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Abstract

The General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC), proposed by
Grmela and Ottinger[l, 2], serves as a general framework for the thermodynamically consistent modeling of
continua, wherein the conservative and dissipative mechanisms are clearly distinguished. The conservative
mechanism is formulated as a Hamiltonian system using the Poisson bracket, whereas the dissipative
mechanism is formulated using a dissipative bracket acting on the entropy functional. Barotropic fluids,
Korteweg-type fluids, and complex fluids with complicated micro-structures that necessitate introducing
additional structural variables, are all formulated within the GENERIC formalism.

In the GENERIC formalism for Korteweg-type fluids, the spatial gradient of the mass density is
included in the constitutive relation concerning the internal energy from which the Korteweg stress is
derived. The interstitial working proposed by Dunn and Serrin[3] appears in the energy equation. In-
deed, the GENERIC formalism provides a fairly simple derivation of the interstitial working, which was
derived employing a Coleman—Noll type procedure[4] in an elaborate analysis. The GENERIC formal-
ism also shows that the Korteweg stress and interstitial working are isentropic. This is in contrast with
Cahn—Hilliard type models, which are intrinsically dissipative in nature as apparent from their bracket
formulations[5].

Complex fluids can also be formulated within the GENERIC formalism[2, 6]. An additional structural
variable, called the conformation tensor, can be introduced to model viscoelastic microstructures. The
conformation tensor is assumed to be contravariant, similar to the left Cauchy—Green tensor of the defor-
mation, and the time evolution along the flow, which is naturally represented by the Lie derivative of the
tensor, is prescribed by the Poisson bracket in the GENERIC formalism. Additional terms in the Poisson
bracket are purely kinematic, as long as the entropy function does not explicitly depend on the confor-
mation tensor. It is advantageous to adopt the internal energy density as a state variable instead of the
entropy density when constructing a dissipative bracket that models dissipation due to the microstructure.

1 GENERIC formalism

We define a state space X, each point of which uniquely determines the state of the isolated thermomechan-
ical system") considered. We also define functionals of the total energy E : ¥ — R and the total entropy
S: X — R of the system defined on the state space X. A Poisson bracket {-, -} : F(X) x F(X) — F(X),
which is a skew-symmetric bilinear mapping, and a dissipative bracket [, ] : F(X) x F(X) — F(X),
which is a symmetric and positive semi-definite bilinear mapping, are also defined, where F(X) is a set
of functionals defined on X. The Poisson bracket satisfies the Jacobi identity:

{A.{B,C}} +{B,{C,A}} + {C,{A,B}} =0, (1)
and the derivation property (or Leibniz rule):

{AB,C} = B{A,C} + A{B.C}, 2)
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1)Here, we have assumed the system to be isolated to simplify the discussion.



for all A,B,C € F(X), and is assumed to specify the conservative mechanism of the system. The dissipa-
tive bracket satisfies the derivation property:

[AB,C] = B[A, C] + A[B, T, (3)

for all A;B,C € F(X), and is assumed to specify the dissipative mechanism of the system. The Poisson
and dissipative brackets degenerate in the sense that

{F,S} =0 and [F,E]=0 4)

for all F € F(%).

Under the above settings, we can describe the time evolution of the system considered. Specifically,
the time evolution of any functional F € F(X) along any trajectory = : R — X in the state space is
described? as

%(x(t)) (:: %F(:c(t))) = {F,E}(z(t)) + [F,S](z(t)), teR. (5)

Then, the laws of energy conservation and increasing entropy (i.e., the first and second laws of thermo-
dynamics),

E_(EE)+ES=0 ad ©—(sE)1(s5)=[s5>0 (6)
hold, due to the skew-symmetric property of the Poisson bracket combined with the degeneracy of the
dissipative bracket and the degeneracy of the Poisson bracket combined with the positive semi-definiteness
of the dissipative bracket, respectively.

According to the derivation property of the Poisson bracket, the linear functional {-,E}(x) : F(X) — R
may be identified with a ”tangent vector”®) of the Hamiltonian vector field with the Hamiltonian E at
x € X. This is tangential to both the isoenergetic and isentropic hypersurfaces, which are guaranteed
by the skew-symmetric property and degeneracy of the Poisson bracket. This tangent vector determines
the velocity of the isentropic trajectory in the state space. In this sense, the Poisson bracket governs
the isentropic process of the system. Similarly, according to the derivation property of the dissipative
bracket, the linear functional [-,S](z) : F(X) — R may be identified with a "tangent vector” at z € X,
which is tangential to the isoenergetic hypersurface and points in the direction of increasing entropy.
The tangency of the vector to the isoenergetic hypersurface is guaranteed by the degeneracy, whereas the
entropy ascending direction of the vector is guaranteed by the positive semi-definiteness of the dissipative
bracket. This tangent vector determines the velocity of the dissipating (i.e., entropy increasing) trajectory
in the state space. In this sense, the dissipative bracket governs the irreversible processes of the system.

2 Korteweg-type fluids

In this section, we give an outline of the GENERIC formalism for Korteweg-type fluids. Details will be
reported in [7, 8].
2.1 State space

For an isolated system of Korteweg-type fluid in a bounded domain Q C FE of a three-dimensional
Euclidean space F with piecewise smooth boundaries, we choose the state space

X, = {(p7m>5)|p € COO(QvR>O)vm € COO(Qav)aS € COO(QvR)} (7)

2)The differentiability of the function F oz : R — R is assumed to be guaranteed in some manner. Note that a state of
the system x € X itself can be interpreted as a functional on X in a distributional sense.

3)Here, we are thinking of a naive infinite dimensional analogy of tangent spaces on a finite dimensional manifold.



composed of the mass density p, the momentum density m, and the entropy density s. V is the translation
space of E. We can also choose the state space

X ={(p,m,e)[p € C*(Q,R50),m € C=(Q,V),e € C*(QR)}, (8)
which contains the internal energy density e as a state variable instead of the entropy density.

2.2 Energy and entropy
We choose the total energy and total entropy functionals defined on the state space X such that

2
Es(p’mvs) = / |:|m| + pe <,07 favp>:| dv  and Ss(pv m, 3) = / sdv, (9)
ol 2p P Q

where € : Ryg x R x R® — R is the specific internal energy function and Vp is the spatial gradient of
the density. However, if we choose the state space X., the total energy and total entropy functionals are
defined as

2
Ec(p,m,e) = / {H + e} dv and Sg(p,m,e)= / om (,0, E,Vp) dv, (10)
al 2p Q p

where 1 : Ry x R x R® — R is the specific entropy function, which is an implicit function obtained by
solving the specific internal energy function € = e(p, 7, Vp) with respect to the specific entropy.

Here we assume a dependence of the internal energy on the gradient of the density to obtain the
Korteweg stress.

2.3 Poisson bracket

The Poisson bracket on the state space X is defined as
oG oF  6F oG 0G oF oF G
F,Gl, = Ve — . V= = - (= — 11
{F.C} /Qp<5m vép dm v6p> dv+/ﬂm [<5m V) dm <5m V) 5m] dv (1)
0G o0F  6F 0G
V= —.v=\4d
+/QS<5m Vds om vOs) Y
for F,G € F(X;). Note that the Poisson bracket contains only the state variables and functionals, and
therefore it does not depend on the material properties. This Poisson bracket is the same as that used

for usual fluids described by the Euler equations. If we choose the state space X., the Poisson bracket
for a Korteweg-type fluid is defined as

oG oF oF oG oG oF oF G
{F’G}e—/gf’(m'va—p‘mva)dwfgm' [(m'v> m (m'v> m] dv
oG oF oF oF 0G oG
A i 05 )] R Y (5
0F 0G 6G OF 0G oF oF 0G
2 . —_—— . —— p— — . — —_— — . —
+/Q[(v ,0)5] (56 om  de 5m) dv /Qp{<6m V)V (565) (5m V)V (6e€>} dv

for F,G € F(X.), where

Oe Oe

2
=p°=— and =p—= 13
P=rg, E=p vy (13)
are the pressure and a vector related to the Korteweg stress, respectively, and are defined using the
derivatives of the specific internal energy function with respect to p and Vp, which depend on the
constitutive relations. This means that this bracket explicitly depends on the material properties, unlike



the bracket (11) on the state space X;. In the case of usual fluids described by the Euler equations, the
last two terms in (12) are absent.
The two brackets defined above are apparently skew-symmetric and satisfy the degenerate conditions:

{F,S,}s =0, VF € F(Xy) and {F,S.}e =0, VF € F(X.), (14)
which are easily confirmed via direct computations using the following functional derivatives:

95, ISy _ 5. _

5 =0, m 0, and 5s 1 (15)
and
0S. g o & 85 55, 1
Sp 0 v 6’ ‘m 0, and de 6’ (16)

where 6 = De/0n is the temperature and g = € — 0 + p/p is the specific Gibbs free energy®.

Incidentally, the Poisson brackets defined above can be derived from the canonical Hamiltonian for-
mulation in Lagrangian coordinates. Let x: : B — € be the deformation of the fluid from a reference
configuration B to the current configuration € at time ¢, and let p; : B — V be the momentum conjugate
to x: defined on the reference configuration. The Hamiltonian is defined as

H(x,p;nR):/B {%ﬂme (p(x)mR,Vp(x))} dv, (17)

where p(x) = pr/det(0x/0X) is the density on the current configuration determined by a deforma-
tion, x : B — Q, and pgr and ng are the reference density and entropy, respectively, on the reference
configuration. The canonical Poisson bracket is defined as

oF 060G 6G OF
F.G :/ (- —————— ) av. 18
Fer=J\5x o & o (18)

Then, the canonical equations of motion for the Hamiltonian system become the momentum equations
of an inviscid fluid with the Korteweg stress

Xt = Pt/pr,
pe = (det F)V - {[—pi + ptV - (cpe V)] 1 — cpeVpe @ Vi } (19)

where a dot above the variables denotes a time derivative, F = 9x/0X is the deformation gradient,
p = p*>de/dp is the pressure, and the subscript ¢ denotes the variable at time .

The formulation outlined above in Lagrangian coordinates can be formally transformed to Eulerian
coordinates using the following relations:

pi(%) = (0 (x) = /B pr(X)8 (x — x(X))

my(x) = Bt Pe) () = /B po(X)6 (x — xu(X)) dV,

50(%) = B () (x) = /B pr(X)r(X)6 (x — x:(X)) dV, (20)
and
er(X) = B (X)) = pr(x) = prc (mx), % vmx)) , (21)

4)Note that these definitions and (13) are needed only if we choose the state space X.. If we choose X instead, we do
not have to give a concrete form for the specific internal energy function € or assume local thermodynamic equilibrium.



which provide transformations ® = (®,, ®m, @) and & = (&,, &y, ®,) from the Lagrangian variables
(x, p) to the Eulerian variables (p, m, s) and (p, m, e). Indeed, the Poisson brackets {-, -} and {-,-}. on
the previously defined Eulerian variables are obtained from

O*{F,G}; = {®"F, D*G} for F,Ge F(X;) (22)
and
d*{F,G}, = {O*F, &*G}  for F,Ge F(X.), (23)
where ®* and ®* are pull-back operators defined such that
2"F(x,p) = F(25(X). Pm(x;P), Bs(x))  for Fe F(Xs) (24)
and
F(x,p) = F(2p(X), Pm(x: P), ®c(x))  for Fe F(X). (25)
The Hamiltonian functional H on the Lagrangian variables defined above is the pull-back of the total

energy functional E5 or E. on the Eulerian variables defined in the previous section, that is, H = ®*Es =
d*E,.

2.4 Dissipative bracket

The dissipative bracket on the state space X is defined as

oF 146F 0G 146G
_OF 10F 06 146G 2 14F 146G

for F,G € F(X,), where

is the projection of the second-order tensor T onto a symmetric deviatoric tensor, T? and tr'T denote
the transpose and trace of T, respectively, 1 is the unit tensor, u and A are the shear and bulk viscosity
coeflicients, respectively, and & is the thermal conductivity. If we choose the state space X., the dissipative
bracket is defined as

IF, Gl = /92“‘9 (<v%> - i—i <vv>) - <<v%> - ‘;—f <vV>> dv (27)
+/S2 (V f—;—é—Fv ) (V g—i—‘s—Gv )dv%—/ﬂnGQ (V‘;—D . (vi-i) dv

for F,G € F(%X.). In these brackets, (26) and (27),

5 JE, AN
V:(SES: E. and eziz(é) >0, (28)

m J0m 0s de

are the velocity and temperature of the fluid®, respectively. The functional derivative of the total energy
with respect to the entropy density needs to be positive due to the thermodynamic stability.

5)The temperature is already defined in (16). We do not need to use it, however, if we choose the state space Xs. In
that case, we can define the velocity and temperature as functional derivatives of the total energy (which is given as an
ingredient of GENERIC) as in (28) and then the dissipative bracket is (26) without any further assumptions, in particular,
the assumption of local thermodynamic equilibrium.



The dissipative brackets defined above are symmetric and positive semi-definite as long as the trans-
port coefficients are all positive:

>0, A>0, and k>0, (29)
and satisfy the degenerate conditions:
[F,E,]s =0, VFe F(X,), and [F,E.]Jc =0, VFe F(X.), (30)

which can be confirmed via direct computations using the following functional derivatives®:

0E.  |m? JE, m 0E,
e B L (31)
and
2
OE, _ _H) 75Ee _ E’ JE, . (32)
dp 2p2 dm  p de

2.5 Time evolution

In the GENERIC formalism, the time evolution of any functional F € F(X;) is prescribed such that

dF
o = {FEJ +IFS]. (33)

If we take a functional F on X in the form
Fpm.s) = [ (op+ ¢+ v (34)
Q

for arbitrary functions ¢,9 € C§(,R) and ¢ € C3°(£2,V), we obtain the following local balance
equations for the mass, momentum, and entropy:

dp

E ——V-m,

%‘:—v- (m@%) +V-[(pV-E—p) 1 =VpRE+ V- 2u(VV)+ AV v)1],

os Vo 1

==V (9% - HT) + 3 20(Vv) - <Vv>—|—)\(V~v)2+g|V¢9|2}, (35)

at least if the solution is sufficiently smooth. The terms in the momentum equation that contain &
represent the Korteweg stress. The Korteweg stress models the surface tension acting on the diffuse
interface and comes from the Poisson bracket; therefore, it has nothing to do with the dissipation.

If we choose the state space X, the time evolution of any functional F € F(X.) is described by

dF
o = {FE} +[FS].. (36)

If we take a functional F on X, in the form

F(p.m, ¢) = /Q (6p+ ¢ - m + ve)du (37)

6)Here, we have assumed local thermodynamic equilibrium and have employed standard relations in equilibrium thermo-
dynamics to compute the concrete form of the functional derivatives of Es.



for arbitrary functions ¢,¢ € C§°(Q,R) and ¢ € C§°(R,V), we obtain the following local balance
equations for the mass, momentum, and internal energy:

op

e = -V -m,

%L?:—V' <m®%> +V-[(pV-€—p)1—VpRE& + V- [2u(VVv)+ AV -v)1],

% =V [e%‘Lp(v'V)ﬁ_“Vd + (V) [(pV - &€ —p)1 = Vp @& + 21 (VV) - (VV) + AV - v)?,

(38)

at least if the solution is sufficiently smooth. The balance equations for the mass and momentum are
the same as before, and the Korteweg stress, which comes from the Poisson bracket, is contained in the
momentum equation. The internal energy equation includes the interstitial work flux, which was first
derived by Dunn and Serrin[3], in the first term on the right-hand side, in addition to the work done by
the Korteweg stress in the second term. The interstitial work flux also comes from the Poisson bracket,
and therefore the additional terms, that is, the Korteweg stress and interstitial work flux in this system
of equations, are purely isentropic.

This is in contrast to Cahn-Hilliard type models, where the terms included to model two-phase flows
are intrinsically dissipative. Indeed, the state space for the incompressible Navier—Stokes/Cahn—Hilliard
equations can be written as

X ={(w,p)|lweC®(Q,V),peC®QR)} (39)
the two functionals are the energy and enstrophy:
L2 Lo
H= [ <|v|®dv+ ¥ and Z= [ -|w|°dv+m7, (40)
02 02
where
1 g, 9
U= | - |f(p)+ 5[Vl | dv (41)
Q€ 2

is the free energy of a diffuse interface, m is the mobility of the Cahn—Hilliard diffusion, ¢ is a measure of
the thickness of the diffuse interface, and & is a measure of the surface energy; the Poisson and dissipative
brackets are defined as

(F,G} = /Q (5F /6w 3F /5) (ﬁ; 5012> (gg;ﬁ:) dv, (42)

where
Ell = -V x [w X (V X )], £12 =V x (V\p), 521 = *VQD . (V X ')7
and
_ M O 0G/owY
[F,G] = /Q (6F /6w 6F/d¢) < 0 ./\/l22> (5G/(5<p) dv, (43)
where

Mll =vA and ./\/122 = A,

which are skew-symmetric and symmetric positive semi-definite, respectively. Then, we obtain the vor-
ticity and Cahn—Hilliard equations:

aa—(': =-VX(wxv)—eV x (ApVp) + vAw,
Z_f = —v-Vp+mA E F(p) — E&Ago] . (44)



The last terms on the right-hand sides of the two above equations come from the dissipative bracket, and
therefore we see that the main part of the Cahn—Hilliard equation is purely dissipative.

Any solution of the balance equations (35) or (38) derived above satisfies the first and second laws of
thermodynamics, because the balance equations have the GENERIC structure. Specifically,

dE ds
i {E,E} +[E,S]=0 and i {S,E}+1[5,5]=[5,5] >0 (45)

are satisfied for the total energy and entropy functionals defined so far, irrespective of the state space X,
or X.. Therefore, we obtain a thermodynamically consistent system of governing equations for Korteweg-
type fluids.

3 Complex fluids

In this section, we give an outline of the GENERIC formalism for complex fluids. Details will be reported
in [9].

3.1 State space

For an isolated system of complex fluid in a bounded domain 2 C E with piecewise smooth boundaries,
we choose the state space

X ={(p,m,e,C)lp € C°(,R>p),m € C*(Q,V),e € C*(,R),C € C(Q,Sym)} (46)

composed of the mass density p, the momentum density m, the internal energy density e, and the
conformation tensor C, where Sym is the set of all second-order symmetric tensors. The conformation
tensor models viscoelastic microstructures, and is assumed to be symmetric and contravariant, similar to
the left CauchyGreen tensor B = FFT of the deformation x : B — Q. A contravariant symmetric tensor
induces an inner product in a cotangent space, and the left Cauchy—Green tensor can be interpreted as a
change in the metric on the cotangent spaces caused by the deformation. Indeed, the left Cauchy—-Green
tensor is the push-forward of the unit tensor 1 by the deformation, that is, x. : 1 — FFZ because

(x-1)(@, 8) = 1(x"a,x*B) = (FTa) - 1(F'B) = - F1F' B = (FF") (e, B) (47)
for all o, 8 € T3, where we have used the fact that a cotangent vector @ € T;Q at a point x in

the current configuration € is pulled back by the deformation x to x*a = FTa € T;,l (x)B at the

corresponding point x~1(x) in the reference configuration B. Similar to the left Cauchy—Green tensor,
the conformation tensor is a contravariant symmetric tensor defined on the current configuration and is
pulled back to the reference configuration as x*C = F~1CF~7 because

(X"C)(&.m) = C(xx&,x:m) = (F7¢)-C(F ") =¢-F'CF "= (F 'CF 7)(&m) (48)

for all £, m € T% B, where we have used the fact that a cotangent vector £ € Tx B at a point X in the
reference configuration B is pushed forward to x.& = F~7¢ € T;(x Q at the corresponding point x(X)
in the current configuration Q by the deformation x. The time evolution of the conformation tensor
along the motion is naturally given by the Lie derivative”:

LyC = Xt (Di(x;C)) =F (D(F'CF~ 1)) FT
=F [(D,F CF T +F Y(D,C)F T +F'C(D,F )| FT
—F [(-F*lvv)CF—T +FY(DCF T+ F’1C(—F’1Vv)T} F7
aC

= 5 +(v-¥)C— (W)C - c(vv)T, (49)

along the velocity field v = dx;/dt of the motion ¢t — x;, where D; denotes the material time derivative,
which is a time differentiation holding the material point fixed.

DThe Lie derivative is defined as LyC(x¢(X),t) = limp_o(1/h) [(xjt o X} 1) C(Xt+n(X),t +h) — C(xt(X),t)] =
(d/dr) [(x*y o X7)Cxr (X), ]|, _, = x7, [(d/d7) (x;C)(X, 7)|-¢], where X = x; " (x).



3.2 Energy and entropy

We choose the total energy and total entropy functionals defined on the state space X, such that

2
Ec(p,m,e,C) = / [|m| +etec(p,C)|dv and Sc(p,m,e C)= / [pn ( ) + pne(C )] dv,
ol 2p Q p
(50)
where e, : R5o X Sym — R is the internal energy density and 7. : Sym — R is the specific entropy due to

the microstructure of the complex fluid. We chose these specific forms of additional energy and entropy
to make the simplification easier, as shown later.

3.3 Poisson bracket

The Poisson bracket on the state space X, for complex fluids is defined such that
0G oF 5F 5G 0G OF 5F G
0G oF oF oF 0G 0G
RCHAAC 56)] R UM CIIIE
e | OF [(_5G 6G [_ 6F\"
/ PCEG |5 <Vm) " e <Va) ] dv
oF oG 6G _ JOF
+/QC' {V' (ﬁ%—m—ﬁ%—m)
5G\ " oF SF\" 6G 6F (_48G\ &G [ oF
* (Vm) 3C (Vm) 5c "5 (Vm) 5C (Va )1 v (1)
for functionals F,G € F(X,). If the last two terms, which contain the conformation tensor, are absent,
the formulation reduces to that for simple fluids governed by the Euler equations.

The Poisson bracket defined above is apparently skew-symmetric and satisfies the degenerate condi-

tion: {F,Se}. = 0, for all functionals F € F(X.). This can be confirmed via direct computations using
the following functional derivatives:

5. g 55, 5S. 1 55, on.
T R e R A T R [k

(52)

The fourth term of the Poisson bracket (51), which is necessary to satisfy the degenerate condition
as long as the additional entropy 7. depends on the conformation tensor, includes 6 = (8S./de)~! =

(On/0€e)~1 and 9n./0C and therefore depends on the constitutive relations. This is also true for the
Poisson bracket:

1= (155 s o [ (15 5) - (1 5) 5]
NERCE
- T
o f el [ (e22) -5 (o5 ]
+/Qc[v<§—g®§7i%®;—;>

G\ 7T oF SFNT 6G  oF 5G 5G SF
+(V5—m) E_(V(S_m) E+E(Va—m>‘m(vg—m)]dv (53)




on the state space X5 = {(p,m, s, C)|p € C*(Q,R>¢),m € C*(Q,V),s € C*(,R),C € C>°(Q,Sym)},
which otherwise does not explicitly contain any information concerning the material. The material
properties enter the Poisson bracket if the entropy depends on the conformation tensor.

3.4 Dissipative bracket

The dissipative bracket for a complex fluid on the state space X, is defined such that

B (0e./OC) - R(0e./0C) —R(de./0C)\ [ 6G/de
[F,G]e_/ﬂ(dF/(Se 5F/6C)( e ‘. ><5G/5C> v

O0F (Oe. __Oe.\ oG OF [ Oe. 0G oF de.\ 0G  OF 0G
— al . = _ R = =4 R 4
/ﬂ [5e (ac Rac) be  de <ac RdC) <5c Rac) 5e T 3C Rac}d”’ (54)
for functionals F,G € F(X.), where R : Sym — Sym is a symmetric and positive semi-definite fourth-
order tensor satisfying

A-RB=RA-B and A-RA>0 (55)

for all A,B € Sym.
The dissipative bracket defined above is apparently symmetric and is positive semi-definite because

oF (De. _de.\ oF OF (_de. oF oF de.\ 5F OF _ OF
IF, Fle _/Q [% (ac 'Rac> 5e e (Rac ‘ 5c> - (R5c ' ac> 5e ToC e |
5F de,  oF 5F e, OF
= R — [ — . N I, y > .
/Q<5e aC 50) R(ﬁe aC 5C>d“0 (56)

for all F € F(X.). It also satisfies the degenerate condition: [F,E_]. = 0 for all F € F(X,), which can be
confirmed via direct computations using the functional derivatives:

= _|m|2 Oee 0Ec  m 0E.

o0E.  Oe.
Sp 202 9p’ ‘om  p’ Je L and 5C ~ aC’ (57)

Note that the dissipative bracket (54) represents the dissipation due to the microstructure. If there
is heat conduction, for example, we need to add a corresponding term: [, K62V (6F /de) - V(6G/de)dv,
which is the same as in the case of Korteweg-type fluids, as explained in the previous section.

We can also choose the state space X, which contains the entropy density instead of the internal energy
density as a state variable, and define the Poisson bracket (53), as well as the total energy and entropy
functionals on X;. It appears difficult, however, to define the dissipative bracket on X4 transforming the
bracket (54) on X, to that on X, while maintaining the degenerate condition:

oF [ Oe. Oe, OoF [ Oe, Oe, oF Oe, oF Oe,
F.E], = hall . 1-— — . = 14+ — . =0.
[F.Ec] /Q[ée (ac Rac) 5 <ac 72ac) (50 72ac) e Rac]d” 0. (58)
This condition holds because 0E./de = 1 and JE./0C = de./IC. However, these functional derivatives
will be replaced with 0E,/ds and dE;/JC in the dissipative bracket on X if we change the state space X,

to X,. In that case, it will be difficult to satisfy the corresponding condition [F, E/]s = 0 because dE;/ds
necessarily contains the temperature 6.

3.5 Time evolution
The time evolution of the functional defined on the state space X. is prescribed such that

dF
= {FEJ +F.S (59)
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for F € F(X%.). If we take a functional F on X, in the form
F(pm.e.C) = [ (op+ ¢ m+ve+ B Cle (60)
Q

for arbitrary functions ¢, € C§°(Q,R),{ € C§°(Q, V) and 3 € C§°(Q, Sym), we obtain the following
local balance equations for the mass, momentum, internal energy, and conformation tensor:

%? =-V- <m® %) —Wa;pc -V (p1+2p9(;]—(ch) +V- (eC1+2%C>,
o (42 i) (52) Lo m (B )
EVC:—%R (gg —p@??;), (61)

at least if the solution is sufficiently smooth. Note that p, m, and e are densities, which are quantities to
integrate over a spatial domain, and their time evolutions are described by partial derivatives with the
spatial coordinates held fixed. Conversely, C represents a local quantity, which is a microstructure of the
fluid and advects with the flow.

If we assume the following constitutive relations:

e.(p,C) = %tr [(C-1)], 7.(C) = const., and R = gI, (62)

where 7 is a fourth-order unit tensor and 7 is the time scale of dissipation, we obtain a standard model
for complex fluids as follows:

ap

ot = TV
am——v m® =) - Vp+V 1|Cfl|21+2(C71)C
ot T op p 2 ’
0 1
T =v. <89> —p<v.9>+—|c—1|2,
ot P 0 T
1
L,C = —;(C -1), (63)
where we computed the partial derivatives of the constitutive relations as follows:
de. dee one
e < -C-1 d — =0. 4
p 0, 50 C-1, an 50 (64)

The assumed form of the additional internal energy satisfies the objectivity requirement of continuum
mechanics because it can be written using the principal invariants of the contravariant tensor c=Cc-1
defined on the current configuration. Indeed,

e.(p,C) = ltr(A32 = l(terA3)2 21 (trC)? — trC?| = lI% — 114, (65)

2 2 2 2C ¢

where I = trC and Mg = (1/ 2)[(trC)2 — trC?] are the first and second invariants of the second-order
tensor C, respectively. Note that, if tensor C is a unit tensor, this additional energy vanishes and all
terms concerning the conformation tensor in the valance equations also vanish. The assumed form of
the additional entropy guarantees that the Poisson bracket (53) on the state space X, does not explicitly
depend on the material properties because 07./0C = 0, and therefore the fourth term of the Poisson
bracket (53) also vanishes; the remaining terms contain only state variables and derivatives of functionals
with respect to the state variables.
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Any solution of the balance equations, (61) or (63) derived above, satisfies the first and second laws
of thermodynamics because the balance equations have the GENERIC structure. Specifically,

B EEJetES)=0  and ey B t(s.S) = (55020 (66)

hold for the total energy and entropy functionals defined in (50). Therefore, we obtain a thermodynam-
ically consistent system of governing equations for complex fluids.

4 Concluding remarks

Thermodynamically consistent governing equations for Korteweg-type fluids and complex fluids are de-
rived in the GENERIC formalism, where the conservation of the total energy and the condition of in-
creasing total entropy are always satisfied. Conservative and dissipative terms in the governing equations
are clearly distinguished, which is a one of prominent features of the GENERIC formalism.

Acknowledgements

This work was supported by the Research Institute for Mathematical Sciences, an International Joint
Usage/Research Center located in Kyoto University. Financial supports from the Grants-in-Aid for
Scientific Research (KAKENHI, Grant Number 17K05376) of the Japan Society for the Promotion of
Science, and Interdisciplinary Institute for Thermal Energy Conversion Engineering and Mathematics,
Organization for University Research Initiatives at Waseda University are gratefully acknowledged. This
research was partially supported by the Mathematics and Physics unit, ”Multiscale Analysis, Modeling
and Simulation”, Top Global University Project at Waseda University.

References

[1] Grmela, M., Ottinger, H. C., Dynamics and thermodynamics of complex fluids. I. Development of a
general formalism, Phys. Rev. E 56, 6620-6632 (1997).

(2] éttinger, H. C., Grmela, M., Dynamics and thermodynamics of complex fluids. IT. Illustrations of a
general formalism, Phys. Rev. E 56, 6633-6655 (1997).

[3] Dunn, J. E., Serrin, J., On the thermomechanics of interstitial working, Arch. Rational Mech. Anal.
88, 95-133 (1985).

[4] Coleman, B. D., Noll, W., The thermodynamics of elastic materials with heat conduction and
viscosity, Arch. Rational Mech. Anal. 13, 167-178 (1963).

[6] Suzuki, Y., Bracket formulations and energy- and helicity-preserving numerical methods for incom-
pressible two-phase flows, J. Comput. Phys. 356, 64-97 (2018).

[6] Ottinger, H. C., Beyond Equilibrium Thermodynamics, Wiley, Hoboken (2005).

[7] Suzuki, Y., A GENERIC formalism for Korteweg-type fluids. Part I. A comparison with classical
theory, submitted to Fluid Dyn. Res.

[8] Suzuki, Y., A GENERIC formalism for Korteweg-type fluids. Part II. Higher-order models and
relation to microforces, submitted to Fluid Dyn. Res.

[9] Suzuki, Y., Ohnawa, M., Mori, N., Kawashima, S., Complex fluids: Modelling and mathematical
analysis, submitted to M3AS.

12



