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Abstract. In this paper, we review a result from [1] on the existence of detached shock solutions
of steady potential flow past a convex blunt body in R

2, and summarize its proof. Furthermore,
we discuss an open problem about detached shock solutions of full Euler system, and explain its
difficulties.

1. Preliminaries

For a fixed constant γ > 1, called an adiabatic exponent , the steady compressible Euler system

∂x1(ρu1) + ∂x2(ρu2) = 0

∂x1(ρu1uj) + ∂x2(ρu2uj) + ∂xj
p = 0 for j = 1, 2

∂x1(ρu1B) + ∂x2(ρu2B) = 0 for B =
1

2
(u21 + u22) +

γp

(γ − 1)ρ

(1.1)

governs two dimensional steady flow of inviscid compressible ideal polytropic gas. And, the func-
tions (ρ, u1, u2, p) represent density, horizontal and vertical components of velocity, and pressure,
respectively. The velocity u is expressed as u = u1e1 + u2e2, for e1 = (1, 0) and e2 = (0, 1). The
function B is called the Bernoulli invariant , and it is a constant along each integral curve of the
velocity vector field u, provided that ρ > 0 holds. To simplify argument, we assume that

B = B0 (1.2)

for some constant B0 > 0.

Suppose that (ρ,u, p) is a C1 solution to (1.1) with satisfying ρ > 0, u1 > 0 and (1.2). Then it
satisfies

∂x1(ρu1) + ∂x2(ρu2) = 0

∂x1u2 − ∂x2u1 =
Sργ−1Sx2

(γ − 1)u1
ρu · ∇S = 0

B = B0

(1.3)

for S given by

S :=
p

ργ
.
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Here, the function S is called the entropy . The vorticity ω := ∂x1u2 − ∂x2u1 quantifies the local
rotation of the flow. If S ≡ S0 for some constant S0 > 0, then the system (1.3) is further simplified
as

∂x1(ρu1) + ∂x2(ρu2) = 0

∂x1u2 − ∂x2u1 = 0

S = S0

B = B0.

(1.4)

The system (1.4) is called the steady Euler system of irrotational flow , or the steady Euler system
of potential flow in the sense that u can be represented as u = ∇ϕ for a scalar function ϕ, called
a velocity potential function. The local sound speed c = c(ρ) and the Mach number M = M(ρ,u)
of the system (1.4) are given by

c(ρ) =
√

γS0ργ−1, M(ρ,u) =
|u|
c
, (1.5)

respectively. The flow governed by (1.4) is subsonic if M(ρ,u) < 1, sonic if M(ρ,u) = 1, and
supersonic if M(ρ,u) > 1. More interestingly, the system (1.4) is elliptic-hyperbolic mixed type if
M(ρ,u) < 1, and it is hyperbolic if M(ρ,u) > 1.

In this paper, we review a recent result on the existence of detached shock solutions of (1.4) past
a blunt body when an incoming supersonic flow is prescribed with uniform data with a horizontal
velocity. And, we discuss about an open problem on the existence of detached shock solutions of
(1.1) past a blunt body.

For a fixed angle θw ∈ (0, π2 ), let a symmetric wedge W0 in R
2 with the half-angle θw be given

by
W0 := {x = (x1, x2) ∈ R

2 : x1 ≥ |x2| cot θw}. (1.6)

The blunt body Wb considered in this paper is given as a perturbation of W0 as follows:

Definition 1.1. For a fixed constant h0 > 0, let a function b : R → R satisfy the following
properties:

x1

x1 = b(x2)

θw

Figure 1.1. Blunt body Wb induced from a symmetric wedge W0

(b1) b(x2) = b(−x2) for all x2 ∈ R;
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(b2) b ∈ C3(R);
(b3) b

′(x2) > 0 for all x2 > 0;
(b4) b

′′(x2) ≥ 0 for all x2 ≥ 0;
(b5) b(x2) = x2 cot θw for x2 ≥ h0.

For such a function b, we define a blunt body Wb by

Wb := {x = (x1, x2) ∈ R
2 : x1 ≥ b(x2)}. (1.7)

For simplicity of notations, let us set

b0 := b(0). (1.8)

We define a domain D by

D := R
2 \Wb.

We call (ρ, u1, u2) ∈ [L∞(D)]3 a weak solution of (1.4) if the following properties are satisfied:

(s1) ρ > 0 a.e. in D;
(s2) B = B0 and S = S0 pointwisely in D;
(s3) For any test function φ ∈ C∞

c (R2), it holds that
∫

D
ρu1φx1 + ρu2φx2 dx =

∫

D
u2φx1 − u1φx2 dx = 0.

Suppose that a non self-intersecting C1 curve Υ divides D into two open subdomains D− and
D+ so that D− ∩D+ = ∅ and D− ∪Υ∪D+ = D. A weak solution of (1.4) with a shock Υ is given
as a result from an integration by parts in (s3).

Definition 1.2 (Weak solution of (1.4) with a shock Υ). We define (ρ, u1, u2) ∈ [L∞(D)∩C0(D±)∩
C1
loc(D±)]3 to be a weak solution to (1.4) with a shock Υ if the following properties are satisfied:

(S1) (ρ, u1, u2) satisfy (s1)-(s2), and Υ is C1;
(S2) In D±, (ρ, u1, u2) satisfy the equations

∂x1(ρu1) + ∂x2(ρu2) = 0, and ∂x1u2 − ∂x2u1 = 0 pointwisely;

(S3) For each point x∗ ∈ Υ, define

(ρ+, u+1 , u
+
2 )(x∗) := lim

x→x∗
x∈D+

(ρ, u1, u2)(x), (ρ−, u−1 , u
−
2 )(x∗) := lim

x→x∗
x∈D−

(ρ, u1, u2)(x).

Then, (ρ, u1, u2) satisfy the Rankine-Hugoniot conditions

ρ+(u+1 , u
+
2 ) · ν = ρ−(u−1 , u

−
2 ) · ν, and (u+1 , u

+
2 ) · τ = (u−1 , u

−
2 ) · τ on Υ, (1.9)

where ν is a unit normal, and τ is a unit tangential on Υ.
(S4) On Υ, we have

(u+1 , u
+
2 ) · ν 6= 0 (or equivalently (u−1 , u

−
2 ) · ν 6= 0),

and

(u+1 , u
+
2 ) · ν 6= (u−1 , u

−
2 ) · ν.

(S5) On ∂D, the slip boundary condition

(u1, u2) · n = 0

holds for the inward unit normal vector field n on ∂D.
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Definition 1.3 (Entropy solution). Let (ρ, u1, u2) be a weak solution in D with a shock Υ in the
sense of Definition 1.2. We call the solution an entropy solution if

0 < ρ− < ρ+ <∞, and 0 < (u+1 , u
+
2 ) · ν < (u−1 , u

−
2 ) · ν <∞ (1.10)

hold on Υ, where the unit normal ν =
(u−

1 ,u−
2 )−(u+

1 ,u+
2 )

|(u−
1 ,u−

2 )−(u+
1 ,u+

2 )|
on Υ points interior to D+.

Here, (ρ−, u−1 , u
−
2 ) is called an incoming state.

Given constants (γ, S0, B0) with γ > 1, S0 > 0 and B0 > 0, define a set D∞ of incoming
supersonic states by

D∞(γ, S0, B0) :=

{

(ρ∞, u∞) ∈ R
2 :

1

2
u2∞ +

γS0ρ
γ−1
∞

γ − 1
= B0, ρ∞ > 0, u∞ >

√

γS0ρ
γ−1
∞

}

. (1.11)

The set D∞(γ, S0, B0) contains all the horizontal uniform supersonic flows with the Bernoulli
constant B0. For (ρ∞, u∞) ∈ D∞(γ, S0, B0), set M∞ as

M∞ :=
u∞

√

γS0ρ
γ−1
∞

.

Without loss of generality, let assume that S0 = 1 for the rest of the paper unless otherwise specified.

2. The existence of detached shock solutions to the system (1.4)

2.1. The existence of detached shock solutions. In [1], the existence of detached shock so-
lutions to the system (1.4) past the blunt body Wb is proved. In order to state the result more
precisely, we first define Hölder norms with weight at infinity.

Definition 2.1. Fix constants m ∈ Z
+, µ ∈ R, and α ∈ (0, 1).

(i) For a function f : R+ → R, define

‖f‖(µ)
m,R+ :=

m
∑

j=0

sup
x2∈R+

(1 + |x2|)j+µ

∣

∣

∣

∣

∣

dj

dxj2
f(x2)

∣

∣

∣

∣

∣

[f ]
(µ)
m,α,R+ := sup

x2 6=x′
2∈R

+

(1 + min{|x2|, |x′2|})m+α+µ
| dm

dxm
2
f(x2)− dm

dxm
2
f(x′2)|

|x2 − x′2|α

‖f‖(µ)
m,α,R+ := ‖f‖(µ)

m,R+ + [f ]
(µ)
m,α,R+.

(ii) Let D ⊂ R
2
+ be an open and connected domain. For points x,x′ ∈ D, let x2, x

′
2 denote the

x2-coordinates of x,x′, respectively. For a function φ : D → R, define

‖φ‖(µ)m,D :=

m
∑

j=0

sup
x∈D

(1 + x2)
j+µ

∑

0≤l≤j

|∂lx1
∂j−l
x2
φ(x)|

[φ]
(µ)
m,α,D := sup

x 6=x
′∈D

(1 + min{x2, x′2})m+α+µ
∑

0≤l≤m

|∂lx1
∂m−l
x2

φ(x)− ∂lx1
∂m−l
x2

φ(x′)|
|x− x′|α

‖φ‖(µ)m,α,D := ‖φ‖(µ)m,D + [φ]
(µ)
m,α,D.

Since the domain D is symmetric about x1-axis, the main result of [1] on the existence of detached
shock solutions past Wb is stated on the upper half plane R

2
+ := R

2 ∩ {x2 ≥ 0}.
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Theorem 2.2. [1, Theorem 2.13] Fix γ > 1 and B0 > 0. And, fix β ∈ (0, 1).

(a) (The existence of detached shock solutions) For a fixed constant d0 > 0, there exists a small
constant ε̄ > 0 depending on (γ,B0, d0) so that if the incoming supersonic state (ρ∞, u∞) ∈
D∞(γ, 1, B0) satisfies M∞ = 1

ε
for ε ∈ (0, ε̄], then the system (1.4) has an entropy solution

(ρ,u) in R
2
+\Wb for u = (u1, u2) with a shock Υsh = {(fsh(x2), x2) : x2 ≥ 0} in the sense of

Definition 1.3 for the incoming state (ρ∞, u∞, 0). And, the solution satisfies the following
properties:
(i) fsh(0) = b0 − d0;
(ii) There exists a constant δ > 0 depending only on (γ,B0, d0) such that

b(x2)− fsh(x2) ≥ δ for all x2 ≥ 0;

(iii) Setting as Ωfsh := {x = (x1, x2) ∈ R
2
+ \Wb : x1 > fsh(x2), x2 > 0}, we have

lim
|x|→∞
x∈Ωfsh

|(ρ,u)(x) − (ρεst,u
ε
st)| = 0, and lim

x2→∞
|f ′sh(x2)− sεst| = 0

for the uniform state (ρεst,u
ε
st, s

ε
st) uniquely determined as a strong shock state corre-

sponding to the half-wedge angle θw on the shock polar curve of the incoming state
(ρ∞, u∞). Here, uε

st = (uε1, u
ε
2) is a constant vector in R

2.
(iv) There exists a constant α̂ ∈ (0, 1) depending only on θw, and a constant C > 0 depend-

ing only on (γ,B0, d0) such that

‖fsh − f0‖(−β)
2,α̂,R+ + ‖u− uε

st‖(1−β)
1,α̂,Ωfsh

≤ Cε
2

γ−1 (2.1)

for the functions f0 defined by

f0(x2) := sεstx2 + b0 − d0. (2.2)

(v) There exists a constant σ ∈ (0, 1) depending only on (γ,B0, d0) so that the Mach
number M(ρ,u) defined by (1.5) satisfies the inequality

M(ρ,u) ≤ 1− σ in Ωfsh .

In other words, the flow in Ωfsh is subsonic, thus Υsh is a transonic shock in the sense
that the flow changes from supersonic to subsonic across the shock Υsh.

(b) (Convexity of detached shocks) For a fixed constant d0 > 0, let ε̄ be from Theorem 2.2(a).
Then, there exists a constant ε̂ ∈ (0, ε̄] depending on (γ,B0, d0) so that if the incoming
supersonic state (ρ∞, u∞) ∈ D∞(γ,B0) satisfies M∞ = 1

ε
for ε ∈ (0, ε̂], then the system

(1.4) has an entropy solution (ρ,u) in R
2
+ \Wb with a shock Υsh = {(fsh(x2), x2) : x2 ≥ 0}

that satisfies
f ′′sh(x2) ≥ 0 for x2 > 0

as well as all the properties (i)–(v) stated in Theorem 2.2(a).

2.2. Discussion about Theorem 2.2 (a).

Far-field asymptotic limit: We first explain how (ρεst, u
ε
1, u

ε
2, s

ε
st) is given.

It follows from Definition 1.2 and the statement (iii) of Theorem 2.2(a) that (ρεst, u
ε
1, u

ε
2, s

ε
st)

satisfies the following equations for (ρ, u1, u2, s):

ρ(u1 − su2) = ρ∞

u1s− u2 = u∞s

1

2
((u1)

2 + (u2)
2) +

γργ−1

γ − 1
= B0.

(2.3)
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According to [1, Lemma 2.5], ifM∞(= 1
ε
) is sufficiently large, or equivalently if ε is sufficiently small,

then the set of solutions (ρ, u1, u2, s) to (2.3) with satisfying the entropy condition in the sense of

Definition 1.3 is nonempty. Furthermore, there exist exactly two solutions (ρ(1), u
(1)
1 , u

(1)
2 , s(1)) and

(ρ(2), u
(2)
1 , u

(2)
2 , s(2)) that satisfy the slip boundary condition

(u1, u2) · nb = 0 on ∂Wb ∩ {x2 > h0}

for a unit normal nb on ∂Wb. And, we have |(u(1)1 , u
(1)
2 )− (u∞, 0)| 6= |(u(2)1 , u

(2)
2 )− (u∞, 0)|. With-

out loss of generality, we assume that |(u(1)1 , u
(1)
2 ) − (u∞, 0)| > |(u(2)1 , u

(2)
2 ) − (u∞, 0)|. The state

(ρ(1), u
(1)
1 , u

(1)
2 , s(1)) yields a strong shock solution of (1.4) past the symmetric wedge W0 of half-

wedge angle θw, and the state (ρ(2), u
(2)
1 , u

(2)
2 , s(2)) yields a weak shock solution. The far-field

asymptotic limit (ρεst,u
ε
st, s

ε
st) from Theorem 2.2(a) is equal to (ρ(1), u

(1)
1 , u

(1)
2 , s(1)). The words

‘strong’ and ‘weak’ are given because we have 0 < s(1) < s(2) < cot θw. Since (ρεst,u
ε
st) is the

state behind a strong shock, it follows from a shock polar analysis([1, 3]) that the Mach number

Mε =
|uε

st|√
γS0(ρεst)

γ−1
of the state (ρεst,u

ε
st, s

ε
st) is strictly less than 1.

Outline of the proof of Theorem 2.2(a): In [1], Theorem 2.2(a) is proved by a stream function
formulation. If (ρ, u1, u2) is a C1 solution to (1.4) in a domain, then the equation ∂x1(ρu1) +
∂x2(ρu2) = 0 in (1.4) implies that there exists a C2-function ψ to satisfy

∇⊥ψ = (ρu1, ρu2) for ∇⊥ψ := (ψx2 ,−ψx1). (2.4)

Such a function ψ is called a stream function in the sense that ψ is a constant along each integral
curve of the momentum density vector field ρu = ρ(u1, u2). Then, by applying the implicit function
theorem, one can show that there exists a unique smooth function ρ̂ = ρ̂(|q|2) so that if the Mach

number M(= |u|√
γS0ργ−1

) is less than 1, then the system (1.4) can be simplified as

div

( ∇ψ
ρ̂(|∇ψ|2)

)

= 0. (2.5)

And, Theorem 2.2 (a) can be proved by solving the following free boundary problem for (ψ, fsh) in
R
2
+ \Wb:

Problem 2.3 (Stream function formulation of free boundary problem). Fix a constant d0 > 0.
Find a function fsh ∈ C1

loc(R
+) with satisfying fsh(x2) < b(x2) for x2 ≥ 0 and a function ψ ∈

C1
loc(Ωfsh) ∩ C2

loc(Ωfsh) so that the following properties hold:

(i)

|∇ψ| <
(

2(γ − 1)

γ + 1
B0

)
γ+1

2(γ−1)

in Ωfsh (⇐⇒M 6= 1 in Ωfsh)

for Ωfsh := {(x1, x2) ∈ R
2
+ : fsh(x2) < x1 < b(x2)}

(ii) (Equation for ψ)

div

( ∇ψ
ρ̂(|∇ψ|2)

)

= 0 in Ωfsh

(iii) (Boundary conditions for ψ) Define

Υsh := {(fsh(x2), x2) : x2 ≥ 0}, Γsym := {(x1, 0) : fsh(0) < x1 < b(0)},
Γb := {(b(x2), x2) : x2 ≥ 0}.
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Then ψ satisfies the following boundary conditions:

ψ = ρ∞u∞x2 on Υsh,

ψ = 0 on Γsym ∪ Γb.
(2.6)

(Asymptotic boundary condition) In addition, ψ satisfies

lim
|x|→∞
x∈Ωfsh

|∇⊥ψ(x)− ρεstu
ε
st| = 0. (2.7)

(iv) (Free boundary condition)

f ′sh(x2) =

(

ψx1/ρ̂(|∇ψ|2)
)

(fsh(x2), x2)

(ψx2/ρ̂(|∇ψ|2)) (fsh(x2), x2)− u∞
for all x2 > 0,

fsh(0) = b0 − d0.

(2.8)

In [1], Problem 2.3 is solved in two steps:

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

point with the height L from x2 = 0

P0

∇ψ · (cos θw, sin θw) = 0

x1 = fLsh(x2)(free boundary)

M∞ = 1
ε

Figure 2.1. A cut-off domain

Step 1. Given a sufficiently large constant L, a free boundary problem for (ψL, fLsh) is formulated

with the additional boundary condition ∇ψL ·(cos θw, sin θw) = 0 given on a cut-off boundary, where
the cut-off boundary has an end point away from the boundary of the blunt bodyWb with its height
L from the line x2 = 0 (Fig. 2.1). Here, this end point is to be determined in solving the free
boundary problem. For convenience, we call L the height of the cut-off boundary .

And, the free boundary problem in the cut-off domain is solved by applying Schauder fixed point
theorem under the assumption of largeness of M∞ depending only on (γ,B0, S0, d0).

In this step, a local uniqueness of a solution to the free boundary problem can be addition-
ally achieved by applying the contraction mapping principle if M∞ is sufficiently large. But, the
largeness of M∞ may depend on L to guarantee the local uniqueness.

Step 2. Fix a sequence {Ln}∞n=1 so that each Ln is sufficiently large with Ln < Ln+1 for all
n ∈ N, and lim

n→∞
Ln = ∞. For each n ∈ N, one can solve the free boundary problem formulated in

step 1 in a cut-off domain with a cut-off boundary of the height Ln. Let (ψn, fsh,n) be a solution
to the free boundary problem. Then, one can extract a subsequence from {fsh,n}∞n=1 so that it
converges to a function fsh,∞ : R+ → R in C2 on any compact subset of R+. This procedure is
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done by applying Arzelá-Ascoli theorem and a diagonal argument. Then, a solution (ψ, fsh) to
Problem 2.3 can be constructed by using the limit function fsh,∞, the sequence {ψn} and a limiting
argument.

Further discussion on Theorem 2.2(a): Note that Theorem 2.2(a) cannot guarantee the unique-

ness of a detached shock solution. Suppose that (ρ,u, fsh) and (ρ̃, ũ, f̃sh) are two detached shock
solutions that satisfy all the properties (i)–(v) stated in Theorem 2.2 (a). Then, one can compute

functions ψ and ψ̃ from (ρ,u, fsh) and (ρ̃, ũ, f̃sh), respectively, so that (ψ, fsh) and (ψ̃, f̃sh) solve
Problem 2.3. If we had

lim
x2→∞

|fsh(x2)− f̃sh(x2)| = 0,

then it would follow from a contracting argument that fsh = f̃sh on R
+, thus ψ = ψ̃ in Ωfsh(= Ω

f̃sh
)

for sufficiently large M∞. But, the best estimate of |fsh(x2) − f̃sh(x2)| obtained from statement
(iv) of Theorem 2.2(a) is

|fsh(x2)− f̃sh(x2)| ≤ Cxβ2

for some constant C > 0.
And, for each (ρ∞, u∞) ∈ D∞(γ, 1, B0), one can construct a family of detached shock solutions

of (1.4) with different values of d0. A qualitative analysis shows that if d0 ≥ d for some d > 0, then
the estimate constants (ε̄, δ, C, σ) in Theorem 2.2(a) can be chosen depending only on (γ,B0, d).
Therefore, Theorem 2.2(a) implies that there exists a small constant ε∗ > 0 depending on (γ,B0, d)
so that if (ρ∞, u∞) ∈ D∞(γ, 1, B0) satisfies M∞ ≥ 1

ε∗
, then for each d0 ≥ d, there exists at least

one detached shock solutions (ρ,u, fsh) with

fsh = b0 − d0.

This yields infinitely many detached shock solutions for a fixed incoming supersonic data. In order
to pick a physically admissible detached shock solution, a further analysis on structural or dynamical
stability of detached shock solutions would be necessary.

2.3. Discussion about Theorem 2.2 (b).

Outline of the proof of Theorem 2.2(b): In [1], Theorem 2.2 (b) is proved in four steps.

Step 1. For a fixed a constant L sufficiently large, let (ψ, fsh) be a solution to the free boundary
problem in a cut-off domain with a cut-off boundary of the height L from the line x2 = 0. See §2.2
for the description on how a cut-off free boundary problem is formulated to solve Problem 2.3.

For u = u1e1 + u2e2 given by

u1e1 + u2e2 :=
∇⊥ψ

ρ̂(|∇ψ|2) ,

it is shown in [1, Lemma 6.3] that u1 > 0 holds away from the vertex point P0 of the blunt body
Wb. See Fig. 2.1. This implies that the speed |u| is strictly positive away from P0. In fact, P0 is a
stagnation point, that is, |u(P0)| = 0. This can be checked by using the boundary condition (2.6),
which corresponds to the slip boundary condition of u on Γsym ∪ Γb, and C

1 regularity of ψ up to
the boundary, which implies the continuity of u.

Step 2. Away from the point P0, define

Θ := arctan
u2
u1
, Q := ln |u|.
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By differentiating the equation B = B0 in the direction of u, we get the expression

u · ∇ρ = − |u|
ργ−2

u · ∇|u|. (2.9)

Next, we rewrite the first equation in (1.4) as ∇ · u + u·∇ρ
ρ

= 0, then combine (2.9) with this
equation to get

1

|u|∇ · u− 1

ργ−1
u · ∇|u| = 0. (2.10)

We reduce the system (1.4) into the system of (2.10) and the second equation in (1.4), and rewrite
the reduced system in terms of (Θ, Q) away from P0 to get two differential equations for (Θ, Q).
From this rewritten system, one can directly derive a second order differential equation as follows:

2
∑

i,j=1

∂xi
(aij∂xj

Q) = 0 away from P0 (2.11)

for

a11 = 1−M2 cos2Θ, a12 = −a21 =M2 sinΘ cosΘ, a22 = 1−M2 sin2 Θ.

And, the equation (2.11) is uniformly elliptic in {x1 > fsh(x2)} as we seek for a subsonic flow behind
a detached shock (the statement (v) of Theorem 2.2(a)). Then, by using maximum principle and
Hopf’s lemma, it can be shown that if Q has a local extremum at a point P∗, then P∗ cannot lie

- in the interior of subsonic region {x1 > fsh(x2)};
- on the cut-off boundary;
- on the shock Γsh := {x1 = fsh(x2) : 0 ≤ x2 ≤ L}.

This implies that if |u|(= eQ) has a local extremum at a point P∗, then P∗ must lie on either the
boundary of the blunt body Wb, or on the symmetric line Γsym.

Step 3. A direct computation with using the Rankine-Hugoniot conditions (1.9) yields that

sgn f ′′sh(x2) = sgn
d|u|
dx2

(fsh(x2), x2) for 0 < x2 < L.

Therefore, if it is proved that

d

dx2
|u(fsh(x2), x2)| ≥ 0 for 0 < x2 < L, (2.12)

then it directly implies that

f ′′sh(x2) > 0 for 0 < x2 < L. (2.13)

The inequality (2.12) can be proved by using the result established in Step 2. Throughout Step
1 to Step 3, the main tools are the maximum principle and Hopf’s lemma. In order to prove (2.12),
however, it requires an additional observation. More precisely, the convexity of the blunt bodyWb,
given in the statement (b4) of Definition 1.1 plays an important role in proving (2.12).

Remark 2.4. The analysis in [1] shows that the convexity of the blunt body Wb is a sufficient
condition to establish (2.12). But, it is unclear whether the condition (b4) in Definition 1.1 can be
removed in proving (2.12).

Step 4. Finally, Theorem 2.2(b) is proved by a limiting argument similar to Step 2 in §2.2.
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3. Discussion about detached shock solutions to the system (1.1)

A weak solution of (1.1) with a shock Υ is defined almost same as Definition 1.2 except that its
entropy(= p

ργ
) jumps across the shock Υ in general, thus the vorticity(= ∇×u) is generated across

the shock Υ even though an incoming flow is irrotational.

As in §1, suppose that a non self-intersecting C1-curve Υ divides D into two open subdomains
D− and D+ so that D− ∩ D+ = ∅ and D− ∪Υ ∪ D+ = D.

Definition 3.1 (Weak solution of (1.1) with a shock Υ). We define (ρ, u1, u2, p) ∈ [L∞(D) ∩
C0(D±) ∩ C1

loc(D±)]4 to be a weak solution to (1.1) with a shock Υ if the following properties are
satisfied:

(S′
1) (ρ, u1, u2, p) is a weak solution to (1.1) in D in the sense of distribution, and Υ is C1;

(S′
2) In D±, (ρ, u1, u2, p) satisfy the equations stated in (1.1) pointwisely;

(S′
3) For each point x∗ ∈ Υ, define

(ρ+, u+1 , u
+
2 , p

+)(x∗) := lim
x→x∗
x∈D+

(ρ, u1, u2, p)(x), (ρ−, u−1 , u
−
2 , p

−)(x∗) := lim
x→x∗
x∈D−

(ρ, u1, u2, p)(x).

Then, (ρ, u1, u2, p) satisfy the following Rankine-Hugoniot conditions on Υ:

ρ+(u+1 , u
+
2 ) · ν = ρ−(u−1 , u

−
2 ) · ν

(u+1 , u
+
2 ) · τ = (u−1 , u

−
2 ) · τ ,

ρ+|(u+1 , u+2 ) · ν|2 + p+ = ρ−|(u−1 , u−2 ) · ν|2 + p−

1

2
|(u+1 , u+2 ) · ν|2 +

γp+

(γ − 1)ρ+
=

1

2
|(u−1 , u−2 ) · ν|2 +

γp−

(γ − 1)ρ−

where ν is a unit normal, and τ is a unit tangential on Υ.
(S′

4) On Υ, we have

(u+1 , u
+
2 ) · ν 6= 0 (or equivalently (u−1 , u

−
2 ) · ν 6= 0),

and

(u+1 , u
+
2 ) · ν 6= (u−1 , u

−
2 ) · ν.

(S′
5) On ∂D, the slip boundary condition

(u1, u2) · n = 0

holds for the inward unit normal vector field n on ∂D.

If (ρ,u, p) with u = (u1, u2) is a weak solution of (1.1) with a shock Υ, and if it is an entropy
solution in the sense of Definition 1.3, then a direct computation with using (S′

3) stated in Definition

3.1 yields that the entropy S+(:= p+

(ρ+)γ ) of the state (ρ+,u+, p+) is given by

S+ =

2γ
γ+1ρ

−(u− · ν)2(1 + p−

ρ−(u−·ν)2
) + p−

(ρ+)γ
for ρ+ =

ρ−(u− · ν)2
2(γ−1)
γ+1 (12 (u

− · ν)2 + γp−

(γ−1)ρ− )
on Υ.

(3.1)
Therefore, even if (ρ−,u−, p−) is a uniform state, the entropy S+ behind a shock Υ can be a

non-constant function unless the shock Υ is a straight line so that u− · ν is a constant along Υ.
This observation combined with the vorticity equation

∇× u =
Sργ−1Sx2

(γ − 1)u1
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stated in (1.3) implies that the vorticity is generated across a shock in general even if the incoming
supersonic flow is irrotational. So it is natural to employ the system (1.1) in order to precisely
analyze shock phenomena. Thus, we are led to the following questions:

Question 1. Does the system (1.1) have an entropy solution (ρ, u1, u2, p) with a detached shock
Υsh in R

2 \Wb?

Question 2. If it does, is the shock Υsh convex?

It is our conjecture that the system (1.1) has an entropy solution with a detached shock in
R
2 \Wb. But there is a difficulty. To construct a detached shock solution, the first step would be to

find a far-field asymptotic limit of the solution. But, differently from the case of irrotational flow,
we cannot choose a strong shock solution (which is a piecewise constant solution with a straight
shock) given from a shock polar analysis as a far-field asymptotic limit. A detached shock Υsh is
a curve not a straight line (this can be easily checked by a local analysis with using Definition 1.1
and Rankine-Hugoniot conditions, stated in (S′

3) of Definition 3.1) so the entropy S+ given by (3.1)
is a non-constant function along the shock Υsh. Therefore, the far-field asymptotic limit must be a
non-constant vector field because the entropy behind a shock is given as a solution of the transport
equation ρu · ∇S = 0.

The convexity of a detached shock Υsh seems even more difficult to prove for the case of the
system (1.1) than the case of irrotational flow. The proof of Theorem 2.2(b) in [1] significantly
relies on the fact that the entropy is assumed to be globally constant. The constant entropy yields
the homogeneous differential equation ∂x1u2 − ∂x2u1 = 0 which represents a zero-vorticity state.
And, this equation is used to derive several homogeneous second order elliptic differential equations
of physical variables such as u1, u2 and the speed

√

u21 + u22 in proving Theorem 2.2(b). See Eq.
(2.11) for an example. By applying the maximum principle and Hopf’s lemma to those equations, a
non-vanishing property or a monotonicity of physical variables such as u1, u2 and the Mach number
M are obtained. And, these properties are key ingredients in proving the convexity of a detached
shock. For the system (1.1), on the other hand, the vorticity(= ∂x1u2−∂x2u1) is generally nonzero

behind a shock, and its sign is same as the sign of
Sx2
u1

. As we seek for a detached shock solution
with u1 > 0 away from the vertex point P0 of the blunt body, the vorticity equation implies that
the sign of the vorticity entirely depends on the sign of Sx2 . Since the value of S is determined
by (3.1) and the transport equation ρu · ∇S = 0, one can speculate that the sign of Sx2 depends
on how the normal direction of a shock curve Υsh changes. Therefore, it may be difficult to prove
the existence of a detached shock Υsh past the blunt body Wb and the convexity of Υsh separately.
Instead, we should try to construct a detached shock solution of (1.1) past the blunt bodyWb with
a convex shock Υsh. This would require a new iteration method. In addition, we should investigate
whether the convexity of detached shock past a convex blunt body is an inevitable consequence.
Many examples of convex detached shocks are observed in nature. But no rigorous understanding
on their mechanisms is given up to this day.

Acknowledgements: The research of Myoungjean Bae was supported in part by Samsung Science
and Technology Foundation under Project Number SSTF-BA1502-02. The research of Wei Xiang
was supported in part by the Research Grants Council of the HKSAR, China (Project CityU
11303518, Project CityU 11332916, and Project CityU 11304817).

References

[1] Bae, M. , Xiang, W., Detached shock past a blunt body, Preprint, arXiv:1909.13281



12 MYOUNGJEAN BAE AND WEI XIANG
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