Large Time Behavior of Solutions to the Nonlinear Hyperbolic
Relaxation System with Slowly Decaying Data

Ikki Fukuda

Department of Mathematics, Hokkaido University

1 Introduction

This paper is concerned with the large time asymptotic behavior of the global solutions
to the initial value problem for the following system:

w4v, =0, vy+u,=f(u)—v, zeR, t>0,

u(z,0) = ug(x), v(z,0) =vo(z), x € R, (1.1)

where f : R — R is a given smooth function. This system is a typical example of hyper-
bolic system of conservation laws with relaxation called Jin-Xin model, which describes
many physical phenomena such as non-equilibrium gas dynamics, magnetohydrodynam-
ics, viscoelasticity and flood flow with friction (see e.g. [11, 22]).

If we eliminate v from (1.1), we obtain the following damped wave equation with a
nonlinear convection term:

Uy — U + U + (f(w)z =0, z€R, >0, (1.2)

U(SE,O) = UO(‘(E% ut(m,O) = ul(m)’ T e R? .
where the initial data u,(z) = —0,vo(x). In this paper, we consider (1.2) with the flux
function f(u) = au+ Su? + Su?, where |a| < 1, b # 0 and ¢ € R. In addition, for the
initial data, we assume that

Ja>1, 3C >0 st |ug(x) < CA+|z|) xeR,

38 >1, 3C >0 st. |Ju(z)| <O+ |z])™?, zeR. (13)
The purpose of this study is to obtain an asymptotic profile of the solution u(z,t) and to
examine the optimality of its asymptotic rate to the asymptotic function.

First of all, let us recall the known results about the asymptotic behavior of the
solutions to (1.2). Orive and Zuazua [20] studied the global existence and the asymptotic
behavior of the solutions to (1.2) with @ = 0 when uy € H'(R) N L}*(R) and u; €
L*(R) N L'(R). In [21], Ueda and Kawashima generalized the results in [20] to the case
f(u) satisfies the so called sub-characteristic condition |f’(0)| = |a|] < 1. In addition,

This paper is a summary of the original paper [5] by the author.
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they constructed the solutions to (1.2), provided the initial data vy € W'?(R) N L'(R)
and u; € LP(R) N L'(R) for 1 < p < oo. Moreover, they studied the detailed asymptotic
behavior of the solution for |a| < 1. To discuss the asymptotic behavior, we apply the
Chapman-Enskog expansion (cf. [1, 17]) to (1.1) and derive a viscous conservation law

wi + (F(0))a = (u(w)w,), (14)

as the second order approximation of the expansion, where u(w) = 1 — (f/'(w))?. Here,
we note that the sub-characteristic condition |f’(w)| < 1 implies the parabolicity of (1.4).
Therefore, one can expect that the solution to (1.2) is approximated by the solution to
(1.4) or its simpler version (Burgers equation):

b o
wy + | aw + §w = UWyy, (1.5)

where y1 = 1 — a®. Actually, under the additional condition wug, u; € Li(R), it was shown
in [21] that the solution of (1.2) converges to the nonlinear diffusion wave which is a
modification of the self-similar solution of the Burgers equation (1.5) and is defined by

1 x—a(l+1t)
1) = X , te€R, t>0, 1.6
vt = e () ¢ o)
where
X«() E\/—ﬁ (fM — >€Oo s M= [ (up(x) +uy(2))de, p=1—a? (1.7)
DA =) [T ey .

More precisely, if ug € WHP(R) N Li(R), u; € LP(R) N Li(R) and ||uo|lwre + |Juollrr +
llua||ze + ||ur]|z1 is sufficiently small, then, for any € > 0, we have

181 (u(-,t) — x (. 8)|le < C(L+¢) 5757 >0, 1=0,1. (1.8)

Here the weighted Lebesgue space Li(R) is defined by

Li(R) = {1 € L) 1floy = [ 1710+ lede < oc .

Also, by the Hopf-Cole transformation (cf. [2, 8]), we can see that x(x,t) satisfies the
following Burgers equation and the conservation law:

b
Xe + (ax + §x2> = [ Xz, /Rx(x, t)dr = M. (1.9)

Moreover, the optimality of the asymptotic rate to the nonlinear diffusion wave given in
(1.8) was obtained by Kato and Ueda [14] by constructing the second asymptotic profile of
the solution which is the leading term of u— . Indeed, if ug € W*?(R)NW>1(R)N Li(R),
up € W HP(R)NWEHR) N LI(R) for s > 2,1 < p < oo, and |Jugllws» + ||uol|w21 +
||ut||ws=1.0 + ||u1 || is sufficiently small, then we have

1L (u(-st) = X(8) = V() < COA+ 1) Fm72, 1> 1 (1.10)
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for 0 <1< s — 2, where

V(z,t) = —kdV, (%ﬁ) (1+ ) log(1 + 1), (1.11)

and

wmaﬁ_ﬁt%(m(x)e—i» m(r)zexp(% | x*(y)dy) (1.12)

ab®> ¢
g 1.1
4 * 3! (1.13)

d= / ()" (e () g, 5

Furthermore, in view of the second asymptotic profile, from (1.10), the triangle inequality
and (1.11), one can obtain the following improved optimal decay estimate:

1L (u-, £) = X () oo = (C 4+ o(1)) (1 + ) H 5 2 log(1+1), 0<I<s—2 (1.14)

as t — oo, where C' = |kd|||0LVi|L». Therefore, we see that the solution u(x,t) of (1.2)

tends to the nonlinear diffusion wave x(x,t) at the rate of AT logtin L if M # 0 and
Kk # 0, i.e. we cannot take ¢ = 0 in the estimate (1.8). The similar results for (1.8) and
(1.10) were obtained for Burgers type equations such as generalized Burgers equation,
KdV-Burgers equation and BBM-Burgers equation (cf. [3, 6, 7, 12, 13, 18]).

The above results [21, 14] are corresponding to the case where the decay rate of the
initial data uy and u; are rapid because ug, u; € Li(R) are realized when «, 3 > 2 in (1.3).
However for (1.2) in the case of 1 <a<2or 1< g <2in (1.3), it is not known that the
optimal asymptotic rate to the nonlinear diffusion wave, up to the author’s knowledge.
On the other hand, it was studied that the asymptotic profile for the solution to the
damped wave equation with power type nonlinearity for slowly decaying data. Actually,
Narazaki and Nishihara [19] studied the following initial value problem when the initial
data are not in L':

Uy — Ugg + Uy = [ufPlu, 2 €R, ¢ >0,

u(z,0) = ug(z), u(r,0) =ui(x), v €R. (1.15)

They assumed that the initial data satisfy the condition (1.3) with @« = g =: k and
0 < k < 1 and showed that if p > 1+ 2/k (supercritical case) and the initial data
ug € BY*(R), u; € BY*(R) are small, then the asymptotic profile is given by

1 (z—y)?
V(x,t)=c e”a (14 |y))*dy, 1.16
@) = e [ <= S L)y (1.16)

provided that the data satisfy im0 (1 4 |2|)* (ug 4+ u1)(x) = ¢. Here, we set
B™ = {f € C™(R); (1 + |2[)"0,f| € L*(R) (0 <1 < m)}.
More precisely, they proved

_ (1+H*2 0<k<1,
Tim ag(8)Ju(-,£) = W(-, )1 = 0, ay(t) = {wm -
0 log(1+t)’ k=1

(1.17)




Moreover in [19], the damped wave equation (1.15) in two and three space dimensional
cases were also studied. For the related results concerning (1.15), we also refer to [9, 10].
However, as we mentioned in the above, the asymptotic profile of the solution to (1.2)
with slowly decaying data is not well known even if the data are in L!. For this reason,
we would like to analyze the asymptotic behavior of the solution to (1.2) in the case of
l<a<2orl<f<2in (1.3).

Now, we state our first main result which generalizes the result given in [21]:

Theorem 1.1. Assume the condition (1.3) holds with 1 < min{«,3} < 2. Let s be
a positive integer and 1 < p < co. Suppose that ug € W*P(R), u; € W5 L(R) and
lluollwsr + |luollzr + |luallws-10 + |Ju1llzr is sufficiently small. Then (1.2) has a unique
global solution u(x,t) with

MO0 ok W (0 00 LY, 1< p < oo
N WHE(0, 00; We=5) N C([0,00); L), p = o0,

where 0 = min{2, s}. Moreover, for any € > 0, the estimate

min{a,8} | 1
T2 Tag

(1+¢ t >0, 1 <min{a, 5} <2,
[u(-, 1) = x (- 1)|[e < C {(1 Ly

_ (1.18)
t >0, min{a, 5} =2

holds for any q with 1 < q < oo, and the estimate

min{o,8} | 1 k4l
+ 2p 2

(14+t)" > t>0, 1 <min{a, f} < 2,

(‘)kdiu,t —X',t pSC 1 _ k+l
96 050ulc,8) = x> e {@+0‘“%‘3“, t >0, min{a, 5} =2

(1.19)
holds for 0 < k <2 andl >0 with 0 < k+1 < s, where x(x,t) is defined by (1.6).

Furthermore, we can show that the above asymptotic rate given in (1.18) is optimal
with respect to the time decaying order in the L*° sense by constructing the second
asymptotic profile for the solution to (1.2). Indeed, we have the following result:

Theorem 1.2. Assume the condition (1.3) holds with 1 < min{«, 5} < 2. Suppose that
ug € HAR)NW>Y(R), uy € H*(R)NWIHR) and ||uo|| g2 + |Juollwar + |ut || g + |Jwr|[wr
is sufficiently small. We set xo(x) = x(x,0), no(z) = n(x,0) and

20(z) = mo(z)™! / " (o) + wa(y) — xo(y))dy. (1.20)

—0oQ
If there exists lim,_100(1 4 |o|)™ef =15 (2) = ciﬁ, then the solution to (1.2) satisfies

min{«,8}

lim (1465 lu(, 1) = x(,1) = Z(,H)]z= =0, 1 < min{a, B} <2 (1.21)
m D 0 () = Z(,8) ~ V(1) =0, min{a, B} =2, (1.22)

e log(1 +t)



where x(x,t) and V(x,t) are defined by (1.6) and (1.11), respectively, while Z(x,t) and
n(x,t) are defined by

Z(z,t) = /R COA/@(?DaI(GO('T - Z/at)n(l’at))d% C@,,B(y) — {01—567 y =0, (1‘23)

(1 + [y])mintesi =t Copr Y <0,
1 @-ap? r—a(l+t) b [*
Golz,t) = e, e t) =0 — e ) = . 1)d
(1.24)

with n.(x) being defined by (1.12). Moreover, if M # 0, there exist vy > 0 and vy, > 0
independent of x and t such that

min{o,B}
- 2

< Cmax{lcf gl leg g1+ 1) 2, (1.25)
> v (1 + £) =5

HZ<'vt>HL°°{

holds for sufficiently large t with 1 < min{«, 5} < 2 and

< C(max{lcg g, [eq g} + Rl [Vi()lloe) (1 + )7  log(1 + 1),
> vy | [(1+ )"t log(1 +¢t)

12 (- 1) +V(-at)lle{

(1.26)
holds for sufficiently large t with min{«, 5} = 2, where
— mi by.(0)(ch , + ¢ ‘
i = (e, - C;B)F<3 mm{%ﬁ}) X (0)( o a,B)F<2 B M)
’ ’ 2 2 — min{ao, 5} 2 (1.27)
__ CapTtCap > 1 '
U= T —rd, T(s)= / e “x*dx, s>0,
0

while M, d and k are defined by (1.7) and (1.13), respectively.

By virtue of Theorem 1.2, the optimality of the estimate (1.18) can be examined from
the estimates (1.21), (1.22), (1.25) and (1.26). Now, we denote f(t) ~ g(t) if there exist
positive constants ¢y and Cj independent of t such that cog(t) < f(t) < Cog(t) holds.
Then, we have the following optimal estimates of u — x:

Corollary 1.3. Under the same assumptions in Theorem 1.2, if vy # 0 and vy # 0, then
the following estimates

min{«a,8}
-

(1) = X8l ~ {“ ) L <minfa, f} <2, (1.28)

(1+¢)"tlog(1+¢t), min{a,l} =2
hold for sufficiently large t.

Remark 1.4. The similar result for Theorem 1.1 is obtained by Kitagawa [16] for the
generalized Burgers equation. For Theorem 1.2, recently, the author in [4] obtained the
similar result for the generalized KdV-Burgers equation.



2 Basic Estimates and Auxiliary Problem

In this section, we introduce a couple of lemmas to prove the main theorems.

First, we shall mention the global existence and the decay estimates for the solutions
o (1.2). Now, we consider the initial value problem for the following linear damped wave
equation:

utt—um—i—ut—l—auzzo, xER, t>0,

u(z,0) = up(x), u(z,0)=ui(z), z € R. (2.1)
By taking the Fourier transform for (2.1), it follows that
A€, 1) = GE D) (@0(€) + @ (€) + AG(E Do ©),
where G(E 1) = 1 (MO _ A2(0)
D= me T ) 22)
M(€) = S (=14 V1 —4(€2 +aif)), Aa(€) = 5(=1 — /1 — 4(&2 + aif)).
Therefore, the solutlon of (2.1) can be expressed as follovvs.
u(t) = G(t) * (uo + u1) + 0,.G(t) * ug,
where we set )
G(z,t) = F G, 1)](2). (2.3)

For this function G(z,t), we can show the following decay estimates (for the proof, see
Corollary 3.3 in [21] and Corollary 2.5 in [14]).

Lemma 2.1. Let 1 < g <p < oo. Then the following LP — L7 estimates hold:

1

1G(t) # Bllor < C(1+ )26 ¢|| 0, t>0, (2.4)
|OFOLG(E) % Pllw < C(1+1) 72495 | p|l 1o + Ce | $lwreicrn, >0,  (2.5)

for m+1 > 1, where G(x,t) and Go(z,t) are defined by (2.3) and (1.24), respectively.
Moreover, the solution operator G(t)x is approzimated by Go(t)x in the following sense:

[SIES

(G — Go) (&) * lln < CE2G (L4 8)73 |||y ¢ >0, (2.6)
|OFOL(G — Go)(t) * dlln < 2G0T (1 4+ 4) 72|60 + Ce|d]l s, ¢ >0,
(2.7)

for k+1>1. Here ¢y is a positive constant.

Applying the Duhamel principle to (1.2), we obtain

ut) = G(t) * (o + 1) + G *%—/Gt—T () (D)dr.  (28)
where g(u) = Su? 4+ £u®. Therefore, by using Lemma 2.1, we obtain the global existence
and the decay estimates of the solutions to (1.2) as in the follovvlng proposition. The proof
of this proposition is given by a standard argument which is based on the contraction
mapping principle (for the proof, see Theorem 2.1 in [21] and Proposition 3.1 in [14]):
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Proposition 2.2. Let s be a positive integer and 1 < p < 0o. Suppose that ug € WP(R)N
LI(R), u € WS_I(R) N LI(R) and Eésm) = ||’LLO||Ws,p + ||U0||L1 + ||U1||Ws—1,p + ||U1||L1 18
sufficiently small. Then (1.2) has a unique global solution u(x,t) with

we Ni—o C*([0, 00); We=FP) N C ([0, o0); L), 1<p< oo,
7 WE(0, 00; W) N C(]0,00); LY, p= o0,
rh_o ( ) p

where 0 = min{2, s}. Moreover, the estimate

u(t)|lpe < CEM (14 8) 2% 2% 2.9
0
holds for any q with 1 < q < oo, and the estimate
|0FO u(-, )| e < CESP (1 4+4) 4% 5 (2.10)

holds for 0 < k<2 andl >0 with0 < k+1<s.

Next, we treat the nonlinear diffusion wave x(z,t) defined by (1.6), and the heat kernel
Go(z,t) defined by (1.24). For x(x,t), it is easy to see that

:L‘—at)2

(
Ix(z,8)] < C|M|(1+t) 2¢ @00, 2 €R, ¢ > 0. (2.11)
Moreover, x(x,t) satisfies the following estimate (for the proof, see Lemma 4.3 in [14]):

Lemma 2.3. Let k, [ and m be non-negative integers. Then, for |M| <1 and p € [1, 0],

we have
k+l4+2m

105L (8, + ad)™x (- )| 1r < CIM|(L+ ) 2 2 "2 ¢ > 0. (2.12)

On the other hand, we have the following estimates for the heat kernel Go(z,t) (for the
proof, see Lemma 2.4 in [5]):

Lemma 2.4. Let k and | be non-negative integers. Then, for p € [1, 00|, we have

10FOLGo (- ) | 1r < CETF 25 >0 (2.13)
Moreover, if [, ¢(x)dx =0 and
Ty > 1, 3050 st |éla) < O +|a)~7, 1 ER, (2.14)

then we have

741kt
t_2+ 2

o t>0, 1<~y<2

2.15
R log(2+1t), t>0, v=2. (2.15)

HW%%@*MMSC{

In the rest of this section, let us prepare the ingredients to prove Theorem 1.2. First,
we consider the function n(x,t) defined by (1.24). For this function, we can easily obtain
that

min{l,e%} < n(x,t) < max{Le%}7 (2.16)
min{l,e_%} <z, t)"" < max{1, 6_%}. (2.17)

Moreover, by using Lemma 2.3, we have the following LP-decay estimate (for the proof,
see Corollary 2.3 in [13] or Lemma 5.4 in [14]).
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Lemma 2.5. Let | be a positive integer and p € [1,00|. If |M| < 1, then we have
105, Ollan + 15 n(- ) ow < CIMI(L+ 1) 720797273 ¢ > 0. (2.18)

In the proof of Theorem 1.2, we examine the second asymptotic profile of the solution
o (1.2). To analyze the second asymptotic profile, we prepare the following auxiliary
problem:

2+ azy + (bx2)e — 2ee = A (2, 1), T €R, t >0,

2.19
2(x,0) = zo(x), z €R, (2.19)
where A(z,t) is a given regular function decaying at spatial infinity. If we set
y
U[h](l} t7 T) = / ax<G0(x - y7t - T)U(l’» t))(ﬂ(% 7—))_1 </ h(£>d£> dy, (2 20)
R —o0 .

reR 0<7<t,

then, applying Lemma 2.6 in [5] or Lemma 5.1 in [14] to (2.19), we have the following
representation formula:

Lemma 2.6. Let zo(x) be a sufficiently reqular function decaying at spatial infinity. Then
we can get the smooth solution of (2.19) which satisfies the following formula:

z(z,t) = Ulzol(x,t,0) + /Ot U0 ND)](x,t,7)dr, 2 € R, t > 0. (2.21)

This explicit representation formula (2.21) plays an important role in the proof of Theo-
rem 1.2. Also, by using Young’s inequality, Lemma 2.5, (2.16), (2.13) and (2.17), we can
easily obtain the following estimate:

Lemma 2.7. Assume that |M| < 1. Let 1 <p,q < oo and ]l) +% = 1. Then the following
estimate

1
IUANC 7)o <CD (1417245 (= 1) 72 575 A(, 7)o (2.22)
n=0
holds fort > .

3 Asymptotic Behavior

In order to obtain the upper bound of u — y, we rewrite the differential equations (1.2)
and (1.9) to the integral equations as follows:

u(t) = G(E) * (o + ) + G *uo—/ Gt —7) % (g(w))(P)dr,  (3.1)

()<%U*m——/<%rﬂﬁ(WLMﬂM, (3.2)



where g(u) = 2u® 4+ £u® and xo(x) = x(z,0). Therefore, if we set
o(z,t) = u(z, t) — x(z,t), (3.3)
then ¢(x,t) satisfies the following relation:
¢(t) = (G = Go)(t) * (uo + ur) + Go(t) * (uo + u1 — Xo)

+ 0,G *uo——/ (t —7)* ((u),)(7)dr

_ g/o (G — Go)(t — 1) * ((u*),)(T)dT — g/o Go(t — 1) * ((u® = Xx*)) (7)dr.

(3.4)

Then, applying the decay estimates stated previous section to (3.4), we can derive the
following two propositions. These propositions were proved in the original paper [5].

Proposition 3.1. Assume the same conditions on ug and u; in Theorem 1.1 are valid.
Then, for any € > 0, we have

mln{ }_l_i )
ool < 0 T T 201 <minfa. 5} <2
(14+¢)"'"2 q+a’ t >0, min{a, B} =2

(3.5)

for any q with 1 < q < oo, where ¢(x,t) is defined by (3.3).

Proposition 3.2. Assume the same conditions on ug and u; in Theorem 1.1 are valid.
Then, for any € > 0, we have

min{a,3}
1+ 7 F %73 >0, 1< min{e, 8} <2,

3.6
(141¢) o ate, t >0, min{a, B} =2 (3.6)

10,0, )20 < O{

for 0 <1 <'s, where ¢(x,t) is defined by (3.3).

Idea of the proof of Theorem 1.1. We shall explain only for the proof of (1.19) with
k = 1,2, since we have already mentioned (1.18) and (1.19) with k£ = 0 (Proposition 3.1
and Proposition 3.2). First, differentiating (3.1) with respect to ¢, then we have

opu(t) = 0,G(t) * (ug + up) + OFG () * ug — /0 OG(t — 1) * 0 (g(w))(T)dT, (3.7)

where g(u) = 2u? + Su?. Here we have used G(0) x p = 0 for any function p. On the
other hand, we have from (3.2) that

Oex(t) = 0:Go(t) * xo0 — g/ot 0,Go(t — 1) * 0, () (7)dT — g@z(x2)(t), (3.8)

where xo(z) = x(x,0). Thus, combining (3.7) and (3.8), it follows that
A(u(t) — x(t)) = 0(G — Go)(t) * (uo + u1) + AGo(t) * (ug + u1 — Xo)

+ 092G *Uo—/at (t—7) *3<()_§X>()dr (3.9)
~ 3 [ G- Ga)e =)+ (N + J0u00)0)



By using the decay estimates stated previous section and the above propositions, we can
evaluate the all terms of the right hand side of (3.9). Therefore, we can obtain (1.19) with
k=land 0<[<s—1.

Next, we shall treat (1.19) with £ = 2. By using the integration by parts, in the same
way to get (3.7) and (3.8), we obtain

t/2
@fu(t) = GEG(t) * (uo +uyp) + ﬁfG(t) * Uy — / 838xG(t — 1) % g(u)(7)dT
0

t (3.10)
, t t
1. 0,G(t — 7) % 0,0, (g(w))(7)dT — 0,0,G (5) * (g(u)) <§>
and
t/2
ON(E) = BGu(t) xxa 5 [ 0LGalt =)+ ()TN~ 5000
U a6t — ) 00,03 (P — Lo0.G (f) « () (f) o
2t/2t0 tOz (X 5 t0atro | 5 X 5"
Thus, from (3.10) and (3.11), we have
I (u(t) — x(1))
_82 G — Go)( ) (U0+U1)+8 Go(t)*(UQ+U1 —Xo)—F@?G(t)*UO
/ 0.6(t~ 1)+ (90 -~ 5 ) (i
b 2 T)aT
_ t/QOtG(t—T) * OpOy < (u) — 2X ) (1)d
t/2
_ g/o P0,(G — Go)(t — 1) % () (7)dr — g [ UG =Gt =7) « 9.0 ()

t

2

3.1
Therefore, by using the same argument given in the above paragraph, we can prove (1.1
with k=2 and 0 <[ <s—2.

b, . ) t b t b, .
( 2)
( 9)
In the rest of this section, we introduce the additional decay property for u — x. From
the original equations (1.2) and (1.9), we see that

b c
(B +ade)(u=x) = (=07 + ) (u—x) = 50 (u” = X*) = 50 (u*) = (9 — 00,)(9; + ady ).
By virtue of this relation, we have the following estimate:

Corollary 3.3. Assume the same conditions on uy and uy; in Theorem 1.1 are valid.
Then, for any € > 0, the estimate

min{«,8}
(L) 5 %% 27 >0, 1 <minfa,f} <2,

(1+1£) 2o st t >0, min{a, f} =2
(3.13)

105,(9% + adz) (u = X) (. ) [z» < C {

holds for 0 <[ <s— 2.
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4 Second Asymptotic Profile

Finally in this section, we would like to prove Theorem 1.2. Especially, we shall prove
only (1.22), since (1.21) can be shown by the same way. On the other hand, for the lower
bound (1.25) and (1.26), we can derive these estimates by a direct calculation (for details,
see the original paper [5]).

First, let us recall the following fact derived in [13]. We consider

v+ avy + (DXV)p — Wpe = —KOL(X?), T ER, t >0,

4.1
v(z,0) =0, z € R, (4.1)

where & is defined by (1.13). The leading term of the solution v(z,t) to (4.1) is given by
V(z,t) defined by (1.11). More precisely, the following asymptotic formula can be shown
(for the proof, see Proposition 4.3 in [13]):

Proposition 4.1. Assume that |M| < 1. Then the estimate
[o(-.t) = V()= < CIM|(L+8)7) t> 1 (4.2)
holds. Here v(x,t) is the solution to (4.1) and V(x,t) is defined by (1.11).
Now, let us prove (1.22). We set
¢(x, 1) = ulz, t) + uw(z, ) — x(, 1) —v(z, 1), do(x) = uo(xr) +ur(z) = xo(x).  (4.3)
Then, from (1.2), (1.9) and (4.1), we have the following initial value problem:

¢t + a¢x + (bx¢)x - M¢xx - 8:(:NO(X) + 8:(:Nl(u: X)a MRS R, t> 07

4.4
d(2,0) = ¢o(x) = up(x) + ui(x) — xo(z), = € R, (44)
where
ab®
Ni(x) = 2apXpe — 2abx Xz + —X7,
4p
No(u, x) = a(0; + ady)(u — x) — 0. (u — x) + bxd(u — x)
b )

— 19,9 + ad )X+ DX (D, + ad,)x — 5w —x)* = g5 (u = 1) = Sux(u— ).
(4.5)

Therefore, from Lemma 2.6, we obtain

gb(.%’, t) = U[¢O](x’ t? O) + /0 U[ngl (X)(T)](.T, t’ T>dT + /0 U[axN2<u7 X) (7_)](‘7:’ t? T>dT'
(4.6)

For the first term of the right hand side in the above equation (4.6), we have the following
asymptotic formula. This formula is a key of the proof of Theorem 1.2.
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Proposition 4.2. Assume the same conditions on ug and uy in Theorem 1.2 are valid.
Then we have

lim (1+6) 5 [Ulgo] (-, £,0) = Z(, B)llp= = 0, 1 < minfa, B} <2, (47)

1+t
Jim 1 C 0ol £.0) = 2, )] = 0, minfa ) =2, (4.9
where Z(x,t) is defined by (1.23).

Proof. From the definition of U given by (2.20) and ng(x) = n(x,0), we have
Yy

Uione.t.0) = [ 0u(Coti ~ woyate (o) ( [

— 00

(wol€) + ua(€) - XO<5>>d5) dy
- / 01 (Golz — . tyn( £))z0(w)dy.
(4.9)

where zo(y) is defined by (1.20). Since [, (uo(z)+uy(z))de = [, xo(x)dx = M, by a direct
calculation, we have the following estimate:

|zo(z)| < C(1 + |z|)~i{ef=D 5 e R (4.10)

Moreover, from the assumption on zy(y), for any £ > 0 there is a constant R = R(g) > 0
such that

|Zo(y) (1+|y|) (min{a,B}— 1)| <€(1_|_|y|) (min{a,8}—1) Ly
120(y) — i 5 (1 + [y])~HPID] < (1 4 |y|)~rinteft=D),

R,

>
y < —R.

Therefore, from (1.23) and (4.9), we have the following estimate

|U[¢0](‘T’ t’ 0) - Z(ZE, t)l
< [ 10u(Gale = g ) 0(0) — a1+ ) 1 Dy
R

< /||<R 10:(Go(x — y, )n(x,t))||20(y) — cas(y)(1 + |y|)~mnteA=D| gy

+ 5/ 10,(Golz — y, )n(x, )| (1 4 |y|)~(minlest=D gy
ly>R

<OZ||81” Ol 12Gal- Dl [ J20(0) = caplw)(1+ )0y

ly|<R

+ EC’Z 1010 (-, )| oo / |0 Go(z —y, t)|(1 + |y|)—(min{a,ﬁ}—1)dy_
n=0 R
(4.11)
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For the integral in the last term of the right hand side of (4.11), we can estimate it as
follows

/ 7 Gola — 4, 1)](1+ [y]) {1y
R

_ ( / - )|a;;Go<:c g )|(L+ [yl gy
ly|>VI+t-1 ly|<vI+tE-1

< ( sup (14 Iyl)‘(mm{“’ﬁ}‘”)/ |02 Go(x — y, t)|dy
ly|>Vv1+i—1 ly|>v1+i—1

(s G-} [ (g ey
ly|<v1+t-1 lyl<vi1+i—1

mm{a BY—

<(1+1)” 02 Go- )HL1+H0¥Go(-,t)I|Lw/ (1 + [y~ et =Dy

ly|<v1+t-1

_min{a,f}-1_n g VIR  (auin{en B}—1)
<C(1+1) 2 2 4+ (Ct 2 (1+y) min{a, dy
0

S C(l + t)_min{o;,ﬁ}— n C _1+7n (1 + t>_%+%, 1 < mln{ﬂ/,ﬂ} < 2,
log(1 +1), min{a, 5} =2
ol =g 4> 1 1 < minfa, B} < 2,
(1+t)" 2 log(1+1t), t>1, min{a, 8} =2.

(4.12)

Here, we have used (2.13). Therefore, by using (4.11), Lemma 2.5, Lemma 2.4 and (4.12),
we get

1U (o] (-, £,0) = Z(-, )] 1=
(14 ¢)~=5 t>1, 1< min{o, B8} <2,

<C(l+t)"+eC
= ) : {(1+t) og(1+t), t>1, min{a, S} =2.

Thus, we obtain

limsup(1 + £) ™5 U] (-, 1, 0) — Z(-, 8[|z~ < £C, 1 < min{a, B} < 2,
i sup =Dy ,0) = 20, 1) e < 0, minfe g =2

Therefore, we get (4.7) and (4.8), because £ > 0 can be chosen arbitrarily small. O
End of the Proof of Theorem 1.2. From (4.3) and (4.6), we have

u(z,t) — x(x,t) — Z(x,t) — V(x,t)
= Ulpol(x,t,0) — Z(z,t) — uy(x,t) +v(z,t) — V(2,t)

+/0 Ul0:N1(x)(7)](z, t, 7)dT +/0 U0y No(uw, x)(7)](z, t, 7)dT
= Ulgo|(x,t,0) — Z(z,t) —w(t,t) + v(x,t) — V(z,t) + K1 + Ky,

(4.13)
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where Z(x,t) and V (x,t) are defined by (1.23) and (1.11), respectively. To prove (1.22),
now we only need to evaluate the last two terms in the right hand side of (4.13). First,
we evaluate K. To estimate it, we introduce the useful property of Ni(x). Actually,
if we set No(x) = 2ux, — 2x?, from Ni(x) = a(0,No(x) — %XNO(X)), we get Ni(x) =
n9:(n'No(x)). Therefore, from the definition of K; and (2.20), and by making the
integration by parts, we have

K1) = / [ (Gl = vt = Tt 00,0l ) Nofys 7))t
=S aratan ([ 1) o - =) Nt
= z:: (. 1) (/0 /Ral?“Go(l‘ =yt =7)(n(y, 7)) No(y, 7)dydr

" /t/tz /R 9, Go(x —y.t — 1), ((n(y, 7))~ No(y, T))dydr) _
(4.14)

Also from Lemma 2.3 and Lemma 2.5, for any non-negative integer [ and 1 < ¢ < oo, it
is easy to see that

!
105 (™" No () (-, )la < CY (14 ) 2D AN (- 8)l|za < C(L+1) 202, (4.15)
j=0

Hence, from (4.14), Young’s inequality, Lemma 2.5, (2.13) and (4.15), we have

e )IILoo

t/2
= CZH@l (- )] Lo </ 105 Go (ot — 7)o | (0™ No (X)) (- 7) |2 d7
0
t
+// ||a;LG0('vt_7')||L1||ax("l_lN0(X))(‘v7')||L°°d7'> (4.16)
t/2

gc;(ut)—é“ﬁ (/Ot/2<t—T>—1—Z<1+T>—éd7+/t (t—7)" (1+T)—3d7>

t/2

|3

<C(+t)7t t>1.

Next, we estimate K,. For 0 < & < 1, from (3.13), (1.19), (2.12), (1.18) and (2.9), we
have the following estimates:

IN2 (-, )l < C(1+1)727, (4.17)
Ny (-, )| 22 < C(L+ )57, (4.18)
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Therefore, by using Lemma 2.7, (4.17) and (4.18), we obtain

[eIeli

! 1 n t/2 1 n
<o ([ - n it ot + [
n=0 0 t

/2
! 1 n t/2
§02p+wwh(/(p¢r
n=0 0

<C(l+t)7 t>1.

t

(t - r>-i-’2‘||fv2<-,r>||md7)

t

_3(1+T)_g+5d7'—|-/ (t—71)"

t/2

N[
N,

(14 T)_Z+€d7'>

(4.19)

Thus, from (4.13), (2.10), Gagliardo-Nirenberg inequality, (4.2), (4.16) and (4.19), we
obtain

lu(, ) = x(.t) = Z(,t) = V(5 )l < NU0)(8,0) = Z(- )|z + C(L+)7F, ¢ > 1.
Therefore, from (4.8), we finally arrive at

141
lim sup (1+%)

msup oy el ) = X(,0) = 26,8 =V, )l =0

This completes the proof of (1.22). O

References

[1] I.-L. Chern: Long-time effect of relazation for hyperbolic conservation laws, Commun.

Math. Phys. 172 (1995) 39-55.

[2] J.D. Cole: On a quasi-linear parabolic equation occurring in aerodynamics, Quart.
Appl. Math. IX (1951) 225-236.

[3] I. Fukuda: Asymptotic behavior of solutions to the generalized KdV-Burgers equation,
Osaka J. Math. 56 (2019) 883-906.

[4] 1. Fukuda: Asymptotic behavior of solutions to the generalized KdV-Burgers equation
with slowly decaying data, J. Math. Anal. Appl. 480 (2019), 123446.

[5] 1. Fukuda: Large time behavior of solutions to the nonlinear hyperbolic relazation
system with slowly decaying data, preprint, arXiv.1904.12378.

[6] N. Hayashi, E.I. Kaikina and P.I. Naumkin: Large time asymptotics for the BBM-
Burgers equation, Ann. Henri Poincaré 8 (2007) 485-511.

[7] N. Hayashi and P.I. Naumkin: Asymptotics for the Korteweg-de Vries-Burgers equa-
tion, Acta Math. Sin. Engl. Ser. 22 (2006) 1441-1456.

[8] E. Hopf: The partial differential equation u; +uu, = pi,,, Comm. Pure Appl. Math.
3 (1950) 201-230.

15



[9]

[10]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

M. Ikeda, T. Inui, M. Okamoto and Y. Wakasugi: LP-L9 estimates for the damped
wave equation and the critical exponent for the nonlinear problem with slowly decaying
data, Comm. Pure Appl. Anal. 18 (2019) 1967-2008.

M. Ikeda, T. Inui and Y. Wakasugi: The Cauchy problem for the nonlinear damped
wave equation with slowly decaying data, NoDEA Nonlinear Differential Equations
Appl. 24 (2017) no.2, Art. 10, 53 pp.

S. Jin and Z. Xin: The relazation schemes for systems of conservation laws in arbi-
trary space dimensions, Commun. Pure Appl. Math. 48 (1995) 235-276.

E.I. Kaikina and H.F. Ruiz-Paredes: Second term of asymptotics for KdVB equation
with large initial data, Osaka J. Math. 42 (2005) 407-420.

M. Kato: Large time behavior of solutions to the generalized Burgers equations, Osaka
J. Math. 44 (2007) 923-943.

M. Kato and Y. Ueda: Asymptotic profile of solutions for the damped wave equation
with a nonlinear convection term, Math. Meth. Appl. Sci. 40 (2017) 7760-7779.

S. Kawashima: Large-time behavior of solutions to hyperbolic-parabolic systems of
conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A 106 (1987)
169-194.

Y. Kitagawa: Asymptotic behavior of solutions to the initial value problem for one
dimensional single viscous conservation law, Osaka University, Master’s thesis, 2007
(in Japanese).

T.-P. Liu: Hyperbolic conservation laws with relaxation, Commun. Math. Phys. 108
(1987) 153-175.

A. Matsumura and K. Nishihara: Global solutions of nonlinear differential equations-
Mathematical analysis for compressible viscous fluids, Nippon-Hyoron-Sha, Tokyo,
2004 (in Japanese).

T. Narazaki and K. Nishihara: Asymptotic behavior of solutions for the damped wave
equation with slowly decaying data, J. Math. Anal. Appl. 338 (2008) 803-819.

R. Orive and E. Zuazua: Long-time behavior of solutions to a nonlinear hyperbolic
relazation system, J. Differential Equations 228 (2006) 17-38.

Y. Ueda and S. Kawashima: Large time behavior of solutions to a semilinear hyper-
bolic system with relazation, J. Hyperbolic Differ. Equ. 4 (2007) 147-179.

G. B. Whitham: Linear and nonlinear waves, Wiley, New York, 1974.

Ikki Fukuda

Department of Mathematics

Hokkaido University

Sapporo 060-0810

JAPAN

E-mail address: i.fukuda@math.sci.hokudai.ac.jp

16



