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1 Introduction

This paper is devoted to an announcement about results in [27] and a survey on re-
lated topics to [27]. We shall introduce separation phenomena of radial solutions to the
following Lane-Emden equation on the hyperbolic space H:

(H) ~Agu=|uff 'y in HY,

where N > 3, and p > 1. Here, H" is a manifold admitting a pole o and whose metric g
is defined, in the polar coordinates around o, by

ds* = dr? + (sinhr)?de?, r >0 ©eS' !

where dO©? denotes the canonical metric on the unit sphere S¥—!, and r is the geodesic dis-
tance between o and a point (r, ©). Moreover, A, denotes the Laplace-Beltrami operator
on (HY, g) given by

Ay f(r b, ...,0n_1) =(sinh r)’(N’l)ar {(sinhr)N’lan(r, 0, ..., 91\/_1)}
+ (sinh7) 2 Agn 1 f(r, 01, ..., On 1),

where f : HY — R is a scalar function and Agv—: is the Laplace-Beltrami operator
on the unit ball S¥~1. Furthermore, we also define the exponents py(N) and pyr(N),
respectively, by

P =515
and
N) = —92)2 — —
pr(N) (N (?\)/ —Ségvtgl\/ioj)v 1 N0



The exponents ps(N) and pyr(N) are called the Sobolev exponent and the Joseph-
Lundgren exponent ([29]), respectively.

To begin with, we introduce known results on separation phenomena of radial solutions
to the Lane-Emden equation in the Euclidean space

(L) —Au = [uP'u in RY,

where N > 3, and p > 1. This equation was posed by J.H. Lane ([31]) in 1869 and was
appeared in the astrophysical study of the structure of a singular star ([14, 17, 19]). There
is also an extensive mathematical literature ({12, 13, 18, 20, 21, 23, 29, 36]). Concerning
separation phenomena of radial solutions, X. Wang [44] and Y. Liu, Y. Li, Y. Deng [32]
proved the existence of a critical exponent on separation and intersection properties of
radial solutions to (L). Here, for each a > 0, we denote by u% = uk(r) the radial solution
of (L) satisfying uZ(0) = a.. Then, the following results were obtained:

Proposition 1.1 (Proposition 3.7 (iv) in [44], Theorem 1 (ii) in [32]). Let p > 1. Then
the following hold:

(i) If p € (ps(N),psr(N)), then for any o, 8 > 0 with o # 3, ul and uj intersect
infinitely many times in (0, 00);

(i) If p > psr(N), then for any o, 8 > 0 with o # B3, uX and u/% cannot intersect each
other in (0,00), i.e., ul, < uj in (0,00) if a < 3.

Proposition 1.1 implies that p;; (V) is the critical exponent with respect to separation
phenomena of radial solutions to (L). Thereafter, separation phenomena of radial so-
lutions has been researched further in [1, 2, 3, 5, 16, 22, 34, 35] and was also studied
for the equation (L) replacing u? by e* ([4, 6, 43]). Furthermore, making use of sepa-
ration property of radial solutions, A. Farina [18] and E.N. Dancer, Y. Du, Z. Guo [15]
showed the existence of stable solutions to (L). Separation property of radial solutions is
also applicable to the research on asymptotic behavior of solutions to the corresponding
semilinear parabolic equation to (L) (23, 24, 39, 40]).

On the other hand, from 2000’s, the study on elliptic equations on the hyperbolic
space has attracted a great interest. In particular, the Lane-Emden equation (H) on the
hyperbolic space has been well-investigated ([7, 8, 9, 10, 11, 25, 26, 28, 30, 33, 41, 42]).
Now, we shall state known results on separation phenomena of radial solutions to (H).

Here, for each o > 0, we denote by uf = u(r) the radial solution of (H) satisfying

H

u?(0) = o, i.e., vl is the solution of the following initial value problem:

—1
tanh r
u(0) = a.

' (r) + |u(r)|P u(r) =0 in  (0,+00),

Regarding separation phenomena of radial solutions to (H), E. Berchio, A. Ferrero,
G. Grillo [7] proved the following:

Proposition 1.2 (Theorem 2.14 in [7]). Let p > 1 Then there exists cy = apg(N,p) > 0

such, that for any o, B € (0, o) (v # B), ufl and uff cannot intersect each other in (0, 00).
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Differently from Proposition 1.1, Proposition 1.2 imply that even when p € (ps(N), ps(IV)),
there exist two regular radial solutions which cannot intersect each other in (0, 00). The
difference is related to the positivity of the first eigenvalue of —A,. Indeed, in the proof
of Proposition 1.2, letting the value at the origin less than the first eigenvalue sufficiently,
they showed the separation phenomena of radial solutions to (H).

From Proposition 1.2 and the analogue of Proposition 1.1, we can expect that for
p > psr(N), any two regular radial solutions to (H) cannot intersect each other in (0, 00).
Indeed, in [8], they state that by numerical analysis, for sufficiently large p and N, any
two regular radial solutions do not intersect each other in (0,00). Then, motivated by
above, we are interested in the following problem:

Problem 1.1. Is there a critical exponent with respect to separation phenomena of radial
solutions to (H)?

Following Problem 1.1, we shall investigate separation phenomena of radial solutions to
the equation (H).
Our main results of [27] are the followings:

Theorem 1.1. Let p > pyr(N). Then, for any o, 3 > 0 with o # 8, u! and ugl cannot
intersect each other in (0, 00).

Theorem 1.2. Let p € (1,ps(N)). Then, there exists oy = a1 (N,p) > 0 such that for
any o, > oy with a # 3, uf and ug intersect at least once in (0,00).

Theorems 1.1-1.2 imply that p;,(N) is the critical exponent with respect to separation
phenomena of radial solutions to (H). Therefore, we obtain an affirmative answer to
Problem 1.1.

As a consequence of Theorem 1.1, we shall also obtain the existence of a singular
solution of (H). In [27], our result is the following:

Theorem 1.3. Let p > py(N). Then, there exists a singular solution U™ (r) of (H)
such that

lim UH(T)(sinh'r’)% =1L,

r——+0
and for any a > 0,
L

(1.1) u, (r) <U"(r) < m in (0,00),

1
2 =
L={— N—Q—L .
p—1 p—1

Here, the inequality (1.1) in Theorem 1.3 implies that for p > py.(NN), the singular
solution U*(r) and any regular radial solution to (H) also cannot intersect each other in
(0, 00).

where



For the proof of Theorems 1.1-1.3, see [27]. Here, in the proof of Theorem 1.1,
applying Sturm-Liouville theory, we shall obtain separation property of radial solutions
to (H). Then, the method of the proof of Theorem 1.1 is also applicable to analysis of
separation phenomena of radial solutions to the following weighted Lane-Emden equation
in RV:

1

_ -1, N
(M) —Au—1+|x|2|u|p w in R,

where N > 3, and p > 1. Here, the equation (M) is known as Matukuma’s equation
([37, 38]). In the rest of this paper, we shall introduce the proof of separation property
of radial solutions to (M). Remark that the result on separation property of radial
solutions to (M) has been already obtained in [3, 32] and they employ phase plane method.
In this paper, making use of the argument of Sturm-Liouville theory, we shall derive
separation property of radial solutions to (M). In addition, we also remark that we
use the modification of the proof of [5] and the result on separation property of radial
solutions to (M) has also been derived in [5].

2 Matukuma’s equation

2.1 Preliminaries
We shall consider the following Matukuma’s equation in R¥:

1

M CAu—
(M) TP

wlP"'u in RY
|ul ,

where N > 3 and p > 1. Here, for each o« > 0, we denote by u, = u,(r) the radial
solution of (M) satisfying u,(0) = «. Namely, u, is the solution of the following initial
value problem:

-1 1

" N / p—1 _ :
u' (1) + u(r)—l—l+r2|u(r)| u(r)=0 in (0,+00),

u(0) = a.

Concerning separation property of radial solutions to (M), the following result was ob-
tained in [3, 32]:

Theorem 2.1 (Theorem 1.2 in [3], Theorem 1 in [32]). Let p > py(N). Then, for any
a, S >0 with o # B, us and ug cannot intersect each other in (0, c0).

In this section, making use of Sturm-Liouville theory, we shall prove Theorem 2.1. Here,
the following proof of Theorem 2.1 is the modification of that of [5]. To begin with, we
define

t =logr, and w,(t)= r%ua('r’).



Then v = v, satisfies

where

—
G=N-92- -2 ad =42 (N_o_ % .
p—1 p—1 p—1

Remark that a > 0 if and only if p > ps(N). Moreover, to the aim of the proof of
Theorem 2.1, we prepare the following lemma:

Lemma 2.1 (Lemma 3.1 in [5]). Let p > py(N) and T € R. Then there ezists no
function z € C?*(—o0, T| satisfying the following (i)-(iii):

(i) 2"+ a2z + (g)Qz >0 fort e (—o0,T);
(i) z(t) >0 fort € (—o0,T) and z(T) = 0;

(iii) =z(t) and 2'(t) are bounded on (—o0,T).

Lemma 2.1 has been already proved in [5].

2.2 Proof of Theorem 2.1
To the aim of the proof of Theorem 2.1, we shall show the following proposition:
Proposition 2.1. Let p > p;(N). Then, for any o > 0, v, satisfies

va(t) < L(1+ e%ﬁ for t € (—o0,00).

Proof. We prove the assertion by contradiction. Assume that there exists 7" € R such
that

v () < L(1+ th)P%l for te€ (—00,T), and wv,(T)=L(1+ eQT)ﬁ.
Now, we take
V(t) = L(1+¢*)5,

and V (t) satisfies, for ¢ € (—o0, 00),

1
V" aV’ — L7V 4 v
14 e
ZLLBQt(l +62t)ﬁ_2 2‘|‘ LGQt —I—a(l —|—€2t) >0
p—1 p—1 '

Here, the last inequality is followed from a > 0. Moreover, setting

wo(t) =V (t) — va(t),



we have

! / —1
(21) w; + aw, — LP w, + m@ > 0,
where
(2.2) O(t) = VP(t) —vh(t).

Then, applying Lemma 2.1, we shall show the non-existence of w,. Indeed, we can verify
that w, satisfies (ii)-(iii) of Lemma 2.1 directly. Furthermore, using the mean-value
theorem, we observe from (2.2) that

(2.3) Ot) < pVP Htwa(t) for t € (—o00,T).
Hence, combining (2.1) with (2.3), we derive

w! +aw), + (p— 1)L w, >0 for t € (—o00,T).
Since p > py(N) is equivalent to

a

(p—1L' < (5)2,

we see that w, satisfies (i) of Lemma 2.1. Thus, we observe from Lemma 2.1 that there
exists no function w,. This is a contradiction and we complete the proof. O

Proof of Theorem 2.1. To begin with, we shall show that for any «, 5 > 0 with a < £,

(2.4) va(t) <ws(t) for te (—o0,00).

We prove this assertion by contradiction. Assume that there exists T' € R such that
Ua(t) <wvg(t) for te(—o0,T), and v.(T)=vg(T).

Then, setting

we have
A ! — 1
(25) w;ﬁ +aw, g — LP lwa,g + m B > 0,
where
(2.6) Oa,5(t) = vi(t) — via(t).

Then, applying Lemma 2.1, we shall show the non-existence of w,g. Indeed, we can
check that w, s satisfies (ii)-(ili) of Lemma 2.1 directly. Furthermore, using the mean-
value theorem and Proposition 2.1, we observe from (2.6) that

(2.7) O 5(t) < pvg_l(t)wa,/g(t) < pLP7 N1+ eMwap(t) for t € (—oo,T).



Then, combining (2.5) with (2.7), we obtain

Wl g+ aw, 4+ (p— 1)L Mwas >0 for te (—oo,T).

Since p > py(N) is equivalent to

(p— 1Lt < (g)z

we see that w, g satisfies (i) of Lemma 2.1. Therefore, we observe from Lemma 2.1 that
there exists no function w, g. This is a contradiction and we obtain (2.4). Then, the
inequality (2.4) is equivalent to

uqo(t) <wug(t) for te (—oo,00).

Thus, we complete the proof. O
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