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1 Introduction and Main Results

This article is based on a joint work [10] with Dr.Yuki Kaneko(Japan Women’s University)
and Professor Yoshio Yamada(Waseda University). In this article we consider the following
free boundary problem of reaction diffusion equation:

u = Au+ f(u), t>0, 0<r<h(t),
u(t,0) = u(t,h(t) =0,  ¢>0, 11
R (t) = —pu(t, h(t)), t>0, '

h(0) = ho, u(0,7) = ue(r), 0 <7 < h,

where r = |z| for z € RN r = h(t) denotes a free boundary and is to be determined together
with u(t,r), Au = u., + %ur, i and hg are given positive constants. Nonlinearity f is a
C! function satisfying

(F) there exists K > 0 such that f(0) =0, f(K) =0 and f(u) <0 for u > K.

For any given hy > 0, ug is assumed to belong to J# (hg), where
H (ho) == {p € C*([0, ho]) : ¢'(0) = $(ho) =0, ¢(r) > 0in [0, ho)}.

This problem was introduced first by Du and Lin [4], when N = 1 and f(u) = u(a — bu),
as a population model which describes the spreading of a new or invasive species. They
showed that, as t — oo, either spreading (h(t) — oo, u(t, -) — a/b locally uniformly in
[0,00)) or vanishing (h(t) = he < 00, |[u(t, - )|lconw)) — 0) occurs. This result is called
the spreading-vanishing dichotomy. Since their work, this result have been extended by lots
of researches (see for example [5, 7, 9, 11]). For N > 2, Du and Guo [3] considered logistic
type nonlinearity, Du, Lou and Zhou [6] studied (1.1) with quite general nonlinearities, in
particular, monostable and bistable nonlinearities. See [8] for more studies of (1.1) with
N > 2.



In this talk, we consider f satisfying the following conditions:

(1) fe([0,00)), f(0)= f(uf)=flus)=f(uz) =0 with 0 < uj <uj<uj,
f(0) >0, f'(uj) <0and f'(uf) <0;

(i) f(s) > O*for s € (0,u) U (us,u3), f(s) <O0fors e (uf,us)U (uf,o0)

and / ' f(s)ds > 0;

f(u)/(flz — 1lp) is non-increasing in u € (U, u3) where iy € (u3,u3)

(fPB) (iii)

U2
is uniquely determined by f(s)ds =0;
(iv) limeus £(5)/(s — u3)" € (0, 00] for k = N/(N — 2) when N > 2,
and for some k € (0,00) when N = 2;

The typical example of f satisfying (i) and (ii) of (fiy) is given by

Fu) = ku (1 - 9) o

q 14 u?

with positive parameters k and ¢ being in certain parameter range. For N > 2 we impose
additional condition (iii) and (iv). These conditions are used to guarantee the uniqueness of
the “ground state solution” V. which will be mentioned below. We also note that f’(u3) > 0
implies (iv).

The main purpose of this article is to classify the asymptotic behavior of solutions. When
N = 1 and f satisfies (i), (ii) and f'(u3) > 0, Kawai and Yamada [12] have shown that
asymptotic behaviors of solutions are classified into four cases, in particular, they discovered
multiple spreading phenomenon corresponding to stable equilibrium points of f. The non-
linearity f satisfying (i), (ii) and f’(uj) > 0 is called positive bistable nonlinearity, which
was originally defined in [12]. In this article we demonstrate that the results in [12] can be
extended to the case where N > 2.

Theorem A. Suppose that f satisfies (fLs). Let (u(t,r), h(t)) be any solution to (1.1). Then
exactly one of the following four cases occurs:

(i) Vanishing : lim;_,o h(t) < \/A1/f'(0) and limy_ ||u(t, - )|lcone) = 0, where A\

is the first eigenvalue to the following eigenvalue problem with usual Laplacian A =
> 59_;2"

—Ap =Xy in By(0):={z e R :|z| < 1}
p=0 on 0B1(0)

(ii) Small spreading : lim; o h(t) = oo and limy_, u(t, - ) = ui uniformly on [0, R] for
any R > 0;

(iii) Big spreading: lim; ,o h(t) < oo and limy_, u(t, - ) = u} uniformly on [0, R] for any
R >0;



(iv) Transition : lim, ,. h(t) = 0o and limy_,o u(t, - ) = Vaec uniformly on [0, R] for any
R > 0, where Vaee = Vaec(r) is a unique positive decreasing function satisfying
" N -1 . / . *
V4t ——V 4+ f(V)=0 in (0,00), V'(0)=0 and lim V(r)=uj.
r

T—00

To classify the asymptotic behavior of solutions to (1.1) it is important to investigate
corresponding stationary problem. When N = 1 we can use a phase plane analysis to study
the stationary problem. However when N > 2 we can not use this method. In this talk
we will see that some results for some elliptic problems ([1, 2, 13, 14, 15]) can be used to
investigate corresponding stationary problem.

For any fixed hy > 0 and ¢ € # (hg) we consider a family of initial function uy = o¢ for
o> 0.

Theorem B. Assume that f satisfies (fis). Let (uy(t, ), he(t)) be the solution to (1.1) with
ug = 0@ for hg >0, ¢ € # (hg) and o > 0. Then there exist two numbers 0 < o} < a3 such
that

e the vanishing occurs for o € [0,07];

o the small spreading occurs for o € (0},03);
e the transition occurs for o = o3;

e the big spreading occurs for o € (03, 00).

Moreover o > 0 if hg < \/A1/f(0), and o7 =0 if hg > \/A1/f(0), where \; is defined as
in Theorem A.

Finally, I will give a result about the spreading speed of the free boundary, when the
small spreading, big spreading or the transition occurs. To investigate the spreading speed
of the free boundary, we have to consider the following semi-wave problem:

0. — g + f(q) =0, q(z) >0 for z>0.
(SWP),. { q(0) =0, ug.(0) =c, lim q(z) = u’,

where u* € R is a positive and stable equilibrium of f. Since f|[0,u;] is a monostable nonlin-
earity, it follows from [5, Proposition 1.9] that (SWP),: admits a unique solution pair (cs, gs)
for any p > 0. Moreover, cg = cg(t) is monotone increasing in g, lim, o cs(p) = 0 and
limy, 00 cs(pt) = ¢ holds, where ¢5 is the minimal speed of traveling waves determined by
f| 0,uf]-

| Tllr]le solvability of (SWP),; is delicate and it was shown in [12] that one of the following
two cases holds true:

(Case A) For every u > 0, there exists a unique solution pair (c,q) = (cg, gs) to (SWP),:.



(Case B) There exists a positive number p* such that (SWP),: admits a unique solution

(¢,q) = (cB,q) for p € (0, 1*) and no solution for every p € [u*, 00).

It was also shown in [12] that if (cp,gp) exists, then cs < cg holds. Moreover, by the phase
plane analysis given in [12], it can be shown that Case B occurs if and only if ¢f < ¢§ where

c? is the unique speed of traveling waves determined by the bistable nonlinearity f

Theorem C. Suppose that [ satisfies (fbg) and let (u, h) be the solution.

(i)

(i)

(i)

If a small spreading occurs for (u,h), then

lim @ = cg,
t—oo t

where cg is the number determined by unique solution pair to (SWP)u;.

If a transition occurs for (u,h),

If a big spreading occurs for (u,h), then the following properties holds true :
In Case A,

lim w = cg,
t—oo T

and in Case B,

. h(t) { cg  when u < u*,
lim — = .
t—oo cs  when p > p*,

where cg is the number determined by unique solution pair to (SWP)u§ and p* s the
number given in Case B.

In this article I will give a sketch of proof of Theorem A. For the proof of Theorems B
and C, please see [10].
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Sketch of proof of Theorem A

We first recall a general result obtained by Du, Lou and Zhou [6].

Proposition 2.1 ([6]). Assume (F) and let (u(t,r),h(t)) be the solution to (1.1). Then,
exactly one of the following two cases occurs.

(1) limy oo h(t) < oo and limy_,~ ||u(t, ')HC([O,h(t)D =0.



(2) limy_yo0 h(t) = 00 and limy o u(t, ) = v(r) in Cie([0,00)), where v(r) satisfies
" N -1 ! !
(S)U+Tv+f(v):0 for r>0, v'(0)=0

and either v = const. or v'(r) < 0 for r > hy; in the former case, the constant is
necessarily a nonnegative zero of f.

In what follows we assume that f satisfies (f5).
Comparing u(t, ) with a solution to the corresponding ordinary differential equation, we
can obtain the following lemma.

Lemma 2.2. For any solution (u(t,r),h(t)) and § € (0,—f(u3)) there exist M > 0 and
T > 0 such that

u(t,r) <uy+Me™ t>T and r €[0,h(t)].

Therefore, to prove Theorem A it is important to investigate problem (S), in particular,
constant solution to (S) and solution v = v(r) to (S) with 0 < v(r) < uj for r >0, v'(r) < 0
for r > hyg.

Lemma 2.3 ([13, 14]). Problem (S) has a unique ground state solution, namely a positive
solution Vaee = Viee(r) satisfying Vi.(r) < 0 for r > 0 and lim, o Viec(r) = uj. Moreover
Vaec(0) € (ub, ul) holds.

To investigate the solution set of problem (S) we consider the following initial value
problem:

(va){ v N; Lo+ F(0) =0 for >0,
v(0) = ¢, 0(0) = 0.

For given ¢ € [0,u3], let v = v(r) = v(r;¢) be the unique solution to (IVP). The following
proposition is a key to prove Theorem A.

Proposition 2.4. (i) If( € (Vaec(0),u}), then there exists R1(¢) > 0 such that v(R1(¢); () =
0 and v(r;¢) > 0 forr € [0, R1(C)) and v'(r;¢) < 0 forr € (0, R1(C)].

(i) If ¢ = Viec(0), then v(r;¢) = Vaec(r) for r > 0.
(ili) If ¢ € (uf, Vaec(0))\{us}, then the one of the following two cases occurs;
(iii-a) v is monotone for all r >> 1 and lim v(r;() = uj, or
r—00

(ili-b) v(r;C) € (uf,u3) takes local mazimum and minimum infinitely many times and
oscillates.

(iv) If ¢ € (0,u}), then there exists Ro(¢) > 0 such that v(R2(C);¢) =0 and v(r;¢) > 0 for
r € [0, R2(C)) and v'(r;¢) < 0 for r € (0, Re(C)].
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(v) If ¢ = 0,u},uj or uj, then v(r;¢) = 0,u},us or ul, respectively.

Remark . I will give a brief remark about how the results [1, 2, 15] are used to get the above
lemma. Please see [10] for details.

e Since f|[,u;) is monostable nonlinearity, we can get (iv) by using a Liouville type the-
orem for monostable nonlinearity in [2].

e Since f|pz 4z is bistable nonlinearity, for ¢ € (u],u3) we can use the result for classifi-
cation of solution to (IVP) with bistable nonlinearity in [1].

e To get (i) we use a nonexistence of positive upper solution to —Au = gu on exterior
domains in [15].

By Proposition 2.4 we get the following corollary.

Corollary 2.5. Let v be any solution to (S) which satisfies 0 < v(r) < uj forr >0 and
v=const. or v'(r)<0 for r> hy.
Then v € {0, uj, u3, ul, Viec}, or v =wv(r) satisfies

v(0) € (u], Vaec(0)\{u3}, v'(r) <0 for r>hg and lim v(r) = uj.

T—00
Now I will give the proof of Theorem A.

Proof of Theorem A. Step 1. We show that if lim; o h(t) < oo, then lim; . h(t) <
A1/ f'(0) and limy o0 [|u(?, -)llc(on@) = 0.

By Proposition 2.1 we have that if ho, = limy_o h(t) < oo then lim o [[u(t, -)|lcqonw) =

0. Hence it remains to show that hy, < \/A1/f’(0). Suppose that hy, > 1/A1/f(0). There

exists 7' > 0 such that h(T) > /A/f'(0). Take £ € (\/A1/f'(0),h(T)) and consider the

following eigenvalue problem:

—Ap =X p in B(0),
=0 on 0By(0).

Let A{ and ¢y(z) (normalize max,ep, (o) pe(z) = 1) are the first eigenvalue and the correspond-
ing eigenfunction. Then we have A\{ = \;/¢? and \{ < f/(0). Then it is easy to show that for
sufficiently small € > 0, ey becomes a lower solution and then lim inf,_, ||[u(t, - )|lcon@)) >
0 which is contradiction. Now Step 1 has been completed.
Suppose that h, = co. By Proposition 2.1 we have

tlim u(t,r) = v(r) locally uniformly in [0, c0)

— 00
where v(r) is a solution to (S) with 0 < v(r) < u§ and either v = const. or v'(r) < 0 in
(ho, 00). By Corollary 2.5, to complete the proof of Theorem A, it is enough to exclude the
possibility that v = 0 and lim, o, v(r) = u3.



Step 2. v 0.
Since hy = 00, there exists T' > 0 such that h(T") > /A1/f’(0). Then we can show
li{n inf ||u(t, - )|lcone)) > 0 and then v # 0 by the same argument as in Step 1.
—00

Step 3. v does not satisfy lim, ., v(r) = uj.
Let vgec(r) be Viee(r) with N = 1, that is vge. is the unique solution to

V' + f(v) =0, ¥(0) =0, lim v(r) =wuj, v'(r) <0 for r>0.
r—00

For any & > 0, T(t,7) := vgec(r — &) satisfies
N-—-1_

Up — Upy — U'T_f<ﬂ)
N-—-1
- U(/i,ec<,r - 5) - TU(Iiec(,r - f) - f(’UdeC<’l” - 5))
N-—-1

:—Tvéec(r—£)>0 for t >0, £<r<oc.

We will see that if lim, . v(r) = uj then for sufficiently large £ > 0, @ becomes an upper
solution.

Take ¢ > 0 any small such that u} + ¢ < vge(0) and suppose that lim, ,., v(r) = u?.
Then there exists K > hg such that v(K) < uj + ¢/2. Since limy_,o u(t,7) = v(r), there
exists 7' > 0 such that

u(t, K) <v(K)+¢e/2 <uj+e < v4ee(0) for ¢t >T.

On the other hand, since u(7T,h(T)) = 0 and vge. > uj, there exists & > K such that
u(t,r) satisfies

w(T,r) < uj <vagee(r — &) =u(T,r) for § <r < (T).
u(t,h(t)) =0 < uj < vgec(h(t) — &) =u(t, h(t)) for t >T.
Moreover, since u,(t,7) < 0 for r > hg, we have

u(t, &) < u(t, K) < vgec(0) =u(t, &) for t >T.

Therefore simple comparison principle applied over region {(t,7)[t > T and £ < r < h(t)}
yields that

u(t,r) < vgee(r — &) for t>7T and & <r < h(t).

Letting ¢ — oo we obtain v(r) < vgec(r — &) for r > €. Since lim, o vVaec(r) = uf, for
sufficiently large r > 0 the above inequality leads to a contradiction.
Now the proof of Step 3 and Theorem A has been completed. O
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