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This is a resume of my talk at RIMS workshop. Although the ti-
tle contains Siegel modular forms, it expresses just original motivation.
Here we explain only a very simple part of results on relations with
Siegel modular forms, and give mostly results on new special polynomi-
als, since that part of the theory is interesting as itself. For applications
to Siegel modular forms such as automorphic differential operators and
special values of the standard L functions of Siegel modular forms, see
reference [1], [7], [8] given at the end of this report.

This report is given in a survey style without any proofs. Almost
no prerequisite is necessary. The contents of the claims are partly
published in papers but some of them are still written only in preprints.

1. CLASSICAL THEORY OF GEGENBAUER POLYNOMIALS

1.1. Definition. As a prototype of our theory, we first explain some
well known classical theory. For a generic complex number A, we define
Gegenbauer polynomials C2(t) of degree a by the following generating
function

At
(1—2tz+22 ZC

More explicitly, we have

R [ I

0<s<a/2
If we put y = C2(t), then we have the Gegenbauer differential equation
(1—t3)y" — 2\ + D)ty + ala+2)\)y = 0.

We have the following orthogonality between these polynomials.
/ CMHCME)(1 — )2 =0 if a #b.

1.2. Interpretation of Gegenbauer polynomials. For a so-called
Riemannian symmetric pair (G, K) of Lie groups, a representation of
G which has K-fixed vectors is called class one. For example, if we take
(G, K) = (50(d), SO(d — 1)), we take the space Harm? of harmonic
polynomials P(z) in d variables x € R? of degree a. Then SO(d) acts on

Harm irreducibly. This is called the spherical representation of degree
1
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a. This has a SO(d—1) fixed vector. We have SO(d)/SO(d—1) = §4¢!
(i.e. d — 1 dimensional sphere), and a SO(d — 1) fixed polynomial is
written as

Pla) = n(ayic( 1),
n(z)
where we put = (21, ...,z4) and n(z) = ¥+ - - - + 2. Since C,(x) is
of degree a and C,(—t) = (—1)°C,(t), the above P is a polynomial in
x. The harmonicity of P is proved as follows. We put t = x1/y/n(z).
Then by the chain rule of derivatives, we can show

Lop
i=1 8_3622 N
a/2—1 2 d20a dCa
n(z)" ((1 — ) (1) = (d = D= (1) +ald +a - Q)Ca(t)>.

This is 0 by the Gegenbauer differential equation. This is the usual
explanation written in many standard books.
But we give another interpretation which seems more intrinsic (and

of course also well known.) We consider polynomials P(z,y) in 2d
variables where z, y € R?. We assume that P(z,y) is harmonic for each

x and y. We also assume that P(zh,yh) = P(x,y) for any h € O(d),
where O(d) is the usual real orthogonal group of matrix size d. Then,
if d > 2, by the fundamental theorem on invatiants, there exists a
polynomial P in three variables n(z) = (z,x), n(y) = (y,y) and (z,y)

such that
= _ p(nz) (z,9)
P“"’”—P((x,y) n<y>)'

When Jg(x, y) is of degree a for each z or y, up to constant we have

P (n(x) (937?4)) _ (n(x)n(y))“/zqd‘”/? < (z,y) ) ‘

(z,y) n(y) n(z)n(y)

We can apply this polynomial to automorphic differential operators on
Siegel modular forms. For a real symmetric matrix Y, we write Y > 0
if Y is positive definite. We denote by H,, the Siegel upper half space
of degree n as follows.

H,={Z=2"€ M,(C);Z =X +iY,X,Y € M,(R),Y > 0}

For Z = (21 :) € H, and for the above P, we put

2
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Then for a Siegel modular form F(Z) on Hy of weight k = d/2, the

function
T1 0
(]DF) ( 0 ’7'2)

is a modular form of weight k + a for each 7 and 75.

Our first motivation was to ask what happens for more general F' and
domains. But apart from such motivations, it turns out that the theory
of polynomials itself is very interesting and fruitful. We explain this in
the rest of this report.

2. SIMPLE GENERALIZATION(JOINT WORK WITH D. ZAGIER)

For the content of this section, see [9)].
We assume that n is an integer such that n > 2. Consider polynomials
15(:31, ..., Z,) in z; € R? satisfying the following conditions.
(1) P(z1,...,x,) is harmonic for each z;.
(2) For some a = (ai,...,a,) € (Z>y)", the polynomial P is of
degree a; for the variable z; for each i.
(3) We have P(z1h, ..., z,h) = P(a1,...,x,) for all h € O(d).

We consider an n x n symmetric matrix 7' of variable components
t;;. By Condition (3), we have a polynomial P(T) in t;; for T' = (t;;)
such that P((x;, j)1<ij<n) = P(x1,...,3,) if d > n. As in the case of
Gegenbauer polynomials, it is better to consider P instead of P. We
consider the coordinate change from (z;) to T for the condition (1).
We write the (mixed) Laplacians A;; by the coordinate of 7. For

d Py
A =S
J ; 07,075,

the corresponding Laplacian in the coordinate of T' is given by

Dij = ddy + Yty

k=1

where we put 0;; = (1 + 62’3')3%’ So the condition (1) is written as
Dy;P =0fori=1, ..., n. The operators D;; for ¢ # j play important
roles later.

We denote by Pa(d) the space of polynomials P(7") such that D;; P(T) =
0 and P((ciciti;) = (I, ¢;")P(T). We call this a higher sphecial poly-
nomial of multidegree a = (ay, ..., a,). We put P(d) = ©aPa(d).

For any P, @ € P(d), we have an inner product

(P,Q)a = cald) / P(T)Q(T) det(T)@" /24T

>0
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where dT" = [, dt;; and

n—1 N —1
cn(d) = 27/ 2 n(n=D/4 H r (d 5 Z) )
i=1

Here ¢,(d) is adjusted so that (1,1); = 1. This integral converges for
d > n — 1 but is actually meromorphically continued for whole d € C
and for most of d, this is holomorphic. (We omit the details.)

If aband P € Py(d) and Q € Py(d), then we have

(Pa Q)d = 0.
For dimensions of P,(d), we have the following results. When n = 2
and d is generic, we have

. . 1 lf a1 = aog,
dim Pa(d) = { 0 otherwise.
When n = 3 and d is generic, we have
ifa < a: o _
dim P, (d) — 1 ifa; < a; + ay, for all {7, j,k} ={1,2,3} ,
0 otherwise.

Here the word generic can be explicitly defined, but omitted here.
When n > 4, we have dim P,(d) > 2 in general. More precisely, the
generating function of the dimensions can be given by

SN (imPa@)eg oz = [ - _lz,z.-
i%j

i=1 a;=0 1<i<j<n

The above dimension formula means that for n < 3, then non-zero
polynomials of P,(d) is automatically an orthogonal basis of P(d) for
n = 2 and 3. For n > 4, we do not know if there are any natural orthog-
onal basis of P,(d) for all a since the dimension is not one. Actually,
by experiments, we see that it seems there are no natural otrhogonal
basis. So we have the following natural question.

Problem: Is there any natural basis of P(d) and Pa(d) ?

Answer: There are two canonical bases of P(d) dual to each other,
though they are not orthogonal bases for n > 4.

2.1. Monomial basis. For a € Z~, we put
No(a) = {v =v'= (v;) € M\, (Z); vy = 0,15 > 0,v -1 = a},
where 1 = (1,1,...,1)". We write Ny = |J, No(a). By some abstract
argument, we can show that
dim Pa(d) = #(No(a)).

So it is natural to expect that there is a basis of P, (d) indexed by Ny(a).
We denote by C[T'] the polynomial ring over C of all the variables ¢;;
for T = (tw)
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Theorem 2.1. Assume that d is a complex number such that d & Z<.
Then for each v = (v;;) € No(a), there exists the unique polynomial
PY(T) € Pa(d) such that

PY(T) =T" + Q(T)
where T = T[,_.t;7 and Q(T) € (ti1,ta0, ... ,tan)C[T] (i.e. those

i<j Lij
taking value O under the restriction to t1; = tog = -+ = tp, = 0).

These polynomials PX(T) for v € Ny are a basis of P(d).

We can construct P (T) explicitly in the following way. For a vector
v=(v1,...,0,) € (Z>p)", we put

=[]
i=1
For any P € P,(d), we define an operator R;;(a) by
Rij(a)P — 5(T)a+ez-+ej (2—d) 1/2D (3( ) (2—d)1/2— aP(T)

Here ¢, is the unit vector whose k component is 1 and the other compo-
nents are 0. We can define 17;; as an element of an algebra of operators
on C[T'] which gives R;;(a) on polynomials of multidegree a. This R;;
is independent of a and maps Pa(d) t0 Paje;1e,(d). Here we can show
that the actions of R;; are commutative for all 4, j on P(d). Because
of this, for any v = (v;;) € Ny, we may write

=1 =:7

i<j
Proposition 2.2. We have
1
PYNT) = ———R"(1

where 1 is the constant function taking the value 1 and
€2a(d — 2) Hd (d+2)-- (d+ 2a; - 2).

2.2. Descending basis. We explain another canonical basis. Firstly
it is obvious that D;; are commutative for any ¢, j since they came
from A;; originally. In particular Dy,D;; = D;jDyy for 1 < i # 5 <n
and 1 < k <n, so we have

DijPa(d) C Pa—e,—¢,;(d).

Theorem 2.3. For generic d, there exists a set of non-zero polynomials
PP(T) € P(d) indexed by v € Ny such that

(1) PP(T) = 1,

(2) DZ]R/D(T) R/D eij—eji (T)7
where 0 is the zero matriz and ey is the n x n matriz whose (k,1)
components is one and all the other components are zero. Here we
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regard PP(T) = 0 if any component of v is negative. Besides, the
set {PP(T);v € Ny} is a basis of P(d) dual to the monomial basis
{PM(T);v € Ny}, that is, we have

(PY(T), PyN(T)) = b,
where d,,, is the Kronecker delta.

We call {PP(T)} a descending basis. We will explain a construction
of PP(T) below. The proof of this construction is very long and not
easy at all. Of course we have good technical reasons that we can prove
this, but the process itself is still very mysterious for us, and we do not
know any intrinsic reason why this works.

We consider an n x n symmetric matrix X = (x;;) = X" consisting
of dummy variables x;;, where we assume 1; = @92 = -+ = Tpy, = 0.
We introduce new variables o; (i = 1,...,n) defined by

det(Al, — TX) = (=1)'oy(T, X)A"™".
i=0
Here 0;(T, X) are of course polynomials in the coordinates of 7" and
X, but we regard o; themselves as new variables for a while. For any

v = (v;;) € Ny, we put
XY = fo]”

i<j
Our aim is to describe a generating function of P2(T'). In other words,
we want to write down a series G (T, X) such that

GM(T,X) =Y P,(T)X"
veNy
where each P, (T) is non-zero and proportional to PP(T'). This series

can be explicitly obtained in the following way.
For any ¢ € C such that i ¢ {—1,—2,...,}, we put

Ji(x) i il 14+ —— o +
i) =) ———— = . . .
—~rl(i+1), i+1 20i+1)(i+2)

For any integer k > 2, we put

M, = Z Tatb—k0a0p

0<a,b<k
k<a+b

9
0oy ®

where we put 0, =
We put



and for d > n — 1, we define G by

G(n)(ala ce 70n) = J(d—n—1)/2(UnMn)J(d—n)/z(Un—1Mn—1)
...... J(d_3)/2(02M2)(G(1)(01))

Writing o; by X and T in the final stage, this is a formal power series in
components of X with polynomial coefficients in ¢;;, and this gives the
generating function we want. Since coefficients of polynomials P, (7)
are rational functions of d, the restriction d > n—1 is replaced by much
weaker condition, but we omit the details here.

Example. When n = 2, we have
1

(1= 01 /272 — o) @2
Here 01 = 2t15%19, 09 = —(t11tas — t25)23,, SO we have
1
(1 = 2t10w15 + trtoead,y)d-2/2

G(2)(O'1, 0'2) =

G2 —

Here in the coordinate of (z,y) € (R%)?, we have t12 = (z,y), t11 =
n(z), taa = n(y). So this is nothing but the usual generating function
of (homogenous) Gegenbauer polynomials.

When n = 3, we have

—(d—4)/2

(3) 1 A0+ vV Ag—80'3

G (01,09,03) = :
\/ Ag — 80'3 2

where Ag = (1 — 01/2)? — 09. This is a new generating function.

For n > 4, the series G™ is not algebraic in general. But for example,
when n = d = 4, we have

A+ VA,

@ _
G 2\,

where
Al = A?) - 80'3 +40'4
AQ = A? - 160’4(4 - 20'1 - A0>2.

When n = 4 and d is an even integer such that d > 4, then we can
show that G™ is always an algebraic generating function. For other d,
this is not algebraic.

One interesting point of this description is that the expression of
G™ has a recursive structure on n, in spite of the fact that for differ-
ent n, the meanings of o; are different. Practically, we can continue
calculation of the generating furnctions recursively starting from n = 1
to general n as far as we want, and we can calculate the descending
basis PP (T) for small a by replacing o; by polynomials in 7" and X by
definition and seeing the coefficient of X”.
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3. MOST GENERAL CASE

For this section, see [5].

3.1. Two bases. V\~7e fix two natural integers n > 2 and r > 2. We say
that a polynomial P(Y") in components of an n x d matrix Y = (y;,)
is pluri-harmonic if

d

82
A,;P=0 for all A;; = E _—
J / =1 ayil/ayjy

Throughout section 3, we fix an ordered partition n = (ny,ng, ..., n,)
of n with n =n; +---+mn, and n; > 1. (We changed the notation
from z; € R? to y,; since z woud be confusing with the matrix X of
dummy variables.) We take an n x d matrix Y of variable components
and write

Yy

Y=1{:],
Y,

where Y; € M, .. We denote by GL(n;) the general linear group of
matrix size n; over C. We put

GL(n) = GL(n) x --- x GL(n,).

For each fixed irreducible polynomial representation (p, V') of GL(n),

we consider following V-valued polynomials P(Y).
(1) We have
AYy
Pl o | =p(A)PY),
A4Y,
where A = (Ay,...,A,) € GL(n) = GL(ny) x - -+ x GL(n,).
(2) Each component of P(Y) is pluri-harmonic for each Y;.
(3) P(Yh) = P(Y) for all h € O(d).

As before, by condition (3), for d > n, we have a V-valued polynomial
P(T) in t;; for P(Y) such that P(Y) = P(Y'Y"). We will interpret the
condition (1) and (2) by a condition on T". We write 7" by matrix blocks
as T' = (T,q)1<pq<r Where T),, are n, x n, matrices. We put

I(n) ={(k,1);m+ - 4ni_1+1 < k, I < ny+- - +n; for some 1 <i < r}.

In other words, we have (k,l) € I(n) if and only if ¢, is a component
of some diagonal block T}, = Y,Y,. In T variable, the conditions (1)
and (2) means

(3) Dy P(T) =0 for all (¢, ) € I(n).



(4) P(ATA") = p(A)P(T), where

A, 0 0
A=10 . 0
0 0 A,

Now we regard these conditions (3) and (4) as conditions on gen-
eral V-valued polynomials P(T), forgetting Y. So now d can be any
complex number. We denote the vector space of V-valued polynomials
in components of T satisfying (3) and (4) by P;'(d). From this space
we can construct automorphic differential operators on Siegel modular
forms. That is, for P(T) € Py (d), put

R 0 (1465 0

We write Z € H by block matrices as Z = (Z,,) in the same way as
T and write Z, = Z,,. If I is a Siegel modular forms of degree n of
weight k = d/2, then the function

Z, 0 - 0

0 Zy, 0 0
(DF) .

: 0

0 --- 0 Z.

is a Siegel modular form of weight det® ® p, for each Z,, where p =
®y—1pp for irreducible representations p, of GL(n;).

But before considering the representation p, it is useful to define the
following space of scalar valued polynomials.

P(d) ={P(T) € C[T); D;;P =0 for all (,7) € I(n)}.

We embed GL(n) to the space of n X n matrices by mapping each
component of A = (A4;,...,A,) € GL(n) to the diagonal blocks of an
n X n matrix as in the condition (4).

Proposition 3.1. The space P*(d) is invariant by the action of GL(n)
giwen by P(T) — P(AT'A) for A € GL(n).

So it is reasonable to see the space P"(d) first and consider the
irreducible decomposition of GL(n) later.

3.2. Two canonical bases for partition n. We put
P2(d) = {polynomials in P"(d) of multidegree a} = P™(d) N Pa(d).
Ng'(a) = {v € No(a);v;; = 0 for all (i,7) € I(n)}.

We put N} = U, N (a).

Then for generic d, we can prove that

dim P (d) = #(Ng'(a)).
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We write block matrices of T' as before by
T = (qu),
where T}, are n, x n, matrices.

Theorem 3.2. (Monomial basis). Assume that d € R and d > n — 1.
For each v € NP, there exists the unique polynomial PM(T) € P»
such that
PY"™T) =T" +Q(T)
for some polynomial Q(T') with Q(T)|r,,=1s==1., = 0, where we write
™ =1]t7.
i<j

The set of {PM™(T);v € Ny} is a basis of P™(d).

We call these polynomials monomial basis for the partition n. The
notion of monomial basis depends on the partition n. Although P™(d) C

P(d), we note that { P21™(T)} is not a part of monomial basis { PM (T}
in the sense of section 2.

Theorem 3.3 (Descending basis). For an n x n symmetric matriz X,
write X = (X,,) by matriz blocks where X, are n, X n, matrices.
Defining o; = o;(T, X) as before, we put

G0, ..., 00) = G™ (01, ..., 00)| X1 = Xapme X, =0

and write
G*o1,....00) = Y PNT)X".

veENg
Then the set of P2(T) is a basis of P™(d).

3.3. Construction. First we give a concrete construction of the space
P,(d) by using the monomial basis. We fix a multidegree a. We put

W, = the subspace of C[T] spanned by polynomials
in the set {PM(T);v € Ny(a),v & Ny(a)"}.
Proposition 3.4. We have
P2 (d) = Wi~

By using this, we can explicitly write down PM®(T) in the following
way. Any polynomial in P(d) is a linear combination of the monomial
basis PM(T) in the sense of section 2. By the fact that P*(d) C P(d)
and by definition, the monomial basis PX® for a partition n for v €
NP (a) can be written as

PY™T) =P (T)+ Y P (T)
HENo(a)
HENG (a)

for some constants ¢, € C. So the problem is how to write down c,,.
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We put ¢, = (Py(T), PY'(T)). Then by the previous Proposition,
the coefficients c,, are solutions of the following simultaneous equation.

Cur + Z CuCpr = 0.
HENo(a)
RENG (a)
But before solving this, we need concrete values of ¢, ,. We explain
how to obtain these values. Any polynomial P(T") € P(d) is written as
a linear combination of the descending basis PP(T) of P(d). So write

= > d,PI(T)
veNy
for some constants d, € C. Since PY(T) and PP(T) are dual with
each other, we have

Cp = di(PL (T ) . (7)) =
But by the relation D;; PP(T) = (T) and PP(T) = 1, we have

u €ij—€ji

) an
(HDZ”)PM => d, (HD“”) T)=d,. €C.

1<j veENy 1<J

We already explained how to calculate P}'(T') in section 2, starting
from constant 1 by simple differential operators. So by clear concrete
algorithm, solving linear equations, we can calculate PM*(T'). (By the
way, Theorem 3.2 assures that the linear equation above can be solved
uniquely under the assumption that d > n — 1.)

3.4. Algorithm to calculate P,(d). Next we explain how to calcu-
late basis of P}!(d) by using monomial basis for a partition n. It is well
known that for ¢ # j, the representations p;; of GL(n;) x GL(n;) on
the polynomial rings C[T};] in components of n; X n; matrix T;; giving
by P(Ti;) — P(A;T;;A}) is decomposed to

Pij = @ Pij i ® PXijno

depth(Xij) <min(n;,n;)

where \;; runs over dominant integral weights (or equivalently the
Young diagrams) and py,; », is the irreducible representation of GL(n;)
corresponding to A;;. Here py;; », and py,; », correspond to the same
Aij but the groups are different. We note that

ClT] = ®i<;C[T3;].

Then the natural representation p of GL(n) on C[T] is the tensor prod-
uct representations of p;;, so the restriction to GL(n;) of p on C[T] is
a subspace in the sum of tensor products ®@;.;py,; .~ of representations
of GL(n;) for various \;;. We note that ®;;px,. . is not irreducible at
all in general.
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Anyway, we fix an irreducible representation p of GL(n) realized on
C[T] as a part of the above representation. Multiplicity of p is not one
in general. We put d, = dim p and take a vector of polynomials

H(T)
FT)y=1{
fa,(T)
with f;(T) €
C[T] such that
F(ATAY) = p(A)F(T).
It seems that there are no natural standard way to write down the

above F', but it would be usually possible to write this down for any
concretely given p.

Theorem 3.5. Assumption and notation being as above, for

fz(T) = Z ca T,

we replace monomials TV by the corresponding monomial basis PM (T
and put

and

Py, (T)

Then P(T) € P}(d). All the elements of P;(d) are obtained in this
way.

If the multiplicity of p is one, then the above P(T') is unique up to
constant, but in general, there are several linearly independent P(T)
corresponding to the number of multiplicity.

Next we consider a theoretical characterization of our polynomials
using the descending basis and the generating series. We write a block
decomposition of X as X = X' = (X,,) where X,, is an n, X n,
matrix and we assume that X,, = 0 for p = 1,...,r. We regard the
polynomial ring C[X] in components of X as GL(n) module by the
action P(X) — P(A' X A) for A € GL(n).

Theorem 3.6. We have
Homgr, (ny)x--xarin,) (CIX], V) = P(d),

where the map is given by ¢ — ¢(G™ (X, T)).
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In this sense, our generating series G™ (X, T) is universal. If we

write
Dy = G™(X i)
v "7

and denote by C[[X]] the ring of formal power series in components of
X, then this is a C[[X]] valued differential operators which preserves
automorphy for the restriction to diagonal blocks (Z;, ..., Z,), chang-
ing automorphy factor from det?/? to det*?® p. So it would be natural
to called this the universal automorphic differential operator.

4. FURTHER REMARKS

(1) There exists a general formula for polynomials in P,(d) in the
case ny = ny = m, n = 2m written in one-line. (see [6]).

(2) There exists a theory of holonomic systems in two cases,
(i) The case when ny = ny = m, n = 2m (see [3]),
(ii) The case when n = 3 and ny = ny = ng = 1 ([10]). In the latter
case, we have a theory of non-polynomial solutions. We have some
candidate of holonomic system for general n with all n; = 1.
(3) The case r = 1 is not included in the above consideration. When
r = 1, numbers d and representations p such that P,(d) # 0 is very
restricted. As for the space of polynomials P,(d) in our setting in this
report, we know which d and p appears and how to write them. But
our problem in this case is that we have no proof at moment that this
really gives differential operators on Siegel modular forms. The proof
of this open problem should be quite different from the case r > 2.
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