory.

5.1. Previously stated questions. In [7, Section 5], Banagl and Maxim
conclude their paper with four open questions. The first one, asking for a
sheaf theoretic description of intersection space cohomology, was answered
in [1]. As was pointed out in Section 4.1, this characterization is not similar
to Goresky-MacPherson’s axiomatic description, though. Banagl-Maxim’s
third question, asking for a canonical mixed Hodge structure on intersec-
tion space cohomology of a complex projective variety, was also answered in
[1, Section 8]. Note, that since Agustin-Bobadilla’s IS3-sheaf complex de-
pends on choices and is not canonical, thus, the same is true for the mixed
Hodge structure on the global hypercohomology. Note also, that there is
an alternative approach to mixed Hodge structures for isolated singularities
by Klimczak, covered in [22]. Their other two question, asking for (weak
and hard) Lefschetz theorems for intersection space cohomology and for a
generalization on their results of the relation with smooth deformations of
singularities, have not been answered yet.
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5.2. Additional open questions.

(1) To which choices in the splittings of the relevant distinguished tri-
angles of Agustin-Bobadilla corresponds the sheafification of the au-
thor’s intersection form complex QI3 for depth two pseudomanifolds
(sheafified similar to Banagl’s construction in [4, Section 6])?

(2) Is there a de Rham theorem for depth two pseudomanifolds, relat-
ing the de Rham cohomology groups of 2I3 and the cohomology
of Agustin-Bobadilla’s intersection space pairs or is I3 related to
Geske’s approach? (Geske’s and Agustin-Bobadilla’s approach seem
to be different as mentioned in Section 4.2)

(3) Do the approaches to intersection space cohomology of [4, 5, 17, 19]
give rise to GISp-complexes in the sense of Agustin-Bobadilla (see
the end of Section 4.1)?

(4) As mentioned, the de Rham approaches of Banagl and the author
seem to be related to the de Rham approach to intersection ho-
mology of [12]. But there are various other de Rham approaches
to intersection homology, see [8], [9], [10, 18] or [11], which moti-
vates the following question: Are there de Rham approaches to in-
tersection space cohomology, comparable to the alternative de Rham
descriptions of intersection cohomology? In particular, is there an
approach related to Brasselet-Legrand’s g-bounded forms of [11],
where the poles of the forms on the singular strata are controlled?
Does Geske’s observation, taking into account the dualized version
of (1) on cohomology, help to construct such a complex?

(5) Can Klimczak’s and Wrazidlo’s fundamental class constructions for
depth one spaces, inducing a Poincaré duality isomorphism via cap
product, be generalized to the pseudomanifolds considered by Agustin-
Bobadilla in [1]? If so, what are the obstructions for the gluing
processes and how many cells have to been glued to the space?
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