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1. Introduction

In this paper we consider the following semilinear wave equation with a space-

dependent damping term
o 82u(z,t) — Au(x,t) + %latu(x,t) — u(z, )P, (z,t) € RN x (0,T),
| u(z,0) = ef(x), du(z,0) = eg(x), v eRY,

where N >3 (N €N),a>0and 1 <p < =2 (1 <p < oo for N = 3,4). The

initial data (f,g) is assumed to be smooth enough and compactly supported, that is,
f,g € C°(RY) with

supp(f, g) = supp f Usupp g C B(0, Ry) = {z € RY ; |z < Ro}.

The parameter € > 0 describes the smallness of initial data.

The semilinear wave equation (a = 0) has been studied from the pioneering work by
John [5]. In [5], the problem (1.1) with N = 3 and a = 0 is discussed and the following
assertion is shown

(i) If 1 < p < 1 + /2, then there exists a pair (f, g) such that the problem does not
have global-in-time solutions of (1.1) for all .

(ii) If p > 14 /2, then there exists a global-in-time solution of (1.1) with small €.

After that, there are many subsequent papers dealing with the /N-dimensional semilinar
wave equation (a = 0) (see e.g., Kato [6], Yordanov—Zhang [9], and Zhou [10]). For
the N-dimensional case, the following is proved in the literature.

(i) If 1 < p < ps(N), then there exists a pair (f, g) such that the problem does not
have global-in-time solutions of (1.1) for all €.

(i) If p > ps(NN), then there exists a global-in-time solution of (1.1) with small .

Here the exponent pg(n) is called the Strauss exponent defined as

Y(n,p) =2+ (n+1)p— (n—1)p°
ps(n) :==sup{p > 1; y(n,p) > 0}

- n+1++vn?+10n -7
B 2(n —1)

(n>1).



The study of maximal existence time (lifespan)
T. =T(ef,eg) = sup{T > 0 ; there exists a solution of (1.1) in (0,7)}.

of blowup solutions to (1.1) has been also studied (see Lindblad [7], Takamura—Wakasa
[8] and there references therein) as

(C=—" fN=1,1<p< o0,
Ce 5 fN=2 1<p<2,
Ca(e™! ifN=2 p=2

(12> T. ~ E2p(pzl) . b
Ce™ ~W¥p) if N =2 2<p<ps(2),

2p(p—1)

Ce™ ~Wp) if N >3, 1<p<ps(N),
exp(Ce?P=D) if N > 2, p=pg(N),

\

where a(s) denotes the inverse of the function s(a) = ay/1+log(1+ a). Therefore
the blowup phenomena for solutions to (1.1) with small initial data and their lifespan
estimate is already established.

If a > 0, then the there are few works dealing with global existence and blowup of
solutions to (1.1). If the damping term is milder, that is, we consider the problem

(1.3) O*u(z,t) — Au(z,t) + (1 + |2>) "2 0u(z, t) = |u(z, t)]P, (x,t) € RN x (0,T),
u(z,0) =ef(x), Qwu(x,0)=eg(x), x € RY,

with a € [0, 1), then Ikehata—Todorova—Yordanov [3] consider the global existence and
blowup of solutions to (1.3). In this case, they proved

i) fl<p<1+ ﬁ, then there exists a pair (f, g) such that the problem does not
have global-in-time solutions of (1.1) for all .

(i) If p > 1+ 52—, then there exists a global-in-time solution of (1.1) with small .

This means the situation is close to the parabolic problem

(1.4) ow(z,t) — (14|22 Av(x,t) =0, (z,t) € RN x (0,7T),
' u(z,0) = ef(x), reRN

which has an unbounded diffusion. The case o = 1 is more delicate. The linear problem

(15) {afu(x,t) - Au(xvt) + Cl(l + |x|2)_%8tu(x,t) = O, (1;7t) € RN X (O, OO),
U(I,O) = u0<I), @u(m,o) = ul(x), T C RN7

for a > 0. Ikehata—Todorova—Yordanov [4] discussed the decay property of energy
function

C(l+1t) if0<a<N
>+ 10, H?) de < '
/RN (W“(I’ I+ [0tz )l) v {05(1+t)‘N+5 if a > N.
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Therefore the situation strongly depends on the size of the constant a in front of the
damping term (1 + |z]?)~20,u.

Here we would like to consider the nonlinear problem (1.1) with a > 0. It is
remarkable that the equation in (1.1) has the scale-invariance, that is, if u satisfies the
equation on (1.1), then the scaled function wuy(z,t) = )\_P%lu()\L At) also satisfies (1.1).
This kind of structure helps us to analyse the dynamics of solutions.

Actually, in Tkeda—Sobajima [1] the finite time blowup of solutions is proved. More
precisely, they showed

Proposition 1.1 ([1]). Let N > 3 and let f, g be nonnegative, smooth and compactly
supported with g Z0. If 1l <p < oo for N =3,4,1 <p< %:Z for N > 5, then there
exists a unique solution

we W2([0,T.); I2®Y)) N WHe=((0, T.); H'(RY)) 0 L2([0, T.); HA(RY)).

(N-1)?
N+l

and % < p < ps(N + a), then the mazximal existence time T, of solution u is finite.
In particular, the following estimates hold: there exists a positive constant g such that

for every e € (0, &),

Here T, stands for the mazximal existence time of solutions. Moreover, if 0 < a <

_ 2p(p—=1)
T < Cse "W+ap) 0 if ps(N +a+2) <p<ps(N+a),
c exp(Ce™PP=Y) if p = pg(N + a),

where C' and Cs are positive constants independent of € and Cs — oo as & — 0.

We conjecture that pgs(NV 4 a) is the critical exponent for the problem (1.1) at least
for small a, that is, it is expected that p > ps(N + a) implies the global existence for
suitable initial data. From this viewpoint, it is natural that Proposition 1.1 gives the
blowup result for the “critical” case p = ps(N+a) with an estimate for 7. of exponential
type. However, in the subcritical case % < p < ps(N + a), the expected estimates

_ (1)
should be T. < Ce S(NFaw) (without 0-loss) which could not prove in [1].
The purpose of this paper is to deal with the estimate for 7. of solutions to (1.1) in
the subcritical case {7 < p < ps(N + a). The result is the following.

Theorem 1.1. Let f, g be nonnegative, smooth and compactly supported with g # 0 and
let u be the solution of (1.1) in Proposition 1.1. Then there exists a positive constant
g0 such that for every e € (0, &),

N-1
_ 2p(p—1) .
Ce "(N+ap) i —%f} <p<ps(N+a),

- {Cs—(fl—N“)‘l if 2 <p< Nil
e =

where C' is a positive constant independent of €.
Remark 1.1. We can directly check the following identity:

N+1 (N —1)2
Nta)=—1o g ="
ps(Nta) = 5 ="
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(see also Ikeda—Sobajima [1]). Therefore we have 0 < a < a, implies £+ < ps(N +a).
At this moment, we may regard Theorem 1.1 as an extension of the result for (upper)
lifespan estimates for the usual semilinear wave equations (a = 0) with small initial
data.

The proof is based on a test function method for wave equations developed in Ikeda—
Sobajima—Wakasa [2]. In particular, for the problem (1.1) we use positive solutions to
the corresponding linear conjugate equation

P20 — AD — —5,d
|z]

In Section 2, we prove Theorem 1.1 by using positive solutions to the corresponding
conjugate equation 92® — A® — £9,d

[E]

2 Proof of Theorem 1.1

To prove Theorem 1.1, we use the following structure. We will only give an idea for the
proof.

Lemma 1. Let u be a solution of (1.1). Assume that for everyt > 0, u(t) is compactly
supported. Then for every T € (0,T.) and ® € C(RY x [0,1.)) satisfying ,®(-,T) =
O(-,T7)=0,

5/ (g+| |f) (2,0) — f(x)8t®(x,0)dx+/oT/]RN|u|p<I>dxdt
//RN a2<1> A(I)—mat>da:dt.

Sketch of the proof. Multiplying the equation in (1.1) and ® and integrating it over RY,
we have

/ [ul|P® dx :/ (afu— Au+ i&u)@daz.
RN RN ||

o d 9 a
_E/RN (6tu+| | ) —u@tq)der/RNu(@t(I)—m@t(I))—Au(I)d:v.

Employing integration by parts and integrating it over [0,7], we obtain the desired
equality. O

Next, we fix n € C*([0,00);[0,1]) as follows:

1 it s <1/2,
n(s) = < decreasing if 1/2<s <1, np(t)=n(t/T).
0 if s > 1,

29,0 = 0, we first choose ® = n” = 7]12“pl7

||

where p’ = p/(p — 1) is the Holder conjugate of p. Then we have the following.

Since ¢(z,t) = 1 satisfies 07p — Ap —
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Lemma 2. Let f, g be nonnegative and smooth with supp(f,g) C B(0, Ry) and g # 0.
If T. > 2Ry, then for every T € (2R, T%),

1
T P
Cf,g€+/ / |u|p7]:2ppl dedt < TV 15Dy (/ / [P dxdt) :
o Jrn 7/2 JRN

where Cry = [on g+ alz|™ fdz > 0. In particular, we have
T /
Cf,g€+/ / luPna dxdt < CPTN™'"5=1
0o Jrw

Sketch of the proof. Applying Lemma 1 with ® = n?’, we have

T
C’ﬁga—l—/ / lulPn3? da dt
0o JrN
T / /
:/ / u 8,527);’) — Ap? ——8t7] )dazdt
/2 JRN |z

< Cl/ / |u|772p 2(— + T_) dx dt.
T/2 Jsuppu(t | |

1

1\ 7

(/ / |u|Pp da:dt) </ / T_) dxdt) :
7/2 JRN 7/2 J B(0,Ro+t) |z|

It should be mentioned that the restriction p > % comes from the integrability of
||~ in B(Ry +t). The remaining part is just a straight forward computation. O

Next, to find a good test function, we introduce
Blz,t) = QRo+t+|z)) " 2 “(2Ry+t—|z|)" "2, z € B(0,2Ry+1),

which is a self-similar solution of the equation 9?® — A® — %.9,® = ( given by

[l

—1+a 2|z|
P t)=(2Ry +1 _— N-1,—
[—3(..')3, ) ( 0+ +|x|) (67 ; 72R0_|_t_|x|2)

with a particular choice § = N — 1. The function F(,-,-, z) stands for the Gauss hy-
pergeometric function (®4 for general § is introduced in [1]). But because of the simple
structure of ¢, by direct computation we can verify that ¢ satisfies the linear conjugate

equation 92¢— Ap— mﬁt(p = 0 on supp u. The following lemma is a consequence of the

choice of & = 9577:2rp . This lemma can be understood as the concentration phenomena
to the wave front {|z| ~ t} for the wave equation (with scale-invariant damping term).

Lemma 3. Let f, g be nonnegative and smooth with supp(f,g) C B(0, Ry) and g % 0.
If T. > 2Ry, then for every T € (2R, T%),

T
M”S/ / luPn?? dz dt.
T/2 JRN

where 0 is a positive constant independent of €.

. _ N-1
deP TN

bt



Sketch of the proof. Applying Lemma 1 with ® = @n?*', we have
T
Croe <2 [ (o 00 3@0) = F@oF 0 et [ [ pupt dwa
o JrN

f ~ /A~ a ;o
/ / a1&277Tp Y+ 2at77:2rp P — —&ﬂﬁpp (p) dx dt.
T/2 JRN ||

p Oy
< 02/ / |u|n2p 2(— + =+ —) dx dt.
T/2 Jsupp u(t T2 T|I| T

5 03 5
uﬂpdazdt) (/ / +i+t— ddt) ,
(/T/2 /RN| & T/2 J B(0, R0+t) T|x| )

where we have used 0;¢ < 0 and the conjugate equation for ¢. The remaining part is
just a straight forward computation. O

Finally, we give a proof of Theorem 1.1.

Proof of Theorem 1.1. Assume that T, > 2R;. Then combining Lemmas 2 and 3, we
already have the following inequality:for every T € (2R, 1),

—14a 2
Cpge + 0ePTN- "2 < oTN 150

Then we see that if p < {44, then K = —(N — 1 — —) > (0 and therefore
oo\
T < .
(Of gg)
. —14a N+a,
On the other hand, if p < pg(N + a), then N% —1- z% = _v;(p_tl)p) < 0 and
therefore -

T < C \ "WN+ap) .
dep

Since T is the maximal existence time, we can choose T arbitrary close to T.. This
means that T, satisfies the same estimate as T" as above. The proof is complete. O
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