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1. Abstract

It is known that the added resistance in waves can be computed from ship-generated unsteady waves through the
unsteady wave-analysis method. In order to investigate the effects of nonlinear ship-generated unsteady waves
and bluntness of the ship geometry on the added resistance, measurements of unsteady waves, wave-induced
ship motions and added resistance are carried out using two different (blunt and slender) modified Wigley
models. The ship-generated unsteady waves are also produced by the linear superposition using the waves
measured for the diffraction and radiation problems and the complex amplitudes of ship motions measured for
the motion-free problem in waves. Then a comparison is made among the values of the added resistance by
the direct measurement using a dynamometer and by the wave-analysis method using the Fourier transform of
measured and superposed waves. It is found that near the peak of the added resistance where ship motions
become large, the degree of nonlinearity in the unsteady wave becomes prominent especially at the fore-front
part of the wave. Thus the added resistance evaluated with measured waves at larger amplitude of incident wave
becomes much smaller than the values by the direct measurement and by the wave analysis with superposed
waves or measured waves at smaller amplitude of incident wave. Discussion is also made on the characteristics
of the added resistance in the range of short incident waves.

2. Unsteady Wave Analysis and Added Resistance

We consider a ship advancing at constant forward speed U into a regular incident wave of amplitude A, circular
frequency wg. The depth of water is assumed infinite; thus the wavenumber of incident wave is given by
ko = w/g, with g the acceleration due to gravity. Corresponding to the experiment, only the head wave is
considered, and the analysis is made with a right-handed Cartesian coordinate system O-zyz, with the origin
placed at the center of a ship and on the undisturbed free surface, which translates with the same constant
speed as that of a ship along the positive z-axis. The positive z-axis is taken upward. The unsteady responses
of ship and associated ambient flow of fluid are assumed to be periodic with circular frequency of encounter
w = wg + ko U.

By assuming the flow inviscid with irrotational motion, the velocity potential is introduced and written in
the form

O(@,1) = U{ — o+ 6s()} +Re [ {do(w) + o) } "], (1)

where x = (x,y, 2) and ¢g(x) denotes the steady disturbance potential; ¢o(x) and ¢(x) are the spatial part
of the incident wave and unsteady disturbance potentials, respectively. By linear assumption, the disturbance
potential ¢(x) is decomposed as follows:
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Here p7(x) denotes the scattering potential and ¢; () the radiation potential due to the j-th mode of motion
(7 =1, 3, b for surge, heave, and pitch, respectively) with X its complex amplitude. Symbol ¢; is adopted to
express the length dimension for pitch; that is, 5 = L/2 and ¢; = 1 for surge and heave.

At a distance from a ship, the elevation of ship-generated unsteady wave may be computed by neglecting the
contribution from the steady disturbance, in the form
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Fig.1 Coordinate system and schematic illustration of wave components.

and each component of the unsteady disturbance potentials in (2) can be expressed by the far-field representation
in the slender-ship theory as follows:

(25,0 /QJ Glz — £,4,0)de, (4)

where ;(z) denotes the source strength along the z-axis and G(z,y, z) is the Green function, equivalent to the
velocity potential due to an oscillating and translating source with unit strength. By substituting Eq. (2) and
Eq. (4) into Eq. (3) and neglecting the local wave term in the Green function, the elevation of progressive wave
can be computed from
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Here C, (k) is known as the Kochin function (wave amplitude function) due to each component in the disturbance
potential, and C(k) in Eq. (8) is the total Kochin function for the motion-free case. The complex amplitude of
the j-th mode of ship motion, X; (j = 1,3,5), must be determined from the coupled motion equations.

In accordance with Eq. (8) for the Kochin function, the spatial part of ship-generated progressive wave
¢(z,y) can be written as the linear superposition of scattering wave (7(z,y) and radiation waves (;(z,y) by
surge (j = 1), heave (j = 3), and pitch (j = 5) motions, in the form

o) = A|clen+ ¥ G| )
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Noting that the wavenumbers k; (j = 1 ~ 4) appearing as the limits of integration in Eq. (5) are the roots of
k2 =k and ¢, = sgn(w + kU) = —1 for —oo < k < k1 and € = 1 for k2 < k < 0o, we can write the elevation
of progressive wave, Eq. (5), in the form
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where u(x2 — k?) is the unit step function, equal to 1 for x? > k? and zero otherwise.
Let us consider the Fourier transform of {(x,y) with respect to z, defined by the following integral:

ey = [ T ) e do (1)

Substituting Eq. (10) in Eq. (11) and using an integral representation of Dirac’s delta function
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we can obtain with relative ease the following relation:
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According to Maruo’s theory [1], the added resistance in head waves can be computed in terms of the Kochin
function by the following formula:
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Therefore, substituting Eq. (13) in Eq. (14) provides a formula for computing the added resistance with the
Fourier transform of ship-generated unsteady waves, in the form

Raw =2 {/k/k /th k(k+ko)dk (15)

Here we should note a few things regarding the wavenumbers k; (j = 1 ~ 4) appearing in Eq. (15). First, for
T > 1/4, ks and k4 become complex as is obvious from Eq. (7), and the integration range in Eq. (15) must be
treated as continuous for ko < k. Next, w = wg + koU holds in head waves, which gives the following relations:
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On the other hand, it can be proven that the relation between the ship’s speed U and the phase velocity ¢
of a wave with wavenumber k; (j = 1,3,4) along the z-axis is given by

0<U< ¢ for ks-wave

2
g <U<e¢ forky-wave (17)
c<U for ki-wave

Since ¢/2 is equal to the group velocity with which the energy of progressive wave is transported, we can
understand the location of existence, the relative wavelength, and the propagation direction when viewed from
a ship moving at forward speed U for each of the k;-waves (j = 1 ~ 4); these are schematically shown in
Fig.1. It is noteworthy that at 7 = 1/4, k3 becomes equal to ks and U becomes equal to the group velocity of
progressive wave. For 7 > 1/4, no wave exists ahead of the ship.

3. Experiments
3.1 Tested ship models

In order to see the effect of bluntness of the ship model, two modified Wigley models with different bluntness
were used in the experiments: one is a blunt model with wider breadth (L/B = 5.0) and the other is a slender
model with L/B = 6.67. For convenience, these ship models are called ‘blunt’ and ‘slender’ modified Wigley
models, respectively, in the present study. These modified Wigley models can be expressed mathematically as

(1) Blunt modified Wigley model:

n=(1-¢)1-€)(1+0.66" +&") +¢*(1-¢*)(1 - (18)
(2) Slender modified Wigley model:

n=01-¢)1-)(1+026%) + (1 -1 -€°)* (19)

where ¢ = z/(L/2), n = y/(B/2), and ( = z/d. The principal dimensions of these two models are shown in
Table 1.

In order to see also the degree of contribution of each component wave (;(z,y) defined in Eq. (9) in the linear
superposition of ship-generated unsteady waves to the added resistance, the experiments were conducted for
the cases of wave diffraction (where ship motions are completely fixed), forced oscillations in heave and pitch



Table1 Principal dimensions of ‘blunt’ and ‘slender’ modified Wigley models.

Item Blunt Slender
Length L(m) 2.5 2.0
Breath B(m) 0.5 0.3
Draft d(m) 0.175 0.125
Displacement V (m?) 0.13877 0.04205
Water-plane area A, (m?) 1.005 0.416
Gyrational radius kyy /L 0.236 0.248
Center of gravity KG (m) 0.145 0.0846

(where incident waves are absent), and free response in waves (where surge, heave, and pitch are free to respond
to waves). These experiments were implemented for the two modified Wigley models in the same way.

The lateral distance of a longitudinal line used for the wave measurement from the centerline of a ship (z-axis)
was set equal to y = B/2+ 0.1 m. The Froude number was F'n = 0.2 in all measurements in the present study.

The incident waves were generated basically with target amplitude set equal to A = 3.0 cm for the blunt
modified Wigley model and A = 2.5 c¢cm for the slender modified Wigley model (because the model size is
different as shown in Table1). When the wave steepness 2A/X\ becomes larger than 1/30, the target value of
incident wave amplitude was determined to satisfy 2A4/A = 1/30.

In the present study, it is important to see the validity of linear superposition in the unsteady wave and
associated nonlinear effects on the added resistance. Thus all experiments in waves were performed for A = 1.0
cm as well. In the forced oscillation tests, the oscillation amplitude was set equal to X3 = 1.0 cm for heave and
X5 = 1.364 deg for pitch to ensure satisfaction of the linear assumption in the wave generation.

4. Results and Discussion

4.1 Blunt modified Wigley model

Various results on the added resistance are shown in Fig.2. The results of direct measurement by a dy-
namometer are shown with closed circle for A = 3.0 cm and open circle for A = 1.0 cm. Corresponding results
obtained by the unsteady wave analysis using measured waves at A = 3.0 cm and A = 1.0 cm are shown with
closed triangle and open triangle, respectively. In addition, computed results by EUT (Enhanced Unified The-
ory) are shown with solid line. We can see a large discrepancy between the results by the direct measurement
and the unsteady wave analysis, particularly near the peak, but the results by the wave analysis at A = 1.0
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Fig.2 Added resistance on the blunt modified Wigley model at F'n = 0.2 in the motion-free case.



(a) Superposed Wave Fn=0.2, \/L=1.1, 3=180 deg.
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Fig.3 Wave profiles generated by the blunt modified Wigley model at F'n = 0.2 in a regular wave of
A/L =1.1. (a) Superposed wave, (b) Measured wave at A = 1.0 cm, (c) Measured wave at A = 3.0
cm.

cm are obviously larger than those by the wave analysis at A = 3.0 cm and approach the values of direct
measurement and potential-flow computation by EUT.

In order to see and confirm the linearity in the unsteady wave, the wave profile was computed by the linear
superposition according to Eq. (9), using the component waves obtained by the experiments of wave diffraction
(j = T7), forced heave (j = 3), and forced pitch (j = 5), together with complex amplitudes of heave and
pitch motions measured in the motion-free experiment. (The surge mode is not included, because the forced
oscillation test in surge could not be conducted.) For the scattering wave and complex motion amplitudes
in the linear superposition, the results measured at A = 1.0 cm are used. The superposed wave profile was
Fourier-transformed and the added resistance was computed from Eq. (15). Obtained results from this linear
superposition using component waves and complex amplitudes are also shown in Fig. 2 with diamond symbol.
It is remarkable that these results are much closer to the results of direct measurement (especially at A = 3.0
cm) and computed ones by EUT. Furthermore, except near the peak, the results with superposed wave are very
close to the ones with measured wave at A = 1.0 cm.

To see the difference at the level of wave profile, a comparison is shown among the superposed wave, measured
wave at A = 1.0 cm and measured wave at A = 3.0 cm in Fig. 3 for A/L = 1.1 as a typical example. From this
comparison, we can see that the overall appearance of the wave profile is very similar between superposed and
directly measured waves. However a prominent difference exists near the fore-front part of the wave; particularly
in the wave measured at A = 3.0 cm, the fore-front part looks collapsed (or probably the wave breaking occurs)
and the amplitude becomes small. At A\/L = 1.1, the superposed wave is still larger than the measured wave at
A = 1.0 cm in the fore-front part and the component of short wavelength is more conspicuous; these differences
are reflected in the results of the added resistance shown in Fig. 2.

The main source of difference in the fore-front part seems to come from the wave by the pitch motion. In
order to show this fact visually, each wave profile of the component waves in the linear superposition is shown in
Fig.4 for the case of \/L = 1.1 corresponding to the top figure in Fig. 3. From the top, (a), (b), and (c¢) are the
scattering wave, heave radiation wave, and pitch radiation wave, respectively; these are normalized with unit
amplitude. Furthermore, (d) and (e) are the heave and pitch component waves obtained after the measured



(a) Scattering Wave Fn=0.2, \/L=1.1, =180 deg.
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(b) Heave Radiation Wave z/(L/2) Fn=0.2, KL=12.5, 3=180 deg.
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(c) Pitch Radiation Wave /(L/2) Fn=0.2, KL=12.5, 3=180 deg.
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Fig.4 Component waves in the linear superposition generated by the blunt modified Wigley model at
Fn = 0.2 in a regular wave of A\/L = 1.1. (a) Scattering wave, (b) Heave radiation wave, (c) Pitch
radiation wave, (d) Heave radiation wave with motion complex amplitude multiplied, (e) Pitch
radiation wave with motion complex amplitude multiplied.

complex amplitude of each mode is multiplied. Therefore, the summation of (a), (d) and (e) provides the result
of superposed wave shown as the top figure in Fig. 3. From these figures we can see that each component wave
contributes to a large amplitude in the fore-front part but the most dominant component is the pitch radiation
wave. We should note that the forced oscillation tests were performed with relatively small amplitude (X3 = 1.0
cm and X5 = 1.36 deg) within the range of linear theory being valid. Therefore, when the amplitude of ship
motions becomes large, linearity in the amplitude of generated wave is violated particularly near the ship’s bow
or shoulder part due to large pitch motion. As a result, some nonlinear higher-order local waves with energy
dissipation may be generated.



4.2 Slender modified Wigley model

The results of the added resistance for the slender modified Wigley model are shown in Fig.5, where the
results of direct measurement by a dynamometer are indicated with closed circle for A = 2.5 cm and open
circle for A = 1.0 cm; the results by the unsteady wave analysis using measured waves are indicated with closed
triangle for A = 2.5 cm and open triangle for A = 1.0 c¢m; the results obtained from superposed waves are
indicated with diamond symbol. The linear superposition of unsteady wave has been made exactly in the same
manner as that for the blunt modified Wigley model, using the scattering wave and heave and pitch motions
measured at A = 1.0 cm and the radiation waves obtained by the forced heave (X3 = 1.0 cm) and pitch
(X5 = 1.364 deg) oscillations. For reference, computed results by EUT are also shown by solid line.

We can see a prominent discrepancy in the results obtained by the unsteady wave analysis between at A = 2.5
cm and at A = 1.0 cm near the peak, which is the same tendency as that in the blunt modified Wigley model.
The values of the added resistance obtained from superposed waves are further larger and almost the same as
directly measured values and in good agreement with computed results by EUT (except for a slight shift in the
peak wavelength).

To see the difference in the wave profile, an example is shown at A/L = 1.1 in Fig. 6, for superposed wave,
measured waves at A = 1.0 cm and A = 2.5 cm. Obviously the wave measured at A = 2.5 cm is different from
the others in the profile especially near the fore-front part of the wave and in the magnitude of short-wavelength
component. We can see also a difference in the amplitude of the fore-front part even between the superposed
wave and measured wave at A = 1.0 cm. These differences in the wave profile are reflected in the result of the
added resistance shown in Fig.5. This fact implies that higher-order nonlinear waves or nonlinear interactions
with steady disturbance may exist and ship-generated waves actually break when the ship motions are large.

The wave profile ((z,y) can be reproduced by the inverse Fourier transform with respect to & of the Fourier-

transformed wave data (*(k,y). In this computation, we can extract the wave in a specified wavenumber range
(say, B < k < ) from the following calculation:

Goewenle) = gz [ €y ik (20)

In the present study, the superposed or measured wave is decomposed into the wave groups in the following
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Fig.5 Added resistance on the slender modified Wigley model at F'n = 0.2 in the motion-free case.



(@) Superposed Wave Fn=0.2, \/L=1.1, 3=180 deg.
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Fig.6 Wave profiles generated by the slender modified Wigley model at F'n = 0.2 in a regular wave of

A/L =1.1. (a) Superposed wave, (b) Measured wave at A = 1.0 cm, (c) Measured wave at A = 2.5
cm.

four different wavenumber ranges:
Range-1: —50 < k < Ky,
Range-2: k <k <0,
Range-3: 0 <k < k¢,
Range-4: ko < k <50

where ko = w/U = Ko7 and k; is given by Eq. (7). It should be noted here that the wave groups in Range-1
and Range-4 have been neglected conventionally in computation of the added resistance (e.g. Ohkusu [2]) as
short-wavelength components giving less contribution.

In the case of A\/L = 1.1 and slender modified Wigley model shown in Fig.6, computed results from the
superposed wave are shown in Fig. 7 and corresponding ones from the measured wave at A = 2.5 cm are shown
in Fig. 8. It can be seen from Fig. 7 that the wave around the fore-front part includes various wave components
and especially short-wavelength components are not necessarily small. On the contrary, Fig. 8 obtained from the
measured wave at A = 2.5 cm tells us that short-wavelength components are very small even at the fore-front
part and longer-wavelength components are almost the same as those in Fig.7. These results suggest that a
difference in prediction of the added resistance originates from relatively short wavelength components around
the fore-front part and thus higher resolution for those wave components in the numerical computation is a key
for enhancement in the prediction of the added resistance.

(21)

4.3 Added resistance at short incident waves

Up to the preceding subsection, attention has been focused on the difference near the peak of the added
resistance. However, as seen in Fig. 2, directly measured results of added resistance on the blunt modified
Wigley model in the short-wavelength region are obviously larger than those obtained from the unsteady wave
analysis. In this region, the dominant component in the added resistance is due to wave diffraction, because
wave-induced unsteady ship motions are generally negligible.

To see the magnitude and trend of the added resistance in the diffraction problem (where ship motions are
completely fixed), the results of the added resistance in this case are plotted and compared in the same manner
as in the motion-free case. Fig.9 shows the result for the blunt modified Wigley model, and Fig. 10 shows



the corresponding result for the slender modified Wigley model. (The results at A = 3.0 cm for the blunt
modified Wigley model were confirmed to be essentially the same as those obtained in the previous experiment,
Kashiwagi et al[3].) From these figures we can see that: (1) the added resistance is almost constant irrespective
of the incident-wave length, (2) the results obtained from the wave analysis are in acceptable agreement with
computed values by EUT, and (3) directly measured values by a dynamometer are slightly larger than those by
the wave analysis especially in the short-wavelength region.

More importantly, from a comparison with the results of motion-free case (specifically a comparison between
Fig. 2 and Fig.9), we can see that the added resistance in the motion-free case is obviously larger than that in
the diffraction case at short incident waves; this tendency is prominent for the blunt modified Wigley model. In
the range of short incident waves, although wave-induced motions are negligibly small, the steady sinkage and
trim in the motion-free case are naturally nonzero. Because this is only the difference between the motion-free
and diffraction cases in short incident waves, this difference can be a reason of the fact that the added resistance
in the motion-free case is slightly larger than that in the diffraction case. This means that there must be
interactions between steady and unsteady flows, and the effect of steady sinkage and trim should be taken into
account in the prediction of the added resistance; which may become more important for blunt ships.

5. Conclusions

In order to study the contribution of unsteady wave-making component in the added resistance and nonlin-
ear effects in ship-generated waves on the added resistance, experiments were conducted for measuring ship-
generated unsteady waves, wave-induced ship motions, and the added resistance by using two different modified
Wigley models and two different incident-wave amplitudes. The wave measurement was carried out for three
canonical problems of wave diffraction with ship motions fixed, forced oscillations in heave and pitch, and free
response of ship motions in waves. Then by using measured waves in the diffraction and radiation problems,
the ship-generated unsteady wave was produced by the linear superposition.

Through comparisons of superposed waves with directly measured waves in the motion-free condition at
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Fig.7 Wave components extracted from superposed wave for the slender modified Wigley model at F'n =
0.2 and A\/L =1.1.



5 Measured Wave at A=0.025m in Range-1 (-50<k<k,) Fn=0.2,\/L=1.1
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Fig.8 Wave components extracted from measured wave for the slender modified Wigley model at F'n = 0.2
and in a regular wave of A/L = 1.1 and A = 2.5 cm.

two different incident-wave amplitudes, nonlinearity in the wave elevation was studied and the effect of that
nonlinearity on the added resistance has been investigated by means of the unsteady wave-analysis method.
The results obtained in this study can be summarized as follows:

1)

When ship motions become large near the peak of the added resistance, linearity in the unsteady wave
elevation is not satisfied especially at the fore-front part of the wave. Consequently, the added resistance
obtained from the waves measured at larger amplitude of incident wave becomes much smaller near the
peak than those obtained from superposed linear waves and measured directly by a dynamometer.

The added resistance evaluated using superposed waves is in fairly good agreement with the result com-
puted by the potential-flow theory (EUT in the present paper) over the range of wavelength tested.

The unsteady wave around the fore-front part consists of various wave components. In fact, short-
wavelength components are not negligible in the linear waves and important in precise prediction of the
wave profile at the fore-front part and hence of the added resistance.

At short incident waves, there was prominent difference in the added resistance on the blunt modified
Wigley model between the values by the direct measurement and by the unsteady wave analysis. However,
this difference is reduced in the diffraction problem where ship motions are completely fixed. This fact
implies that the steady sinkage and trim should be taken into account in the prediction of the added
resistance.

The added resistance in the diffraction problem is almost constant irrespective of the wavelength of
incident wave, and the values of direct measurement by a dynamometer are almost the same as those
obtained from the wave analysis. However, as the incident wave becomes short, directly measured values
tend to be larger than the results of the wave analysis. This difference should be attributed to nonlinear
effects which are not accounted for in the potential-flow theory.
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Fig.9 Added resistance on the blunt modified Wigley model at Fn = 0.2 in the diffraction problem.

Motion fix: Diffraction Fn=0.20, =180 deg.
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Fig.10 Added resistance on the slender modified Wigley model at F'n = 0.2 in the diffraction problem.
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