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Abstract

We develop a geometric understanding of the Darboux transform of isothermic submanifolds in
the self-dual Grassmannian G(C?*). We relate a mutual pair of Darboux transforms to the common
envelopes of a congruence of cyclides.

1 Introduction

Isothermic surfaces were studied extensively around the turn of the 20th Century by,
among others, Bianchi [Bil, Bi2], Blaschke [Bl], and Darboux [D]. Study of these was
revived by Cieslinski-Goldstein-Sym [CGS], who showed that isothermic surfaces formed
an integrable theorem. Burstall et al. [BDPP] then generalised this integrable structure
to define isothermic submanifolds in certain other spaces, known as symmetric R-spaces.

In this paper, we aim to find an analogue of a result of Blaschke [Bl] (sce [H, Section
3.1] for a full account of this). Blaschke shows that a Darboux pair of isothermic surfaces
in the conformal 3-sphere envelop a common congruence of spheres and induce the same
conformal structure on their domain. This has already been extended to the conformal n-
sphere by Ma [M] but we will show that a similar result holds for maximal non-degenerate
isothermic submanifolds in the Grassmannian.

In section 2, we will define isothermic submanifolds of the Grassmannian and their
Darboux transforms and collect several results about Darboux transforms and curved
flats.

Finally, in section 3, we define our special submanifolds, called cyclides, as well as
defining a generalised conformal structure. This allows us to state our main theorem
linking Darboux pairs to envelopes of cyclide congruences via curved flats.

2 Isothermic submanifolds of the Grassmannian

2.1 The Grassmannian

Let g = (n,C) and G be its adjoint group isomorphic to PSL(n,C). We denote the
Grassmannian of k-dimensional subspaces of C" by G (C™). The group G acts transitively
on G (C") so that we may view it as a homogeneous space. We may use this fact to study
the geometry of G(C") using the Lie theory of G. As an example of this, the solder form



gives an isomorphism for each V' € G (C").
By : Hom(V,C"/V) = g/stab(V') — Ty G (C");

d
X +stab(V) —» —|  exp(tX)-V, (1)
dt|,_,
where stab(V') < g denotes the infinitesimal stabiliser of V. We can consider stab(V)* the
polar of stab(V') with respect to the Killing form of g. In fact, this is dual to g/stab(V)
and so we make the identifications:

stab(V)* = Hom(C"/V, V) = T} G (C") (2)

Note that this is an abelian subalgebra of g which will be important for the definition of
isothermic submanifold.

Extending the concept of projective duality, G(C™) has a natural dual space. Let
V € Gi(C™). Then we say W < C" is complementary to V if V@& W = C". Clearly then
W € Gp,—(C"). This choice allows us to identify C*/V = W and similarly C*/W = V.

Definition 2.1 (Space of complementary pairs). Let
7 ={(V,W) € Gx(C") x G,,_x(CH|V & W = C"}. (3)
We call this the space of complementary pairs.

Proposition 2.2. 7 is a pseudo-Riemannian symmetric G-space.

Proof. Firstly, we note that G acts transitively on G(C"). Moreover, exp(stab(V)1) <
Stab(V') < G acts transitively on the set of W € G,,_(C") complementary to V. Thus
G acts transitively on Z.

Let byw = stab(V) N stab(W), myy = stab(V)* @ stab(W)*. Then by is the
infinitesimal stabiliser of (VW) € Z and [hyw, mvw] C myw, [myw, myw] C brw.
Thus Z is a symmetric space. O

2.2 Isothermic submanifolds

Let f: % — G(C") be some map from a manifold ¥. We can then shift our viewpoint
and consider f as a bundle:

fz :=stab(f(x)) (4)
Equally, we can define a bundle f* by fi := (f,)*. Both of these are subbundles of the

trivial bundle g = ¥ x g. In particular, we have a trivial connection d on g allowing us to
make the following definition.

Definition 2.3. Let f : ¥ — Gx(C"). We call f isothermic if there exists a non-zero
1-form n € QY(f+) such that dn = 0. Then (f,n) is an isothermic submanifold if f
mmerses.

Using (2) we can view 57 as a f T*G},(C") valued 1-form, meaning we can contract it
with df to give 2-tensor ¢¢(X,Y) := nx(dfy). In fact, ¢; is symmetric [?]*Proposition 6.1
so we make the definition:



Definition 2.4. We call g5 the quadratic form associated to (f,n). We say (f,n) is
non-degenerate if q; is non-degenerate.

[sothermic submanifolds are an example of an integrable system. In geometric terms,
this manifests as a family of flat connections. Let f : ¥ — Gx(C") be any map and
n € QY(f+). Define V! := d + tn. Then the curvature of V? is:

2

t t
RY :Rd—l—tdn+§[n/\n]. (5)

Now d is flat and f* is a bundle of abelian subalgebras of g so V! is flat if, and only if,
(f,m) is isothermic.

Using this family of connections allows us to define transformations of isothermic sub-
manifolds. While it is possible to define the T-transform using this data, this paper will
focus on the Darboux transform.

Definition 2.5 (Darboux transform). Let (f,n) be an isothermic submanifold of G (C")
andm € R\{0}. Then f : ¥ — G,,_x(C") is a Darboux transform of f with parameter
m if:

o Any section ¢ of f has V™ € QL(f),

e f and f are pointwise complementary.

We will refer to f, f as a Darbouz pair.

Proposition 2.6 ([BDPP, Theorem 3.10]). If f is a Darbouz transform of f then f is
also a Darboux transform of f.

A key result that we will use is that a Darboux pair is precisely a curved flat into
Z. Curved flats are another integrable system developed by Ferus-Pedit [FP] and can be
defined into any symmetric space. We shall focus narrow our focus to curved flats in Z,
however. For (f, f) : 3 — Z we can define N € QY(f*+ @ f4) by:

Ni=m; odf +mp1 odf. (6)

A

Definition 2.7 (Curved flat). Let (f,f) : X — Z. Then ¢ is a curved flat if Im N, is
an abelian subalgebra of f- & fL for all z € X.

Proposition 2.8 ([BDPP, Theorem 5.8)). A map (f, f): % = Z is a curved flat if, and
only if, f, f are a Darboux pair of isothermic maps.

If we restrict our attention to non-degenerate isothermic submanifolds of maximal
dimension we can obtain a further result.

Definition 2.9 (Cartan subspace). Let (V,W) € Z, and let ¢ < stab(V)* @ stab(W)+
be a maximal abelian subalgebra all of whose elements are semisimple. Then we call ¢ a
Cartan subspace of stab(V)* @ stab(W)=*.

Proposition 2.10 ([BDPP, Theorem 6.4 and Proposition 6.5]). Two maps f. f are a
Darboux pair of mazimal non-degenerate isothermic submanifolds if, and only if, Im N,
1s a Cartan subspace for all x € .



3 Cyclides

In this section, we will demonstrate a geometric interpretation for the Darboux trans-
form of maximal non-degenerate isothermic submanifolds in the self-dual Grassmannian
G(C?). Such a Darboux pair will be seen to be the common envelopes of a congruence
of submanifolds, the form of which we will define.

The motivation for our definition will be that a Cartan subspace for Z defines a splitting
of two complementary planes V, W € G (C?*) into paired lines.

Proposition 3.1. Let (V,W) € Z C (Gx(C?*))2. Then any Cartan subspace of myy, is
of the form: R

for B;e L@ L, E; € Lt © Ly, where V. =@ L, W =@}, L.

Proof. From [LM, Theorem 4.1] we see that all Cartan subspaces of myy are conjugate.
We therefore need only show that one such ¢ is a Cartan subspace. Firstly, we note ¢ is
clearly abelian. If X € myy = Hom(V, W) © Hom(W, V) such that [X,¢] = 0 then we
see:

X, B + E)] =0, (8)
for each i. Using our splitting C*" = @le L;® @le L;, we obtain a splitting of myy =
Di<ijor Li ® Lj & D 1< joi Li ® Lj. Then, projecting onto these factors in (8) tells us
that X € ¢. Thus ¢ is a maximal abelian. Each E; + E; is a semisimple endomorphism
and, as ¢ is abelian, any linear combination of these elements is also semisimple. O

We now wish to endow Gj(C?*) with a structure akin to the conformal structure of
the n-sphere. We adapt the definition of Gindikin-Kaneyuki [GK] to G (C?*):

Definition 3.2 (Generalised conformal structure). The generalised conformal struc-
ture of Gx(C*) at 'V is:

Cy = {X € TyGy(C*)|rank(X) < dim V}. (9)

In other words, the generalised conformal structure is the set of all elements of Hom(V, C?*/V)
that fail to be isomorphisms
Let Vi @ --- @V}, = C? be a splitting into 2-dimensional subspaces. Then:

D :P(V}) x -+ x P(Vi) = Gu(C**); (L1, ..., L) = L & --- & Ly, (10)

is an embedded submanifold. In fact, the domain is compact so we only need to show
that it is an injective immersion. It is naturally injective and by (1)

k k k
Im(d®)(r,....1,) = P Hom(L;, Vi/L;) € Hom(EP Li, C*/ P Ly). (11)
=1 =1 =1

We note that these tangent spaces intersect with the generalised conformal structure as
the union of & linearly independent hyperplanes:

H; := @) Hom(L;, Vj/Ly). (12)
J#i



If, for each ¢, we take some L; <V, distinct from L;, then L:= @le L; is complemen-
tary to L := @le L;. Thus we can make some identifications of the tangent spaces as
in [ref tangent space with complement] Hom(V;/L;, L;) = Hom(ﬁi, L;),Hom(V;/ ﬁi, ﬁz) &~
Hom(L;, f/Z) Then the general conformal hyperplanes at L and L are naturally paired.
Let

H; := @@ Hom(L;, Ly). (13)

Theorem 3.3. Let f,f 0 Y = GR(C*) be pointwise complementary. Then f,f are a
Darbouz pair of mazimal non-degenerate isothermic surfaces if, and only if, they envelop

a common_cyclide congruence, they induce the same generalised conformal structure on
TY and df o df~'(H;) = H;.

Proof. Let f, f : ¥ — GR(C%) be a Darboux pair of maximal non-degenerate isothermic
submanifolds. Then (f, f) : ¥ — Z is a curved flat. Now Proposition 3.1 tells us that
N=S' weE+E)foo B cli®L,B;c Li®Land f =@ | L, f =®F, L.
Thus,

k k
=1 =1

The cyclide congruence C' defined by V; := L; & L; then contains f, f at each point and
has tangent spaces:

TiC = (Ejli=1,....k), T;C = (Eli=1,....k). (15)

Thus, f, f envelop C' and induce the same generalised conformal structure on 7% given by
Ule Ker w;. Moreover, df odf ! sends E; to F; and therefore it preserves the generalised
conformal hyperplanes.

Conversely, let f, f envelop a common cyclide congruence C' defined by V; for i =
1,....k. Let L; =V, f, L; :=V; N f. Then

k k
=1 =1

with E; € IA/Z* ® L;, E, eL® I:Z These have generalised conformal hyperplanes H; :=
D, Hom(L;, L;), H; = D, Hom(L;, L;). Then, the induced generalised conformal
structures on T are given by Ule Ker w; and Ule Ker w; respectively. If these are the
same then each w; must be pointwise the scale of some w;. If we require d f odf N(H;) = H;
this forces w; = \jw; for some \; : ¥ — C. Thus, N := T odf +m 1 odf = Zle w; QE;+)\;
and by rescaling E; we see that Im A, is a Cartan subspace for all z € ¥. Therefore f, f
are a Darboux pair of maximal non-degenerate isothermic submanifolds. O
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