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1 Introduction
Consider systems of the form
i = flz;p), (z,p) € R xR, (1.1)

where f: R*™ x R — R" is analytic, p is a parameter and n is a positive integer. In [1]
we studied bifurcations of homoclinic orbits to hyperbolic saddle equilibria in a class of
systems of the form (1.1) including Hamiltonian systems. They also arise as bifurcations
of solitons or pulses in partial differential equations (PDEs), and have attracted much
attention even in the fields of PDEs and nonlinear waves. In this talk, we continue
to discuss such bifurcations for reversible systems. The results are also used to study
bifurcations of radially symmetric solutions in a coupled elliptic system [4]. See [3] for
the details on our results including the proofs of the main theorems.

2 Assumptions
We first make the following assumptions.

(R1) The system (1.1) is reversible, i.e., there exists a linear involution R such that R? =
idy,, and f(Rx;p)+ Rf(x;p) = 0 for any (z, ) € R?™ x R, where idy, is the 2n x 2n
identity matrix. Moreover, dim Fix(R) = n, where Fix(R) = {z € R*"| Rz = x};

(R2) The origin O is an equilibrium in (1.1) for all © € R, i.e., f(0; ) = 0.

Note that O € Fix(R) since RO = O. By assumption (R1) there exists a splitting
R?" = Fix(R) @ Fix(—R). Without loss of generality we can take the standard scalar
product (-,-) in R?" such that Fix(—R) = Fix(R)*. A fundamental characteristic of
reversible systems is that if () is a solution, then so is Rx(—t). We call a solution (and
the corresponding orbit) symmetric if z(t) = Rx(—t). It is a well-known fact that an
orbit is symmetric if and only if it intersects the space Fix(R). Moreover, if A € C is an
eigenvalue of D, f(0; 1), then so are —\ and \.

(R3) The Jacobian matrix D, f(0;0) has 2n eigenvalues £\;,..., £\, such that 0 <
ReA; < -+ < Re), (i.e., the origin is a hyperbolic saddle).

(R4) The equilibrium O has a symmetric homoclinic orbit z"(t) with 2%(0) € Fix(R) at
p=0.
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The variational equation (VE) of (1.1) around 2"(¢) at u = 0 is given by
€= Do f(a"(); 0)¢, (2.1)

to which & = i(¢) is a bounded solution tending to zero exponentially as t — Foo. Since
f(Rx;0) + Rf(x;0) = 0, we have D, f(z"(t);0)R + RD, f(z"(t);0) = 0. Hence, if £(t)
is a solution to (2.1), then so are £RE(—t) as well as —£(¢). For (2.1), we also say that
a solution &(t) is symmetric and antisymmetric if £(t) = RE(—t) and £(t) = —RE(—t),
respectively, and show that it is symmetric and antisymmetric if and only if it intersects
the spaces Fix(R) and Fix(—R) = Fix(R)*, respectively, at ¢ = 0. We easily see that
¢ = i"(t) is antisymmetric since i(t) = — Ri"(—1).

(R5) The VE (2.1) has two linearly independent bounded solution & = o1 (t) (= #%(t)), @a(t),
such that 4(0) € Fix(R).

3 Main results

Under assumptions (R1)-(R5), we have the following.

Lemma 3.1. There exist linearly independent solutions ;(t), j = 3,....2n, to (2.1)
such that they are also linearly independent of p;(t), 7 = 1,2, and satisfy the following
conditions:

dim o ()] =0, lm fg;(t)] =00 forj=3...m
Jim (1)) = oo forj=n+1n+2;
Jdim (b)) = oo, lim o;(6)] =0 forj=mn+3,....2n

with ©,+1(0) € Fix(R) and ¢,.2(0) € Fix(—R).

Let ®(t) = (¢1(t),...,p2,(t)). Then P(t) is a fundamental matrix to (2.1). Define
Y;(t), 7=1,....2n, by

<¢](t)790k(t)> = Ojk, ]7k = 1, A ,2’I’L7

where 0;;; is Kronecker’s delta. The functions ¢;(t), j = 1,...,2n, can be obtained by
the formula W(t) = (®*(¢))~!, where U(t) = (¢1(t),...,¥2.(t)) and the superscript *
represents the transpose operator. We can also have

i fu(0)] = o0 for j = 1,2
i [0 = o0, I [0 =0 for j=3.....n

tkgloo|w](t)|—0 for j=n+1,n+2;
tlgélo [;(t)] =0, tEr_noo|z/Jj(t)| =00 forj=mn+3,...,2n.

with ¢1(0), ¥n42(0) € Fix(—R*) and ¢5(0),¢,41(0) € Fix(R*). Morcover, ¥(t) is a fun-
damental matrix to the adjoint equation

€= D [(z"(1);0)¢. (3.1)
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(a) Saddle-node bifurcation (b) Transcritical bifurcation (c) Pitchfork bifurcation

Figure 1. Bifurcation diagrams: Supercritical ones are plotted in Figs. (a) and (c).

Note that if £(¢) is a solution to (3.1), then so are £R*¢(—t) as well as —£(¢).
We look for a symmetric homoclinic orbit of the form

v = a"(t) + apa(t) + O(V]al* + |ul?) (3.2)

satisfying x(0) € Fix(R) in (1.1) when p # 0, where a € R. Let k be a positive real
number such that x < %Re)\l, and define the Banach space

20 = {2 € CO(R,R"™) | sup |2(t)]e" < 00, 2(t) = —Rz(—t),t € R}
teR

where the supremum is taken as the norm. Let IT : 2° — Z°° be a projection given by

[ee]

() = a0 ensalt) [ (i), ()

—00

where ¢ : R — R is a continuous function satisfying

sup (0] < oc.,qlt) = a(~) and [ gl =1

o0

Define two constants as, by as

02 = [ Whial®) Ds (0 0)

b= [ et D20 a(t) )

We obtain the following result as in Theorem 2.7 of [1].

Theorem 3.1. Under assumptions (R1)-(R5), suppose that as,bs # 0. Then a saddle-
node bifurcation of symmetric homoclinic orbits occurs at p = 0. Moreover, it is super-
and subcritical if asby < 0 and > 0, respectively. See Fig. 1(a).
We next assume the following instead of (R4).
(R4’) The equilibrium x = 0 has a symmetric homoclinic orbit z(¢; ;1) in an open
interval I > p = 0. Moreover, (1, 2(t), #"(t; 1)) = 0 for any t € R and p € 1.

der assumption (R4’) we have ay = 0, so that we cannot apply Theorem 3.1. Let & = £#(¢)
be a unique solution to

€ =Dy f(a"(1);0)€ + (id — D, f (2" (¢); 0)
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with (¢,12(0),£(0)) = 0 and £(0) € Fix(R), and define
as = /_OO (Unsa(t), DuDaf (2™ (1); 0)oa(t) + DLf (2"(£); 0)(€" (1), o (1)) it

where 2(t) = 21(t; 0).

Theorem 3.2. Under assumptions (R1)-(R3), (R4’) and (R5). suppose that ag,bs # 0.
Then a transcritical bifurcation of symmetric homoclinic orbits occurs at u = 0. See
Fig. 1(b).

Finally we consider the Zs-equivalent or equivariant case, and assume the following.

(R6) Eq. (1.1) is Zy-equivalent or equivariant, i.e., there exists a 2n x 2n matrix S such
that S? = idy, and Sf(z;p) = f(Sz;p).

Especially, if x = Z(t) is a solution to (1.1), then so is x = SZ(¢). We say that the pair Z(¢)
and ST(t) are S-conjugate if T(t) # ST(t). We have the decomposition R*" = X ¢ X,
where Sz = x for x € X* and Sr = —x for x € X~. We also need the following
assumption.

(R7) We have X~ = (X)L, For every t € R, 2"(t),¥n41(t) € X and @a(t), ny2(t) €
X~

Assumption (R7) also means that ¢;(t) € X*. Moreover, a symmetric homoclinic
orbit of the form (3.2) has an S-conjugate counterpart for av # 0 since it is not included
in X*. In this situation, we have ay, by = 0 and cannot apply Theorems 3.1 and 3.2. Let
€ = £*(t) be a unique solution to

€ = Do f(a"(8); 0)€ + 5(id — D2 f (2" (1): 0) ((1), 2 (1))

with (©,42(0),£(0)) = 0 and £(0) € Fix(R), and define

by = / *(anlt), gD 0)(2(0) D), 22(0)) + DA (2(1); 0)(€°(1), (1)) ) .

We obtain the following result as in Theorem 2.9 of [1].

Theorem 3.3. Under assumptions (R1)-(R7), suppose that Gy, by # 0. Then a pitchfork
bifurcation of homoclinic orbits occurs at p = 0. Moreover, it is super- and subcritical if
dsby < 0 and > 0, respectively. See Fig. 1(c).

4 Example

We now illustrate our theory for the four-dimensional system

Ty =a3, T3=2T1— (1'% + ng)ml — Pa2,

. . 4.1
Ty = Ty, Ty = STy — 51(90% + 2$§)I2 — Bazy — 535537 ( )



where s > 0 and ;, j = 1,2, 3, are constants. Eq. (4.1) is reversible with the involution
R: (wla T, X3, "L‘4) — (:’Ul» Lo, —I3, —IL'4),

for which Fix(R) = {(x1, %9, 73,74) € R | 23,24 = 0}, and has an equilibrium at the
origin z = 0. Thus, assumptions (R1) and (R2) hold. Moreover, the Jacobian matrix of
the right hand side of (4.1) at = 0 has two pairs of positive and negative eigenvalues
with the same absolute values so that the origin z = 0 is a hyperbolic saddle. Thus,
assumption (R3) holds.

Suppose that Sy = 0. Then there exist a pair of symmetric homoclinic orbits

2 (t) = (£V/2 sech t,0, FV/2 sech ¢ tanht, 0)

to = 0. Thus, assumption (R4) holds. Henceforth we only treat the homoclinic orbit
2% (1) for simplification and denote it by 2"(f). The VE (2.1) around = = 2"(¢) for (4.1)
is given by

& =&, &= (1—-6sech’t)é, (2a)
& =6, & = (s— 2B sech’t). (2b)

Eq. (2b) has a bounded symmetric solution, so that assumption (R5) holds, if and only
! (2y/s+40+1)? -1
b= ;
8
while Eq. (2a) always has a bounded solution corresponding to & = i"(t). Moreover, if
condition (4.3) holds, then the differential Galois group of the VE given by (2a) and (2b)
is triangularizable.

Fix the values of ) and 33 # 0 such that Eq. (4.3) holds. Take p = /33 as a control
parameter. Applying Theorem 3.1, we show that a saddle-node bifurcation of symmetric
homoclinic orbits occurs at S5 = 0 for almost all values of s at least. We next assume that
B2 = 0. Then assumption (R4’) holds. Take p = (; as a control parameter. Applying
Theorem 3.2, we show that a transcritical bifurcation of symmetric homoclinic orbits
occurs at the values of 3; given by (4.3) for almost all values of s at least. Finally, we
assume that fs, 83 = 0. Then Eq. (4.1) is Zs-equivariant with the involution

¢eNU{0}, (4.3)

S ($1,$2;l‘37$4) = (3317 —X2,T3, —$4)

and assumption (R6) and (R7) hold. In particular, X* = {x9,24 = 0} and X~ =
{x1,23 = 0}. Applying Theorem 3.3, we see that a pitchfork bifurcation of symmetric
homoclinic orbits occurs at the values of 3; given by (4.3) if by # 0 for almost all values
of s at least.

Finally we give numerical computations for pitchfork bifurcations of homoclinic orbits
in (4.1). We take s = 2 so that Eq. (4.3) gives 8, = 1.70710678... for ¢ = 0, 5 =
7.5355339 ... for £ = 1 and B; = 17.36396103... for ¢ = 2 as the value of 3; for which
assumption (R5) holds. To numerically compute symmetric homoclinic orbits, we used the
computer tool AUTO [2] to solve the bondary value problem for (4.1) with the boundary
conditions

Lax(=T) =0, z(0) € Fix(R),
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Figure 2. Bifurcation diagrams for s = 2 and f2,83 = 0: (a) £ =0; (b) £ =1; (¢) £ = 2. Here
[1 is taken as a control parameter.

where T = 20 and L is the 2 X 4 matrix consisting of two row eigenvectors with negative
eigenvalues for the Jacobian matrix of (4.1) at the origin,

0 0 10
0 0 01
1 =B, 00
—62 S 00

Figure 2 shows bifurcation diagrams for 3, f3 = 0 when f3; is taken as a control parameter.
Note that there exist a branch of xo(= x4) = 0 for all values of 51, and a pair of branches
of solutions which are symmetric about xo = 0. We observe that a pitchfork bifurcation
occurs at values of f; satisfying (4.3) for ¢ = 0,1,2. The xy-components of symmetric
homoclinic orbits born at the bifurcation in Fig. 2 are also plotted in Fig. 3.
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Figure 3. Profiles of symmetric homoclinic orbits on the branches for s = 2 and f2, 83 = 0: (a)

B1=2; (b) B1=T1; (c) B = 16.
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