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1 Introduction

Recently, quantum information technology, such as quantum communication and quantum com-
putation, has been researched rapidly. In the quantum information technology, we use quantum
devices to obtain information from quantum particles. This process is referred to as a quantum
measurement, or a measurement simply. However, we cannot obtain the complete information from
the quantum particles because of the law of quantum mechanics. For example, the Heisenberg
uncertainty relation states that we cannot obtain the complete information of the position and
momentum simultaneously. Therefore, in quantum information science, designing optimal quantum
measurements is a really fundamental problem.

Quantum parameter estimation, one of the well established fields in quantum information sci-
ence, is a study about estimating the properties of a quantum particle as precise as possible. More
formally speaking, in quantum parameter estimation, we consider a parametric quantum state fam-
ily M and we try to estimate the parameter 6 of a given state py € M. This subject is useful
when you want to design optimal quantum devices for quantum computation and quantum com-
munication. In quantum parameter estimation, our goal is to construct accurate and appropriate
estimators for a given parametric state model. More general discussion about quantum statistical
inference is found in [1, 2].

For the design of quantum devices, eliminating the effect of noises is a crucial problem. You
have to obtain the information of quantum particles as much as possible, while eliminating the
effect of noise. In quantum parameter estimation, many problems of noises are formulated as
nuisance parameter problems. For a given model M and a given state py € M, the nuisance
parameter problem aims at estimating some elements (61, ...,0q,) (d;r < d) of the entire parameters
6 = (01,...,04). For eliminating the effect of noise, We usually regard the noises as the rest of



parameters (64,41 ...,60q) and just focus on the estimation of some elements (61,...,6,4,) of the
parameters. More details about the nuisance parameter problem are found in [3, 4], for example.

When the quantum particles are spatially different, quantum operations over the entire particles
are usually difficult to perform. One of the reasons is simply that we have to prepare bigger devices.
For example, if one particle is in America and the other particle is in Japan, quantum devices over
the two different countries are difficult to implement in practice. To overcome this difficulty, we
consider LOCC(Local Operations and Classical Communication) operations, a restricted class of
quantum operations. In any LOCC operation, operations over two or more particles are prohibited.
Only local operations and classical communications to other particles are allowed in the LOCC
operations. Since we do not need to use the bigger operations over the entire particles, the LOCC
operation is much easier to realize physically.

We show the existence of an optimal estimator for the estimation with nuisance parameters
even if the operations of the estimator is restricted to LOCC operations. Also, we give the explicit
construction of the optimal LOCC estimator.

The contents of this paper is as follows. In Section 2, we introduce quantum state and quantum
measurement, which is needed for later sections. In Section 3, we explain the basics of quantum
parameter estimation. In Section 4, we show our main result in Proposition 1 and Proposition 2.
Section 5 and Section 6 devotes for an application and an example of our result.

2 Basics of quantum information theory

Quantum theory has many curious properties such as non-locality. Most of these properties can
be described by the definitions of quantum state and measurement. In this section, we briefly
summarize the definitions of quantum state and measurement. To describe any of the definitions,
a finite-dimensional Hilbert space is used and is called a quantum system.

First, we define the quantum state as follows.

~ Quantum state ~

Definition 1. Let ‘H be a finite-dimensional Hilbert space. A linear operator p on H is a
quantum state if

1. Trp=1,
2. p>0

holds.
A set of all quantum states on Hilbert space H is denoted by S(H).
A quantum state p is pure if there exists a unit vector v € H such that

p = [v)(v] (1)
holds (The Bra-ket notation is used.). Otherwise, the state p is called a mized state.
. J

Next, we introduce the quantum measurement. Mathematically, quantum measurement is de-
scribed as POVM (Positive Operator Valued Measure) which is defined as follows.
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Figure 1: Estimation Process

~ POVM(Positive Operator Valued Measure) ~

Definition 2. An indezed set { M, },eq of positive linear operators M, on Hilbert space H is
a POVM if

> M,=1 (2)

holds where I denotes the identity operator on Hilbert space H.
When a measurement { M, },cq is performed on a state p, the outcome is w with probability

pM(wlp) = Trpl,. (3)

Next, we define Adaptive measurement which is a LOCC operation. Suppose a quantum system
H is a composite system H = @,.,, Hi of quantum systems Hi,...,Hn. A measurement
{M,,}weq is said to be adaptive if there exist measurements {Mu(,fl’m’w"*l)}wi on H; such that

My (oy,.oogon) = Muoy @ MGD @+ 0 MGt oon=1) (4)

w1
w2

holds.
\

For more properties of quantum information theory, see the textbooks[5, 6] for example.

3 Quantum parameter estimation
For a given parametric state model
M={ppeSH) |00}, ©CR? (5)

and a given state pg € M, quantum parameter estimation is a subject to estimate the true param-
eter ' of the state pgr.

A general procedure of the estimation process is as follows, as illustrated in Fig 1. First, we perform
a measurement {M,},cq to the given state py and get an outcome w with probability TrM,,pe .
Based on this outcome, we estimate the true parameter using the map 6 : Q — O. Since the
measurement M = { M, },cq and the map 0 determine the whole process of estimation, our goal is
to select the measurement and the map appropriately so that we can estimate the true parameter
as precise as possible. The pair (M, é) is called an estimator.



In this section, we summarize the quantum parameter estimation for one-parameter case and for
nuisance parameters.

3.1 Quantum estimation for one-parameter model

Here, we consider a parametric state model
M={ppeS(H) |6 € O} (6)

whose open set O is a subset of one-dimensional real space R.
In quantum one-parameter estimation, the locally unbiased condition is defined as follows.

~ locally unbiased estimator ~
Definition 3. For a given parametric model

M=1{ppeS(H)|0cOCR}, (7)

an estimator (M = { M, },eq,0) is locally unbiased at 6y € © if

Eg, (M, 6) = 6, (8)
d% lo—6, Eg(M, 0) = 1 (9)
where A R
Eg(M, 0) := > 6(w)Tr(M,pp). (10)
wef

An estimator is said to be an unbiased estimator if the estimator is locally unbiased at all points
in ©.
o %
One of the most important problem in quantum parameter estimation is to find an estimator
which is most precise among all locally unbiased estimators. The MSE (Minimum Squared Error)
is usually used to characterize the accuracy of estimators, and is defined as follows.

~ Minimum Squared Error ~
Definition 4. For a given parametric model M = {py € S(H) | 6 € © C R} and an estimator

A~

(M = {My}ueq, ), the MSE at 6 = 0y is defined as

. . 2
Vo (M) = 3 (9(@ . eo) Te(Mopg,)- (11)
weN

- J
If the MSE of an estimator at 6 is smaller, the estimator is regarded as more precise at the point 6.
By definition, the MSE is non-negative. Therefore, an estimator is the most precise estimator at
if its MSE at 6 is zero. However, according to the following proposition which is firstly proven in
[7], there exists a lower bound of MSEs if we assume that estimators are locally unbiased.




~ SLD Cramer-Rao Bound ~

Theorem 1. For a given parametric model M = {pg | § € © C R4 and a locally unbiased
estimator (M, 0) at 0y, the following inequality holds:

Vio (M, 0) > (Jgn) ™" (12)

Note that Jég 1s called SLD fisher information which ts defined as
1
(J5) = 5 Tepa(E§)? (13)

where the SLD operator Lg 1s defined implicitly to satisfy

B0 (oL + Li o). (14)
This bound (12) can be attained by the estimator constructed as the spectral decomposition of
L.

- J
According to Theorem 1, the spectral decomposition of (Jé9 )_1Lg is an optimal estimator. However,
this estimator is not usually a LOCC operation. Therefore, the realization of this estimator is
difficult when the quantum system is multi-partite. As a current result, The recent paper [9] states
the existence of the optimal LOCC estimator if the parametric model is composed of pure states.

3.2 Quantum parameter estimation with nuisance parameters

Next, we consider the quantum parameter estimation with nuisance parameters. For a parametric
model with nuisance parameters

M={py e S(H) |0 =(01,0n) €0,0; cRY} (O CR?, ds<d), (15)

consider the case when we want to estimate some elements 6; € R% of § = (6;,6y), not the entire
elements (61, ...,604). This is called nuisance parameter problem. In nuisance parameter problem, we
say the elements 67, which we want to estimate, as parameters of interest and say other parameters
fn as nuisance parameters. In the nuisance parameter problem, the locally unbiasedness condition
for estimators is defined as follows.



~locally unbiased estimator (nuisance) ~

Definition 5. An estimator (M = {M,}weq, 07 : ) — R is locally unbiased at 6 = (07, 0y)
for 05 if

Vie{l,...,dr},Vje{l,...,d}, (16)
E)(M, ) = 0; and %E@(M, 0) = b;; (17)
J

holds. Note that E(Z,(M,é) is defined as

Ej(M,0) := > 6" (w)TrM,p (18)
weN

where 6 denotes the i-th element of the map 60— Re
- /
As mentioned in Theorem 1, the SLD Cramer-Rao bound characterize the precision bound of locally
unbiased estimators in quantum one-parameter estimation. In quantum parameter estimation with
nuisance parameters, there also exists a Cramer-Rao type bound. Here, we introduce the bound for
the case when dy = 1.

~ MSE Bound (nuisance parameter) ~

Theorem 2. For a given parametric model
M={pgeSH)|0=(0;,0n) € 0,0 cR} (©CR?), (19)

we define the MSE at 0 for 0; as

Vo (M, 0;) = > (éI(W) - 91>2Tr(wa9)- (20)
weN
In this case,
V(M. 07) > [(35) " (21)

holds for any locally unbiased estimator (M, 0r) at 0 for ;. Note that Jg is the SLD matriz
which is defined as

1 ..
[Js]ij = 51\1"/76([/(%[/5:(7 + Lg,jL?ii) (1<id,5<d) (22)
where Lgii (1 <i<d) are defined implicitly to satisfy

apg 1
EY §(P9Lg,i + L 1p0). (23)

This bound (21) is attained by the estimator constructed as the spectral decomposition of
Zigd[(‘]g)_l]ljl’es;j'

N J
For the proof of Theorem 2, see [4, Theorem 5.3].




In quantum parameter estimation with nuisance parameters, the most important problem is to
construct the locally unbiased estimator satisfying the equality in (21). If you need more about
nuisance parameter problem, see [3, 4] for example. Also, the constructions of asymptotically
optimal estimators are found in [3, 8], which are based on the method called a two-step method.

4 Construction of LOCC estimator for pure state model
In this section, we consider the following model

M = {|ug)(ug| € S(H) | 6 = (1,0N) € ©,0r € R}, © CR%L (24)

Assume that the Hilbert space H = @),y Hi of the model M,,,, consists of the sub-spaces H;.
In this case, the optimal estimator mentioned in Theorem 2 should be difficult to realize in many
cases. To overcome this difficulty, we consider adaptive measurements to estimate the parameter
of interest ;. The following proposition states the existence of an optimal estimator even if we
assume that the measurement is adaptive.

existence of LOCC measurement

Proposition 1. There exists a locally unbiased estimator (M, 0}) at 6 for 0 € R satisfying
Vo, (M, 07) = [(J5) " |nn (25)

and the measurement M is adaptive.

Proposition 1 is proven by constructing an appropriate estimator. To construct the desired estima-
tor, we use the following proposition. This proposition is inspired by the method in [9, 10].



~ construction of estimator for pure state model (nuisance) ~

Proposition 2. Consider the model M, is defined as (24). Suppose an orthonormal basis
{vk te<dimu of H satisfies

Yk, (uglvg) =0 = ( (ag|vg) =0) (26)
and 5
Vi, (uglo) # 0 = (2215 ¢ gy (27)
(ug|vg,)
where |ty) is defined as
B0) =)+ 3 I @) el (28)
1<k<d—1
) 2= 2 (1 — Jug) (ol | e (29)

Note that Jg;IN € Rdfl,JQS;NN e RU-DX=1) gre the block sub-matrices of Jg which is defined
as
N N
- (30 3y .
0;NI ;NN

Then, defining the estimator 0;: Q=R as

Sy\—17, . {Hg|uk) .
Or(k) := [(J6) ™ I fugruny + 0 o (uglvg) # 0 o
0 otherwise
and the estimator A
(4loe) el 1. 1) )
is a locally unbiased estimator at 6 for 01 and attains the Cramer-Rao type bound.
X /

You can directly prove that the estimator given in Proposition 2 satisfies the locally unbiasedness
condition and attains the Cramer-Rao bound.
Therefore, the measurement of the estimator can be chosen as an adaptive measurement if there

It Y gy OF H = @y Ha satisfying

n

exists an orthonormal basis {v; = vj, ®U§; Vg.. '®v](-

Vi, (uglvj) = 0= ( (ap[v;) = 0) (33)
and
(tig|vy)

{uglos) €eR) (34)

Vj, <U9|UJ> 7é 0= (

where each {v(-fl“'"ji_l)}ji forms an orthonormal basis of H;. Fortunately, the existence of such

orthonormal basis {vj} is ensured by the following proposition.



~ construction of adaptive basis ~

Proposition 3. Any traceless operator A on H = @),~,, Hi has an orthonormal basis {vj =

v @) @@ oIy Gy on M satisfying
Vi, (vjlAlvj) =0 (35)

where each {Uj(fl""’ji_l)}ji forms an orthonormal basis of H,;.
- J
For the proof of Proposition 3, see the paper [11]. Using Proposition 3 to the traceless matrix

|¢)(¢ + 5| where |¢) is defined as

0) = sin ¢lug) + cos dlig), ¢ € R\ 2, (36)

we obtain the CONS satisfying the conditions given in Proposition 2. Using this adaptive measure-
ment {|v;)(vj|} and Proposition 2, we obtain the optimal estimator whose measurement is adaptive.

5 Estimation of f(0)

One of the most important application of the nuisance parameter problem is the estimation of a
smooth, real valued function f : M — R. For example, the Von Neumann entropy is the real valued
function. Since the model is parameterized, each state in M has a corresponding parameter 6 € O.
Therefore, the function f can be understood as a map from © to R. In this section, we investigate
the estimation of the smooth function f: ©® — R.

For an estimator (M = {Mw}wegz,f : Q — R) of the function f, we impose the locally unbi-
asedness condition at 6y which is defined as follows.

e N

Definition 6. An estimator (M = {Mw}wegz,f : Q = R) of the function f: © — R is locally
unbiased at Oy if X
Ey, (M, f) = f(60) (37)
and 9 of
Vi < d, O_(JZ-EG(M’ ) lo=0,= 0—91_(90) (38)
holds.
\§ J
For the estimators (M, f) of the function f, The variance Vy(M, f) at 6 is defined as
. . 2
VoM, f) =3 (#(6) = F(w)) Tr(poM..). (39)
weN

Our purpose is to find an estimator (M, f ) satisfying the following two conditions:

e the locally unbiasedness condition at 6.

e attaining the minimum variance among all locally unbiased estimators.



The following proposition states Cramer-Rao type inequality for estimating a real-valued function
f.

~ bound for estimator of function ~

Proposition 4. For any locally unbiased estimator (M, f) at Oy of a real-valued function f,
its MSE Vg, (M, f) satisfies

o o - (60)
Veo(va) > (%(90)77£(90))(J50)_1 : (40)
1 d f
984 (6o)

A construction of a locally unbiased estimator attaining the bound (40) is explained in Section 4.
\ %

Proof. Consider the following transformation of the parameter 8 = (61,...,04) — £ = (&1, ..., &4):
of
&1 = f(0o) + Z %(90)(93‘ —0oy5), (41)
j<d Y

and define other &;(i # 1) appropriately so that this transformation becomes invertible. For example,
for j € {1,...,d} satisfying g—(fj(ﬁg) # 0, define the transformation as

G-00) - FE) - FE00) o\ [ &

Ij—l 0 92 €2
1 0 : = (42)

Id—j—l 0 ‘9d gd

0 0 1 1 1

where rg is defined as 5
ro = f(0o) — —f(f)o)@o‘i- (43)
00; '

Using this transformation, our problem is reduced to the estimation of & because & is the Taylor
approximation of f(0) by the definition (41). This estimation is completely same as the estimation
with nuisance parameters. Applying Proposition 2, we obtain the desired inequality (40). Therefore,
by the same method in Section 4, we obtain the optimal estimator whose measurement is adaptive.

O

6 Example

Here, we give an example of an estimation for a real-valued function whose basic aspects are de-
scribed in Section 5. Assume that two-dimensional Hilbert spaces H 4 and Hp are given. Also, we
assume that {]04),|14)} and {|0p),|15)} form CONSs of H 4 and H p respectively. Define the pure
state model M as

M = {|ug){up| € S(Ha®@ Hp) | 6 € O} (44)

where
0= {9 = (0c, ¢c,04,b4,05,05) €RE |0 < 05 <

™

S0 gy <2m,5,8' € {A,B,C}}  (45)

10



and

lug) := cos e % uy @ up) + sin e |uf ® ug), (46)
lug) := cos 9Ae_i¢A|0A> + sin 9Aei¢A|1A>, (47)
lup) := cosfpe *B|0g) + sin ApeE|1p). (48)

As an example of a real-valued function, we choose the entropy of entanglement which is charac-
terized as H(Try,p), the von-Neumann entropy of the reduced density operator Try, p for a state
p € S(Ha®Hp). For a state |ug)(ug| € M, this value H(Try,, |ug)(ugl|) is calculated as

H(Try,, (Jug)(ugl)) = — cos® 6 log cos? ¢ — sin? G log sin? O (49)
Therefore, defining the function f: © — R as
f(0) = H(Trpp|ug)(uol), (50)

the partial derivatives of this function f are calculated as

of
90

cosfc  Of
sin 90 ’ aei

(0) = 4sinO¢ cos ¢ log (0)=0(1<i<6). (51)

Since (1, j)-elements (1 < j < 6) of the SLD fisher information matrix at § € © are calculated as
IHun =4, (Ih;=0(1<j<6), (52)
the bound (4) is calculated as

5 cosfc

0 1 0
C?S c. 1 4 sin ¢ cos ¢ log C?S ¢ = 4sin? fc cos? O log? — .

sin 6¢ sin 6 sin 6¢
(53)
The construction of a locally unbiased estimator attaining this bound (53) is explained in Section 5.
Next, let us compare this result to the case when operations for only H 4 is allowed. In this
case, we consider the model M which is defined as

V@(M,f) > 4sin 6 cos ¢ log

M = {Trp,|ug) (ug| € S(Ha)}- (54)
Since
Tryy, [ue) (ug| = cos? Oclua)(ual + sin? €c|uj><uJA‘| (55)

holds, this model M is three-dimensional and its parameters are 0c,04 and qbé\. Since the (1, j)-
elements (1 < j < 3) of the SLD fisher information matrix J5 for the model M are calculated as

(I =4, (I)2=0, (IF)s=0, (56)
the bound is calculated as
of af af 'TZQL(G) cos ¢
Sy—1 _ 2 .2 2
(690(0)’69,4(6)’ 9o (0))(J7) 20 EZ; = 4 cos” O sin” Oc log Snde (57)
Opa



This bound is the same as the bound (53). This means that, in this case, the precision bound is
attained even if operations are restricted to only on H 4. According to Theorem 1, the spectral
decomposition of [(%%(9))2@ i )11]_1Lg;1 gives an optimal estimator. Since ng;l is decomposed to

Lgﬂ = —tanflua)(ual + (tan 6‘)_1|uj)(uj|, (58)

an optimal measurement on H4 is given as {|ua)(ual, [u)(ug|}.

7 Conclusion

In quantum technology which has been developed recently, designing optimal and accurate quantum
devices is a really difficult and important problem. One of the reasons is because we cannot get the
complete information from quantum particles. It usually varies. Therefore, the estimating process
for the desired information is a fundamental problem. In this paper, we show the existence and
the construction of an optimal LOCC estimator for nuisance parameter problem. This estimator is
significantly important when dealing with the effect of noise and the physical realization. Since the
quantum technology has been paid much attention to recently, quantum statistical inference will
become more fundamental and essential in the future.
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