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1 Introduction
The following diagram is known:

/U (2)- GJUR)s (L)
w«:zﬂ s;_ 7T+52
G/ SU(3) G2/SO(4)

Here, U(2) 4 are two types of U(2) embedded in Gs. As well known, G5/SU(3)
is isomorphic to S%, and S® is equipped with a natural non-integrable almost
complex structure. It is also well known that G/SO(4) is a 8-dimensional
Riemannian symmetric space equipped with a quaternion Kahler structure.
The fibration 7 : Go/U(2); — G2/SO(4) is the twistor fibration of the
quaternion Kéhler structure. The map @w : G2/U(2)- — G3/SU(3) is also
known as a twistor fibration with respect to the almost complex structure on
S6.

On the other hand, on the diagram (1.1), the double fibration given by w
and 7_ is considered as the ”Penrose type” twistor correspondence which is
summarized as follows. Let Z be a complex 3-fold. This Z is called the twistor
space. If Z contains a rational curve Y with normal bundle holomorphically
isomorphich to O(1) & O(1), such rational curve is called twistor line. In
general, the set of twistor lines consists a complex 4-fold M with naturally
defined self-dual complex conformal structure. This M is called the space-



time. Then we obtain the following double fibration:

F
A M*

For each p € Z, the set 7(ww™!(p)) is 2-dimensional complex submanifold on
M in general. Such complex surfaces are called -surfaces, and the family of
[-surfaces characterizes the self-dual structure of M.

In this article, we show that the double fibration by w and n_ on the
diagram (1.1) actually have an analogous structure with the Penrose’s dou-
ble fibraion. We show that for each p € S% ~ Go/SU(3), the subset
S, = m_(w(p)) is a totally geodesic, totally quaternionic 4-dimensional sub-
manifold on G5/S0O(4) (Theorem 6.3). Further, we show that there exists
a symmetric 3-form 7, which satisfies certain integrable condition (Theorem
6.4). In the way to prove these theorem, we study the detail structure of the
symmetric space G5/S0(4), for example, we describe explicitly the tangent
space.

Here we remark about the recent work given by Enoyoshi-Tsukada [4].
They notice to the following another double fibration

Ga/SO(3) (1.3)

T

Ga/SU(3) G/ SO(4)

This double fibration is related to the special Lagrangian submanifold (or to-
tally real submanifold) of S®. The idea of Penrose type twistor correspondence
also takes an important role of this theory. We, however, do not investigate
in this theory in this article.



2 Construction of the fibration

2.1 quaternion and G,

Let H be the quaterenions generated by {1,14, j, k} where i = 52 = k> = —1
and k = ij = —ji. We write Sp(1) ={qe H| |g| = 1}. Let

O = H @ He = Spang(1,1i, 7, k, i, je,ke) = R S Im O (2.1)

be the Cayley numbers. The multiplication on O is defined by (a + bs)(c +
de) = (ac — db) + (da + bé)e. The inner product on O is (z,y) = Re(z7).
The 14-dimensional compact Lie group G5 is defined as the aoutomorphism
group of O, that is

Gy = {9 € GL(0)|g(zy) = g(x)g(y) for any z,y € O}. (2:2)

Its Lie algebra g, is given by
go = {X € End(0) | X (zy) = X (2)y + zX(y) for any z,y € O}.  (2.3)

As well known, G5 C SO(Im Q) ~ SO(7) and consequently go C s0(7). We
define an inner product on gs by

(X,Y)=—Tr XY (X,Y €g). (2.4)

2.2 almost complex structure on S°

Let S = {p € ImQ | |p| = 1} be the set of imaginary units. The tangent
space at p € S%is T,5% = {u € ImO | (u,p) = 0}. A natural almost complex
structure J on S° is defined by

J,: T,8% —= T,5°, Jy(u) = pu. 2.5
p-dp p P

It is well-known that the almost complex structure J is not integrable.
The group Gy acts transitively on S® and the isotropy subgroup at i € S°
is SU(3) (see [5]). Hence S® ~ Gy /SU(3).



2.3 associative Grassmannian

A 3-dimensional subspace V' C ImQ is called an associative 3-plane if and
only if (zy)z = x(yz) holds for any z,y,z € V. We put

Hy =Re V. (2.6)

Then the 3-plane V is associative if and only if Hy, C O is a quaternion
subspace, i.e. Hy is a subalgebra of O and is isomorphic to H.

Let Grd (Im Q) be the Grassmann manifold of oriented 3-planes on Im Q.
We write

Gri (ImQ) ={V € Gr{ (ImQ) | V is associative}, (2.7)

F(Im Q) as associative Grassmannian. The following proper-
ties hold (see [5]).

and we call Gr-

Proposition 2.1. (i) Ifz,y € ImQ and L y, then {z,y,zy} spans an
associative 3-plane. Any associative 3-plane is written in this way. Conse-
quently, any associative 3-plane has a natural orientation.

(il) Gy acts transitively on Grl ,(Im Q). The isotropy subgroup at ImH is
SO(4). Hence Gri,(ImQ) ~ G5/SO(4) and Gr

ass +(Im Q) is an 8-dimensional

Riemannian symmetric space.

Further, Gri,(ImQ) ~ G5/SO(4) has a quaternion Kdahler structure
which we will explain in Section 5 (see also [2]). We also describe the isotropy
subgroup SO(4) C G5 explicitly in section 3.

2.4 associative calibration
The associative calibration ¢ is the 3-linear form on Im O defined by
p(r,y, 2) = (,y2). (2.8)
The following is known.

Proposition 2.2 ([5]). (i) Let V € Gry (Im Q) and {vy, vo, v3} is an oriented

orthonormal basis on V. Then
(V) = (v, v, v3) (2.9)
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is independent of the choice of the basis.
(ii) (V) = —p(V), where V is the orientation reversing of V.
(iii) |p(V)| < 1. In particular (V') = 1 if and only if V is associative.

Consequently, we can write

Gri (ImQ) ={V € Gr{ (ImO) | p(V) = 1}. (2.10)

2.5 flag manifold F}',(Im Q)
We have the following double fibration

Gri (Im 0) (2.11)

S6 Gri (ImQ),

where @ and 7_ is defined as follows: let £ € Gry (Im Q) and {vy, v} be an
oriented orthonormal basis of £, then

@ (€) = vy € S, 7_(&) = Spang (vy, ve, v1v9) € Gri (ImQ). (2.12)

The oriented 2-plane V' = {wvy,vs} is one-to-one corresponds with the
pair (p,V) € S® x Gri (ImQ) satisfying p € V so that p = vy and V =
Spang (v1, va, v109). Hence the Grassmann manifold Gry (Im Q) is naturally
identified with the flag manifold

Fif

1,ass

(ImQ) = {(p,V) € S° x Gr} (ImQ) | pe V}. (2.13)

Hence we can replace (2.11) by

Fif,.(Im 0) (2.14)
S0 Gri (Im0),

In this notation, w(p,V) = p,7_(p,V) = V are the natural projections.
The group Gy acts FIf . (ImQ) transitively, and the isotorpy subgroup
at (i,ImH) is

U2)-=SUB)NSOM4) ={g e Gy g(i) =14, 9g(ImH) =ImH}. (2.15)
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This group is isomorphic to U(2), which we see in the next section. In this
way we obtain

Gri (ImQ) ~ I}

1,ass

(Im Q) =~ Go/U(2)_. (2.16)

2.6 submanifolds in S and Gr

ass

(ImO)

The following proposition means 7_ is a CP'-bundle, while w is a CP*-
bundle.

Proposition 2.3. (i) For each V € Grk

ass(Im (O)); Yy = w<7T_1<V)) is a
puedo-holomorphic CP! in SS.
(ii) For eachp € S%, &, = w(w~(p)) has a natural complex structure and is

biholomorphic to CP?.

Proof. We have Yy = {p € V | |p| = 1} = SNV ~ S% For each p €
Yy, we can write V = Spang(p, z, J,) for some x € 7,5 Then T,y =
Spang(z, J,x) is a complex line in 7,5° ~ C*. Thus Yy is a psuedo-complex
CP! in S%. So (i) is proved.

Next, for p € S8, we have

S, ={V e Gri(Im0) |peV}.

When p € V € Gri(ImQ), we can write V' = Spang(p, =, J,x) for some x €

ass
T,5%. Such V one-to-one corresponds with the complex line Spang(x, Jyz) C
T,S% ~ C®. Hence @ '(p) is naturally identified with the complex projec-
tivization of T,,5¢ ~ C?. O

3 Explicit description of the subgroups

3.1 SO4) C Gy
For (q1,q2) € Sp(1) x Sp(1), we define

p(q1,q2)(a + be) = qraqy + (g2bg1)e (e € ImH, b € H).



It is known that p defines an homomorphism Sp(1) x Sp(l) — G5. In a
matrix style, we can write

Ad O
p(Q17q2) = < Oql Lq Rq) (31)

with respect to the decomposition Im Q ~ ImH @ H. Since the kernel of p is
Zo ~ {£(1,1)}, p defines an embedding SO(4) ~ (Sp(1) x Sp(1))/Zs — Gs.
Further, we have the following (see [5])

SO(4) = {(g O) € Gg} = {g € Gy | g(ImH) = Im H} (3.2)

*

3.2 U(2)y and SU(3)
Two subgroups of G are defined by
U2)+ = p(Sp(1) x U(1)),  U(2)-=pU(1) x Sp(1)),  (3.3)

where U(1) = {g € C C H | |¢| = 1} C Sp(1). Though both subgroups
are abstractly ismorphic to U(2), the embeddings are not equivalent to each
other. Actually, for example, the homotopy types of (/5/U(2)+ are different
(see [7]).

Another subgroup is defined by

SU(3) ={g € Gy | g(i) = i}. (3.4)

The subgroups SO(4), U(2)_, SU(3) are simply characterized by the block
decomposition of 7 x 7 matrices, and we easily see U(2)_ = SU(3) N SO(4).

4 Twistor correspondence

We compare our double fibration (2.14) with the Penrose’s twistor correspon-
dence.

4.1 The idea of Penrose’s twistor correspondence

Penrose’s theory ([8]) concerns with the correspondence between a complex
3-fold Z (called the twistor space) and a self-dual complex 4-fold M (called
the space-time). The correspondence is constructed in the following way.
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Let Z be a complex 3-fold. We notice to the family twistor lines {Y; }ienr,
that is, the family of rational curves (i.e. Y; ~ CP!) in Z such that the
normal bundle N is biholomorphic to O(1) & O(1). By the deformation
theory, such family is parametrized by a complex 4-fold M. If we put F =
{(2,t) € Z x M | z € Y}}, we obtain the double fibration

F
A M

where w and 7 are natural projection.

For each ¢ € M, the corresponding object in Z is by definition w (7! (¢)) =
Y,, which is a holomorphic CP! in Z.

On the other hand, for each z € Z, the corresponding object in M is &, =
m(w™1(2)). Bach &, is, if not empty, a 2-dimensional complex submanifold
in M and is called 3-surface. There is a unique complex conformal structure
[g] on M satisfying g|s, = 0 for any z € Z. We can prove that this conformal
structure [g] is self-dual (i.e. half conformally flat).

(4.1)

4.2 Twistor correspondence for Gr; (Im Q)

Our double fibration (2.14) is quite similar to the Penrose’s double fibration
(4.1) in the following sense.

The correspondence spaces I and FIf, (Im Q) are both the total space
of CP'-bundle over the ”space-time” M and Grl (Im(0).

The twistor space Z is a complex 3-fold while S® is a real 6-dimensional
manifold with an almost complex structure. Z has a family of twistor lines
{V:} (Y; ~ CP') while S° has a family of psuedo holomorphic curves {Yy }
(YV ~ CIP)I)

The space-time M is a complex 4-fold while Gri (ImQ) is a real 8-

dimensional quaternion Kéhler manifold. M has a family of S-surfaces {&,}
while G (Im Q) has a family of submanifolds {&,} (&, ~ CP?).

ass



Penrose’s case Our case
corresp. Sp. F Flf,..(ImO)

1,ass

CP'-bundle over M | CP'-bundle over Gri (Im Q)

ass

twistor space | Z (complex 3-fold) | S® (almost complex 6-fold)

twistor lines {Y;} psued-holo. curves {Yy }
M (complex 4-fold) | Grf(ImO) (q. Kéhler 8-fold)
space-time self-dual 77
[-sufaces {S,} submanifolds {&,}

In this comparison, it seems natural to expect that Gri (Im Q) has some
extra geometric structure corresponding with the self-dual structure on M.
We investigate this geometric structure in Section 5 and 6.

5 Explicit description of the tangent space

5.1 Tangent space of Gr/ (ImQ)

ass

Proposition 5.1. There is a natural identification

T,Gri,(Im0) ~ { f € Homp(ImH, H) | f(i)i + f(j)j + f(k)k =0} .
(5.1)

where o = ImH is the base point on Gri,(ImQ).

Proof. We have T,Gr} (ImQ) ~ T,G5/SO(4) ~ go/s50(4) ~ p, where g, =
50(4) @ p is the Cartan decomposition for G5/SO(4). In the matrix style,

{5 e} {2 7)o}

O —f*
f O
and only if f satisfies the condition f(i)i + f(j)j + f(k)k = 0.

For each © € ImH we have X(x) = f(z)s. On the other hand, for
x,y € ImH, we obtain

So we check that X = (f € Homg(Im H, H)) is contained in p if

X(zy) = X(2)y + X (y)
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by the definition of go. Hence

f(xy)e = (f(@)e)y +x(f(y)e) = (f(z)7)e + (f(y)r)s,

that is,
f(zy) = J(2)y+ [(y)z.
Putting = j,y = k, we obtain f(i)i + f(j)j + f(k)k = 0. Thus

T,Gri,(Im0) C { f € Homp(ImH, H) | f(d)i+ f(;)j+ f(k)k =0}.

Both vector spaces have real dimension 8, so these are equal. O

5.2 The quaternion Kéahler structure on Gr (ImQ)

ass

Let V € Gri (ImQ) and we define

HomaSS(V, Hv) = {f € HOHIR(V, Hv) | f(el)el -+ f(€2)€2 -+ f(€3)€3 = 0} 5
(5.2)
where Hy = R @ V' is the quaternion subalgebra of @ and {e;, e, e3} is an
oriented orthonormal basis of V. Then, as a consequence of (5.1), we obtain
the identification
Ty Gri (Im Q) ~ Hom,(V, Hy). (5.3)

The vector space Hom,s(V, Hy ) has a natural Hy-module structrue de-
fined by the left multiplication. This is the quaternion Kahler structure on
Gri(ImQ).

ass

5.3 Infinitesimal deformation

A tangent vector X € Ty Gri (Im Q) is considered as an infinitesimal defor-
mation of associative 3-plane in the following way.

For the simplicity, we assume V = o = ImH. Let ¢(t) be a smooth
curve on Grj(Im Q) satisfying ¢(0) = 0. We can take a curve g(t) on G5 so
that ¢(t) = g(t) - 0o and ¢(0) = I. Then the differential ¢’(0) is determined
uniquely up to so(4). This means that the infinitesimal deformation ¢(0)

can be written as

A0)=4g(0)+s0(4) € go/s0(4). (5.4)



5.4 The submanifold G,

Lemma 5.2. Let p € S% and V € &, (i.e. p€ V € Gri,(ImQ)). Then

Tyv&, = {J € Homa(V, Hy) | f(p) = 0} (5.5)

Proof. We assume V = o = ImH for the simplicity. For a tangent vector
X € T,6,, let us take a smooth curve ¢(t) = g(t) -0 on &, so that g(t) € Go,
g(0) =1 and ¢(0) = X.

By definition, p € g(t) - o for any t. Changing the choice of g(t) if needed,
we can assume ¢(1) - p = p. Then ¢’(0) - p = 0. If f/ € Hom,(o,H) be
the corresponding linear map with X = ¢/(0) = ¢’(0) + so0(4), we obtain
J(p)=0. O
Corollary 5.3. Let p € S6. Then S,, is a real 4-dimensional totally quater-
nionic submanifold of Gri (ImQ).

ass

Proof. Direct calculation. O

6 The cone field and the symmetric 3-form

6.1 The cone field

In the Penrose’s twistor theory, the self-dual structure (more precisely, the
self-dual complex conformal structure) [g] is defined so that its null cone is
tangent to [-surfaces everywhere.

Similarly in our case, we notice to the cone field C defined by

o= 1ve, (V € Gri,(ImQ)). (6.1)
Ves,

Then
Cv=J {f € Homuu(V.Hv) | £(p) = 0)

peS(V)

= {f € Homass(V7 HV) ‘ f(p) = ( for some p E S(V)}
= {f € Hom,(V, Hy) | rankg f < 2}

= {/ € Homuss(V, Hy ) | f(e1) < f(e2) x f(es) = 0}
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where {e1, €9, €3} is the oriented orthonormal basis of V' and

v xyx 2 = 3(0(72) — 2(51) (6.2)

is the triple cross product.

6.2 The symmetric 3-form

Let us define a cubic form P : TyGr} (Im Q) — Hy by

ass

P(f) = J(ex) x [(e2) x [(es) (6.3)

which is independent of the choice of the oriented orthonormal basis {e;, €2, e3}
on V. Since any polynomial one-to-one corresponds with a symmetric tensor,
we can define Hy-valued symmetric 3-form 7 such that

P(f) =~ 1. 1) (6.4)
for any f € Ty Gri (Im Q). By definition, we obtain
Cv = {f € TvGri,(ImQ) [ (f, [, f) = 0} . (6.5)

6.3 Main results

The associative Grassmannian Gr (ImQ) ~ G5/SO(4) is equipped with
the natural Riemannian metric h. Let V, R be the Riemannian connection
and the Riemannian curvature tensor of h.

Theorem 6.1. The symmetric 3-form v is parallel, i.e. Vv = 0.

Proof. Let g : SO(4) — SO(p) be the isotropy representation of G3/S0(4)
at the base point. Then by the property of the triple cross product, we obtain

P(o(g)f) =g P(f). (6.6)

Thus we obtain

v(e(9)e, 0(9)¥, 0(g)x) = g - v(, ¥, X). (6.7)
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Taking the differential, we obtain

Y(0+(A)p, 1, X) + (e, 0:(A), X) + (0, %, 0:(A)X) = A-7(0, ¥, x). (6.8)

for A € so(4). This means

YV, 9, x) + (0, Vi, x) + (e, ¥, Vx) = Vy (e, ¥, X) (6.9)

i.e. V is parallel. [l

Lemma 6.2. Let p € S® and V € G,,.

(i) (s, %, x) = 0 for any ¢, 4, x € TvS,.
(ii) Let p,1 be the complex basis of &, ~ CP?. Then x € TvS, if and only

if y(x, , 1) = 0.

Proof. This is directly checked when V' = ImH and p = i. Then the state-
ment follows by the G-symmetricty. O

Theorem 6.3. For any p € S®, the submanifold &, is real 4-dimensional,

totally quaternionic and totally geodesic.

Proof. By Corollary 5.3, we only need to show &, is totally geodesic.
For vector fields v,w € X(&,), we have [v,w] € X(&,). By v(v,v,v) =0,
we obtain 0 = V,,v(v,v,v) = 37(V4v,v,v). Hence by v(v,v,w) = 0,

2’)/(VUU7U7U)) = _7(U7U7 vvw) = _7(U7U7 va + [U,U)]) = 0

By Lemma 6.2, if we take v, w to be the complex basis, V,v € X(5,).
On the other hand, by (v, w,w) = 0,

29(v, Vyw,w) = —y(V,v,w,w) = 0.
Hence V,w € X(&,). Thus &, is totally geodesic. O

Theorem 6.4. Let p € S% and V € &,. Then, for any tangent vectors
2 ,Lp € TVG,TJ;
V(R ), p,) = 0. (6.10)
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Proof. We can assume {p,?} is the complex basis. Extending ¢,7 to a

vector field, we obtain
R(p, ) =V Vyp = VyVop = Vigyp € X(6)p). (6.11)
Hence we obtain (6.10). O

Remark 6.5. Theorem 6.4 is an analogy of the self-duality. Actually, a Rie-
mannian manifold (M, g) is self-dual if and only if

g(R(X,Y)X,Y)=0

for any tangent vector X,Y (see [6]).
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