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Abstract. This is a survey of [EF1, EF2, EF3]. The purpose of this series of papers is: (1)
to give a proof that associator relations imply double shuffle relations, alternative to [F3]; (2)

to make explicit the bitorsor structure on Racinet’s torsor of double shuffle relations. The
main tool is the interpretation of the harmonic coproduct in terms of the topology of the

moduli space M0,4 and M0,5, introduced in [DeT], and its extension to the Betti setup.
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Introduction

The multizeta values (MZVs) are the real numbers defined by the series

ζ(k1, · · · , km) :=
∑

n1>···>nm>0

1

nk1
1 · · ·n

km
m

for k1,. . . , km ∈ Z>0 and k1 > 1. These numbers have recently garnered much interest due

to their appearance in various fields of physics and mathematics ([BrKr]). They appear to be

examples of periods ([KoZ]) and are, as such, related with motive theory ([De]). Using this
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theory, upper bounds for dimensions of spaces of MZVs have been obtained ([DeG, T]). A

related problem is the identification of the algebraic and linear relations among MZVs.

A recent review of the available systems of relations can be found in [B]. Among them, we

will focus of the interrelations between: (a) the associator system of relations ([Dr, LM]); (b)

the regularized double shuffle relations ([IKaZ, R]).

Each system of relations gives rise to a Q-scheme, defined as the spectrum of the free com-

mutative Q-algebra over formal variables ζf (k1, · · · , km) for (k1, . . . , km) ∈ Z>1× (Z>0)m−1 by

the corresponding ideal. These schemes are called the scheme of associators in case (a) and the

double shuffle scheme in case (b); for k a Q-algebra, the sets of k-points of these schemes are

denoted M(k) in case (a) and DMRDR,B(k) in case (b). The definition of M(k) can be found

in [Dr], p. 848, and DMRDR,B(k) = tµ∈k×DMRµ(k), where DMRµ(k) is as in [R], Déf. 3.2.1.

The structures of these schemes is elucidated by the following results.

Theorem 0.1. ([Dr]) (1) There are explicit Q-group schemes {Q-algebras} 3 k 7→ GT(k),

GRT(k) ∈ {groups}, and for any Q-algebra k, commuting left and right free and transitive

actions of GT(k) and GRT(k) on M(k).

(2) These Q-group schemes are extensions of the multiplicative group Gm by prounipotent

group schemes. Their Lie algebras gt and grt are filtered, moreover grt is complete graded.

Note that the group AutGRT(k)(M(k)) of permutations of M(k) which commute with the

action of GRT(k) naturally acts on M(k). (1) says that there is an isomorphism between this

group and the explicit group GT(k), which is compatible with their actions on M(k).

Theorem 0.2. ([R]) (1) There is an explicit Q-group scheme {Q-algebras} 3 k 7→ DMRDR(k) ∈
{groups}, and for any Q-algebra k, a free and transitive left action of DMRDR(k) on DMRDR,B(k).

(2) This Q-group scheme is an extension of the multiplicative group Gm by a prounipotent

group scheme. Its Lie algebra dmrDR is complete graded.

This formulation is obtained in [EF2] using the main result of [R]. The best available result

on the comparison of the associator and double shuffle schemes is as follows.

Theorem 0.3. ([F3]) For any Q-algebra k, there are compatible inclusions of sets M(k) ⊂
DMRDR,B(k) and of groups GRT(k)op ⊂ DMRDR(k) (where op denotes the opposite group).

The proof in [F3] relies on the construction, out of the family of multiple polylogarithm

functions, of elements in the bar-complex of the moduli space M0,5, which are then viewed as

linear forms on the enveloping algebra U(p5) (see §2.1), and on the study of the combinatorics

of these linear forms. This result was also announced in the unfinished preprint [DeT], which

contains in particular a description of one of the main actors of double shuffle theory, the

‘harmonic coproduct’, in terms of topology of the moduli spaces M0,4 and M0,5.
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The main objectives of the series of papers [EF1, EF2, EF3] are: (a) giving a new proof of

Theorem 0.3, based on the ideas of [DeT] ([EF2]); (b) making the group AutDMRDR(k)(DMRDR,B(k))

explicit, together with its action on DMRDR,B(k) ([EF3]). In order to reach them, we perform

an intermediate task: (c) constructing a ‘Betti’ version of the algebraic apparatus of double

shuffle theory and showing how it is related to the original one by an associator ([EF1]). The

material relative to objective (c) (resp., (a), (b)) is reviewed in §1 (resp. §2,§3).

1. The algebraic framework of the double shuffle theory

1.1. The de Rham side of double shuffle theory. Let VDR be the free associative k-algebra

over generators e0, e1; it is Z≥0-graded, with e0, e1 being of degree 1. Let WDR := k1⊕VDRe1;

this is a Z≥0-graded subalgebra of VDR. Set MDR := VDR/VDRe0; this is a Z≥0-graded left

VDR-module, therefore by restriction a left WDR-module, which is free of rank one, generated

by the class 1DR ∈MDR of the element 1 ∈ VDR.

Let ∆V,DR : VDR → (VDR)⊗2 be the k-algebra morphism such that ei 7→ ei ⊗ 1 + 1⊗ ei for

i = 0, 1. One shows that WDR is freely generated, as an associative algebra, by its elements

yn := −en−1
0 e1, where n ≥ 1. We denote by ∆W,DR : WDR → (WDR)⊗2 the k-algebra

morphism such that yn 7→
∑n
i=0 yi ⊗ yn−i for n ≥ 1, where y0 := 1, and by ∆M,DR :MDR →

(MDR)⊗2 the k-module morphism such that ∆M,DR(a·1DR) = ∆W,DR(a)·1⊗2
DR, where · denotes

the action of VDR on MDR. The maps ∆X ,DR, X ∈ {V,W,M} are all compatible with the

Z≥0-gradings.

Then (VDR,∆V,DR) and (WDR,∆W,DR) are cocommutative Hopf algebras, but the inclu-

sion WDR ⊂ VDR is not compatible with the coproducts; (MDR,∆M,DR) is a cocommutative

coalgebra, and is a coalgebra-module over (WDR,∆W,DR).

We will denote by X̂ (or X∧) the completion of a Z≥0-graded k-module X, and use the same

notation for the completion of a morphism between such objects.

For g ∈ V̂DR, let Γg(t) := exp(
∑
n≥1(−1)n+1(g|en−1

0 e1)tn/n) ∈ k[[t]]×, where w 7→ (g|w) is

the map {e0, e1}∗ → k such that g =
∑
w∈{e0,e1}∗(g|w)w.

Let w 7→ wreg be the composed map e0VDRe1 ↪→ VDR → VDR ⊗Q Q[α0, α1] → VDR, where

the second map is the k-algebra morphism induced by ei 7→ ei ⊗ 1 − 1 ⊗ αi for i = 0, 1 and

the third map is the k-module map induced by v ⊗ αa0αb1 7→ eb1ve
a
0 for a, b ≥ 0, v ∈ VDR. For

w ∈ e0{e0, e1}∗e1, let m(w) be the number of occurences of e1 in w.

Let ζ : e0{e0, e1}∗e1 → R be the map defined by ζ(ek1
0 e1 · · · ekm0 e1) = ζ(k1, . . . , km) for

m ≥ 1, (k1, . . . , km) ∈ Z>1 × (Z>0)m−1. Set1

ϕKZ :=
∑

w∈e0{e0,e1}∗e1

(−1)m(w)ζ(w)wreg ∈ V̂DR
C ;

1The notation V̂DR
C , M̂DR

C stands for the specializations of V̂DR, M̂DR for k = C.
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this is a generating series for the MZVs, usually called the Knizhnik-Zamolodchikov associator

(see [Dr, LM, F1]).

The system of regularization and double shuffle relations ([IKaZ, R]) between MZVs can be

formulated as follows:

(1.1.1) ϕKZ ∈ G(V̂DR
C ), (ΓϕKZ(−e1)−1ϕKZ) · 1DR ∈ G(M̂DR

C ),

(1.1.2) (ϕKZ|e0) = (ϕKZ|e1) = 0, (ϕKZ|e0e1) = (2πi)2/24,

where G denotes the set of group-like elements of V̂DR (resp. M̂DR) for ∆̂V,DR (resp. ∆̂M,DR).

This formulation leads to the following definition:

Definition 1.1. For µ ∈ k, one defines DMRµ(k) to be the set of elements Φ ∈ V̂DR satisfying

relations (1.1.1), (1.1.2), with ϕKZ, 2πi, C replaced by Φ, µ, k.

One has therefore ϕKZ ∈ DMR2πi(C).

Remark 1.2. The ‘double shuffle’ system of relations is the conjunction of the systems of

harmonic and shuffle relations, which follow from the expressions of the MZVs respectively as

iterated sums and as iterated integrals. An example of a harmonic relation is

∀a, b > 1, ζ(a)ζ(b) = ζ(a+ b) + ζ(a, b) + ζ(b, a),

which follows from ζ(a)ζ(b) =
∑
n,m>0 n

−am−b = (
∑
n=m>0 +

∑
n>m>0 +

∑
m>n>0)n−am−b =

ζ(a, b) + ζ(a, b) + ζ(b, a). An example of a shuffle relation is

∀a, b > 1, ζ(a)ζ(b) =
∑

i+j=a+b

((
a− 1
i− 1

)
+

(
b− 1
j − 1

))
ζ(i, j),

which follows from ζ(c) =
∫

0<s1<...<sc<1
ds1

1−s1 ∧
ds2
s2
∧ · · · ∧ dsc

sc
, ζ(i, j) =

∫
0<s1<...<si+j<1

ds1
1−s1 ∧

ds2
s2
∧ · · · ∧ dsj

sj
∧ dsj+1

1−sj+1
∧ dsj+2

sj+2
∧ · · · ∧ dsi+j

si+j
and the shuffle identity for products of iterated

integrals.

Remark 1.3. The relation between the formalism of [EF1] and [R] is as follows: the ele-

ments e0, e1 correspond to x0,−x1; the pair (V̂DR, ∆̂V,DR) corresponds to (k〈〈X〉〉, ∆̂); the pairs

(ŴDR, ∆̂W,DR) and (M̂DR, ∆̂M,DR) both correspond to (k〈〈Y 〉〉, ∆̂?); the map V̂DR → M̂DR,

a 7→ a · 1DR corresponds to πY .

1.2. The Betti side of double shuffle theory. Let VB be the k-algebra with generators

X±1
0 , X±1

1 and relations XiX
−1
i = X−1

i Xi = 1 for i = 0, 1. It is equipped with the filtration

VB = F 0VB ⊃ F 1VB ⊃ · · · , where F kVB := (VB
+)k for k ≥ 0, where VB

+ is the kernel of the

k-algebra morphism VB → k given by X±1
i 7→ 1 for i = 0, 1.

Define a k-subalgebraWB of VB byWB := k1⊕VB(X1−1). It is equipped with the induced

filtration F kWB :=WB ∩ F kVB for k ≥ 0. One can show that WB is presented by generators
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X±1
1 and Y ±n := (X±1

0 − 1)n−1X±1
0 (1 −X±1

1 ) for n > 0, and relations X1X
−1
1 = X−1

1 X1 = 1

(see [EF1], §2.2).

Set MB := VB/VB(X0 − 1). This is a left VB-module, hence by restriction a left WB-

module; we denote by 1B ∈ MB the class of 1 ∈ VB and by · the action of VB on MB. Then

MB is free of rank one as a WB-module, generated by 1B. One equips MB with the filtration

F kMB := F kVB · 1B for k ≥ 0.

The filtrations of VB, WB andMB are compatible with the algebra inclusion VB ⊂ WB and

the algebra actions of VB and WB on MB.

There is a unique k-algebra morphism ∆V,B : VB → (VB)⊗2, such that X±1
i 7→ (X±1

i )⊗2

for i = 0, 1. There is a unique k-algebra morphism ∆W,B : WB → (WB)⊗2, such that X±1
1 7→

(X±1
1 )⊗2 and Y ±k 7→

∑k
i=0 Y

±
i ⊗ Y

±
k−i, where Y ±0 = 1. There is a unique k-module morphism

∆M,B :MB → (MB)⊗2, such that ∆M,B(a · 1B) = ∆W,B(a) · 1⊗2
B for any a ∈ WB.

As before, (VB,∆V,B) and (WB,∆W,B) are cocommutative Hopf algebras, and the inclusion

WB ⊂ VB is not compatible with the coproducts; (MB,∆M,B) is a cocommutative coalgebra,

and is a coalgebra-module over (WB,∆W,B).

The coproducts ∆X ,B, with X ∈ {V,W,M} are all compatible with the filtrations. We

denote by X̂ (or X∧) the completion of a filtered k-module, and use the same notation for the

completion of a morphism between such objects.

1.3. Filtrations and gradings. As (VB,∆V,B), (WB,∆W,B) and (MB,∆M,B) are Hopf al-

gebras and a coalgebra in the category of filtered k-modules, the associated graded objects

have the same status in the category of Z≥0-modules; these objects are respectively isomorphic

to (VDR,∆V,DR), (WDR,∆W,DR) and (MDR,∆M,DR). The isomorphism gr(VB) ' VDR is

induced by gr1(VB) 3 (class of Xi − 1) 7→ ei ∈ VDR for i = 0, 1; it induces the isomorphism

gr(WB) ' WDR. The isomorphism gr(MB) 'MDR is based on the fact that the isomorphism

WB →MB, a 7→ a · 1B, induces an isomorphism F iWB → F iMB for any i ≥ 0, which induces

the first map in the sequence of isomorphisms gri(MB) ' gri(WB) ' WDR →MDR, the last

map being a 7→ a · 1DR.

1.4. Comparison isomorphisms and geometric interpretations.

1.4.1. Automorphisms of the de Rham side. Set GDR(k) := k××G(V̂DR). For (µ, g) ∈ GDR(k),

let aut
V,DR,(1)
(µ,g) be the topological k-algebra automorphism of V̂DR defined by e0 7→ g ·µe0 · g−1,

e1 7→ µe1. Let aut
V,DR,(10)
(µ,g) be the topological k-module automorphism of V̂DR defined by

aut
V,DR,(10)
(µ,g) (a) := aut

V,DR,(1)
(µ,g) (a) · g for any a ∈ V̂DR. One checks that aut

V,DR,(1)
(µ,g) restricts to a

topological k-algebra automorphism of ŴDR, denoted aut
W,DR,(1)
(µ,g) , and that there is a unique

topological k-module automorphism aut
M,DR,(10)
(µ,g) of M̂DR, such that aut

M,DR,(10)
(µ,g) (a · 1DR) =

aut
V,DR,(10)
(µ,g) (a) · 1DR for any a ∈ V̂DR.
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One checks that (µ, g)~ (µ′, g′) := (µµ′, aut
V,DR,(10)
(µ,g) (g′)) equips GDR(k) with a group struc-

ture, of which G(V̂DR) is a subgroup. For A an algebra and M an A-module, denote by

Aut(A,M) the set of pairs (α, θ), where α is an algebra automorphism of A, and θ is an auto-

morphism of M , such that θ(am) = α(a)θ(m) for a ∈ A, m ∈M ; this is naturally a group. Then

the map taking (µ, g) to (aut
W,DR,(1)
(µ,g) , aut

M,DR,(10)
(µ,g) ) is a group morphism from (GDR(k),~) to

Aut(ŴDR,M̂DR).

The map Γ : GDR(k)→ (ŴDR)×, (µ, g) 7→ Γ−1
g (−e1) satisfies the cocycle identity Γ((µ, g)~

(µ′, g′)) = Γ(µ, g)aut
W,DR,(1)
(µ,g) (Γ(µ′, g′)). It follows that the map taking (µ, g) to (Γaut

W,DR,(1)
(µ,g) , Γaut

M,DR,(10)
(µ,g) )

is a group morphism from (GDR(k),~) to Aut(ŴDR,M̂DR), where2 Γaut
W,DR,(1)
(µ,g) := AdΓ(µ,g) ◦

aut
W,DR,(1)
(µ,g) and Γaut

M,DR,(10)
(µ,g) := `Γ(µ,g) ◦ aut

M,DR,(10)
(µ,g) .

Remark 1.4. For g ∈ G(V̂DR), the automorphisms Sg, SΘ(g), S
Y
g , SYΘ(g) from [R] correspond

to aut
V,DR,(10)
(1,g) , Γaut

V,DR,(10)
(1,g) , aut

M,DR,(10)
(1,g) , Γaut

M̂DR,(10)
(1,g) .

1.4.2. Isomorphisms between the Betti and de Rham sides. There is a topological k-algebra

isomorphism iV : V̂B → V̂DR defined by Xi 7→ exp(ei) for i = 0, 1. It restricts to a topological

k-algebra isomorphism iW : ŴB → ŴDR and it induces a k-module isomorphism iM : M̂B →
M̂DR, defined by iM(a · 1DR) = iV(a) · 1DR for a ∈ V̂DR.

One then defines the topological k-algebra isomorphisms comp
V,(1)
(µ,g) : V̂B → V̂DR and comp

W,(1)
(µ,g) :

ŴB → ŴDR, and the k-module isomorphisms comp
V,(10)
(µ,g) : V̂B → V̂DR and comp

M,(10)
(µ,g) : M̂B →

M̂DR by comp
X ,(α)
(µ,g) := aut

X ,DR,(α)
(µ,g) ◦ iX for X ∈ {V,W,M} and α ∈ {1, 10}.

One then defines Γcomp
W,(1)
(µ,g) := AdΓ(µ,g)◦comp

W,(1)
(µ,g) and Γcomp

M,(10)
(µ,g) := `Γ(µ,g)◦comp

W,(1)
(µ,g) .

1.4.3. Geometric interpretations. In [De], prounipotent Q-group schemes πDR
1 (X,x) (§12.4) and

πB
1 (X,x) (§10.5, denoted there πalg,un

1 (X,x)) are attached to particular schemes X with (tan-

gential) base point x; torsors πDR
1 (X; y, x) and πB

1 (X; y, x) are also attached to the datum of

an additional (tangential) base point y. One has compatible algebra and module identifications

ULieπω1 (M0,4,~1) ' V̂ωC and O(πω1 (M0,4,~1,~0))∨ ' V̂ωC for ω ∈ {B,DR}; here M0,4 is the moduli

space of genus zero curves with four marked points and ~0 and ~1 are its tangential base points

corresponding to (0, ∂∂z ) and (1,− ∂
∂z ) under the identification M0,4 ' P1 with coordinate z;

ULie(−) is the cocommutative topological Hopf algebra attached to a Q-group scheme and

O(−) be the ring of regular functions over a scheme. When (µ, g) = (2πi, ϕKZ), then comp
V,(1)
(µ,g)

and comp
V,(10)
(µ,g) can respectively be identified with the Betti-de Rham comparison algebra

and module isomorphisms ULieπB
1 (M0,4,~1)

∼→ ULieπDR
1 (M0,4,~1) and O(πB

1 (M0,4,~1,~0))∨
∼→

O(πDR
1 (M0,4,~1,~0))∨ given by [De], §12.16.

2If A is an algebra and u ∈ A×, then Adu is the automorphism of A given by a 7→ uau−1; if moreover M is
a left A-module, then `u is the automorphism of M given by m 7→ um.
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2. Geometric interpretation of the harmonic coproducts

2.1. The topology of the moduli spaces M0,4 and M0,5. For n ≥ 4, let M0,n be the

moduli space of complex curves of genus 0 with n marked points. A contractible subspace

of M0,n is the space bn of marked curves given by P1(C) with marked points (x1, . . . , xn)

distributed on the subset P1(R) in counterclockwise order. The corresponding fundamental

group P ∗n := π1(M0,n, bn) is the pure modular group of the sphere with n marked points; one has

P ∗n ' Kn−1/Z(Kn−1), where Kn−1 is the Artin pure braid group of n− 1 strands on the plane,

and Z(Kn−1) is its center, isomorphic to Z. Recall Kn is the kernel of the natural morphism

Bn → Sn, where Bn is the Artin braid group with n strands; let σ1, . . . , σn−1 be the Artin

generators of Bn, satisfying the relations σiσi+1σi = σi+1σiσi+1 for i < n− 1 and σiσj = σjσi

for |i − j| ≥ 2. Define the family of elements xij := σj−1 · · ·σi+1σ
2
i σ
−1
i+1 · · ·σ

−1
j−1 ∈ Bn for

1 ≤ i < j ≤ n; one shows that xij ∈ Kn, and that this family generates Kn. The center Z(Kn)

is generated by x12 · x13x23 · · · · · x1n · · ·xn−1,n.

For i ∈ [1, 5], let pr
i

: M0,5 → M0,4 be the map corresponding to the erasing of the point

labeled i, and denote in the same way the induced morphism P ∗5 → P ∗4 . The operation of

replacing the point labeled 4 with two nearby points labeled 4 and 5 induces a morphism

` : P ∗4 → P ∗5 . We also denote by pr
i
, ` the morphisms between group algebras induced by these

group morphisms.

When n = 4, then P ∗4 ' K3/Z(K3) is freely generated by x12 and x23; we identify it with

the group F2 = G(VB) of group-like elements of (VB,∆V,B) via X0 ' x23, X1 ' x12.

To any group Γ, one functorially associates the Z≥0-graded Z-Lie algebra gr(Γ) attached

to its lower central series, and therefore the Z≥0-graded k-Lie algebra gr(Γ) ⊗ k. We set

pn := gr(P ∗n) ⊗ k. The Lie algebra pn is presented by generators eij , 1 ≤ i 6= j ≤ n subject

to relations eji = eij , [eij , ekl] = 0 for i, j, k, l distinct,
∑
j∈[1,n]−{i} eij = 0; if i < j, then eij

is the image of xij − 1 in gr1(P ∗n) ⊗ k ⊂ pn. The graded Lie algebra morphisms induced by `

and pr
i

will be denoted ` : p4 → p5 and pri : p5 → p4. The corresponding bialgebra morphisms

between universal enveloping algebras will be denoted in the same way.

When n = 4, then p4 is freely generated by e12 and e23; it can be identified with the

Lie algebra f2 = P(VDR) of primitive elements of (VDR,∆DR) via e0 ' e23, e1 ' e12. The

isomorphism gr(F2)⊗ k ' f2 takes the image of Xi − 1 in gr1(F2)⊗ k ↪→ f2 to ei for i = 0, 1.

2.2. Geometric interpretation of the Betti harmonic coproducts ∆X ,B, X ∈ {W,M}.

2.2.1. Interpretation of ∆W,B. Let J(pr
5
) be the kernel of the algebra morphism pr

5
: kP ∗5 →

kP ∗4 ' VB. Then J(pr
5
) is a two-sided ideal of kP ∗5 , freely generated by the family (xi5−1)1≤i≤3

both as a left and as a right kP ∗5 -module. These properties imply that for any a ∈ kP ∗5 , there is a

unique element $(a) = ($(a)ij)1≤i,j≤3 ∈M3(kP ∗5 ), such that (xi5−1)a =
∑3
i=1$(a)ij(xj5−1)

for any i ∈ [1, 3], and that the map $ : kP ∗5 →M3(kP ∗5 ) is an algebra morphism.
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Let VB[(X1 − 1)−1] be the localization of VB with respect to X1 − 1. It admits an algebra

Z-filtration given FnVB[(X1 − 1)−1] =
∑
k≥0,n0,...,nk|n0+···+nk−k=n F

n0VB(X1 − 1)−1 · · · (X1 −
1)−1FnkVB for n ∈ Z. Define the elements rowB

1 :=
(
1⊗ (1−X−1

1 )−1 (1−X1)−1 ⊗ 1 0
)
∈

M1×3(VB[(X1 − 1)−1]⊗2), colB1 :=

 (X1 − 1)⊗ (X1 − 1)
(X1 − 1)⊗ (X−1

1 − 1)
0

 ∈M3×1((VB)⊗2).

Proposition 2.1. (see [EF1], Proposition 8.6) The diagram

VB
` //

∼(−)·(X1−1)

��

kP ∗5
$ // M3(kP ∗5 )

M3(pr
12

)
// M3((VB)⊗2)

rowB
1 ·(−)·colB1 // VB[(X1 − 1)−1]⊗2

WB
+

∆W,B
// (WB)⊗2
?�

OO

is commutative, where pr
12

: kP ∗5 → (VB)⊗2 is the morphism induced by the group morphism

P ∗5
diag−→ (P ∗5 )2

pr
1
×pr

2−→ (P ∗4 )2, where diag is the diagonal morphism, where rowB
1 · (−) · colB1 is

the map a 7→ rowB
1 · a · colB1 , where WB

+ is the subalgebra without unit VB(X1 − 1) ↪→WB, and

the left vertical map is a 7→ a(X1 − 1). In this diagram, all the maps are compatible with the

filtrations, except for the left vertical and the rightmost top horizontal maps, which increase the

filtration degree by one.

Idea of proof. The proof is based on: (1) the fact that ρ := M3(pr
12

) ◦$ ◦ ` is an algebra

morphism such that X1− 1 7→ colB1 · rowB
1 ; (2) the fact that (1) implies that (rowB

1 · (−) · colB1 ) ◦
ρ ◦ ((−) · (X1− 1)) is an algebra morphism W+

B → VB[(X1− 1)−1]⊗2; (3) the identification of a

generating family of W+
B ; (4) the identification of the images by (rowB

1 · (−) · colB1 ) ◦ ρ ◦ ((−) ·
(X1 − 1)) and ∆W,B of each element of the generating family of (3). �

2.2.2. Interpretation of ∆M,B. SetMB[(X1−1)−1] := VB[(X1−1)−1]/VB[(X1−1)−1](X0−1).

This is a left VB[(X1 − 1)−1]-module. There is a natural morphism MB → MB[(X1 − 1)−1]

compatible with the algebra morphism VB → VB[(X1 − 1)−1], and which can be shown to be

injective. We denote by 1B ∈MB[(X1 − 1)−1] the image of 1B ∈MB. The moduleMB[(X1 −
1)−1] is equipped with a Z-filtration given by FnMB[(X1−1)−1] := FnVB[(X1−1)−1]·1B for n ∈

Z and is then a filtered module over VB[(X1−1)−1]. Let colB0 :=

 0
((1−X1)⊗X−1

1 ) · 1⊗2
B

((1−X−1
1 )⊗X−1

1 ) · 1⊗2
B

 ∈
M3×1((MB)⊗2).

Proposition 2.2. (see [EF1], Proposition 8.14) The diagram

VB
` //

(−)·1B

��

kP ∗5
$ // M3(kP ∗5 )

M3(pr
12

)
// M3((VB)⊗2)

rowB
1 ·(−)·colB0//MB[(X1 − 1)−1]⊗2

MB

∆M,B

// (MB)⊗2
?�

OO
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is commutative, where rowB
1 · (−) · colB0 is the map a 7→ rowB

1 · a · colB0 . In this diagram, all the

maps are compatible with the filtrations.

Idea of proof. The proof is based on: (1) the fact that ρ(X0−1) ·colB0 = 0, which implies that

there exists a map δ :MB →MB[(X1−1)−1]⊗2, such that δ ◦ ((−) ·1B) = (rowB
1 · (−) · colB0 )◦ρ

(ρ being as in the proof of Proposition (2.1)); (2) Proposition (2.1), which implies that δ is

compatible with the module structures on both sides and with the morphism ∆W,B : WB →
(WB)⊗2; (3) the fact that rowB

1 · colB0 = 1⊗2
B , which implies that δ(1B) = 1⊗2

B by (1), and

therefore δ = ∆W,B by (2). �

2.3. Geometric interpretation of the de Rham harmonic coproducts ∆X ,DR, X ∈
{W,M}.

2.3.1. Interpretation of ∆W,DR. The morphism $ : kP ∗5 → M3(kP ∗5 ) is compatible with the

filtrations. Let us denote by $ : U(p5)→M3(U(p5)) the associated graded morphism. One can

show that $ may be constructed as follows. Let J(pr5) be the kernel of the algebra morphism

pr5 : U(p5)→ U(p4); this is two-sided ideal of U(p5), free and generated by (ei5)1≤i≤3 both as

a left and right U(p5)-module. For a ∈ U(p5), the matrix $(a) = ($(a)ij)1≤i,j≤3 is uniquely

determined by the identity ei5a =
∑3
i=1$(a)ijej5 for 1 ≤ i ≤ 3.

Let VDR[e−1
1 ] be the localization of VDR with respect to e1. This is a Z-graded algebra, which

can be identified with gr(VB[(X1−1)−1]). Define the elements rowDR
1 :=

(
1⊗ e−1

1 −e−1
1 ⊗ 1 0

)
∈

M1×3(VDR[e−1
1 ]⊗2) and colDR

1 :=

 e1 ⊗ e1

−e1 ⊗ e1

0

 ∈M1×3(VDR[e−1
1 ]⊗2).

Proposition 2.3. (see [DeT] and [EF1], Proposition 6.3) The diagram

VDR ` //

∼(−)·e1
��

U(p5)
$ // M3(U(p5))

M3(pr12)// M3((VDR)⊗2)
rowDR

1 ·(−)·colDR
1 // VDR[e−1

1 ]⊗2

WDR
+

∆W,DR

// (WDR)⊗2
?�

OO

is commutative, where pr12 : U(p5)→ (VDR)⊗2 is the morphism induced by the group morphism

p5
diag−→ (p5)2 pr1×pr2−→ (p4)2, where diag is the diagonal morphism, where rowDR

1 · (−) · colDR
1 is

the map a 7→ rowDR
1 · a · colDR

1 , where WDR
+ is the subalgebra without unit VDRe1 ↪→WDR, and

the left vertical map is a 7→ ae1. In this diagram, all the maps are of degree zero, except for the

left vertical and the rightmost top horizontal maps, which are of degree one.

Idea of proof. This can be proved either by repeating the steps of the proof of Proposition

2.1, which is what is being done in [EF1], or by applying the associated graded functor to the

diagram of this proposition. �
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2.3.2. Interpretation of ∆M,DR. SetMDR[e−1
1 ] := VDR[e−1

1 ]/VDR[e−1
1 ]e0. This is a left VDR[e−1

1 ]-

module. There is a natural morphism MDR → MDR[e−1
1 ] compatible with the algebra mor-

phism VDR → VDR[e−1
1 ], and which can be shown to be injective. We denote by 1DR ∈

MDR[e−1
1 ] the image of 1DR ∈ MDR. The module MDR[e−1

1 ] is equipped with a Z-grading

defined by the condition that 1DR has degree 0 and that MDR[e−1
1 ] is graded as a VDR[e−1

1 ]-

module. Let colDR
0 :=

 0
−(e1 ⊗ 1) · 1⊗2

DR

(e1 ⊗ 1) · 1⊗2
DR

 ∈M3×1((MDR)⊗2).

Proposition 2.4. (see [EF1], Proposition 6.9) The diagram

VDR ` //

(−)·1DR

��

U(p5)
$ // M3(U(p5))

M3(pr12)// M3((VDR)⊗2)
rowDR

1 ·(−)·colDR
0 //MDR[e−1

1 ]⊗2

MDR

∆M,DR

// (MDR)⊗2
?�

OO

is commutative, where rowDR
1 · (−) · colDR

0 is a 7→ rowDR
1 · a · colDR

0 . In this diagram, all the

maps have degree zero.

Idea of proof. This can be proved either by repeating the steps of the proof of Proposition

2.2, which is what is being done in [EF1], or by applying the associated graded functor to the

diagram of that proposition. �

3. Associators and double shuffle relations

3.1. Associators. The notion of associator was defined in [Dr]; it was then shown in [F2] that

this definition can be formulated as follows. For (I, J,K) one of the triples (2, 3, 4), (12, 3, 4),

(1, 23, 4), (1, 2, 34), (1, 2, 3), define a Lie algebra morphism f2 → p5, x 7→ xI,J,K by eI,J,K0 := eI,J

and eI,J,K1 := eJ,K , where eij,k := eik + ejk and ei,jk := ejk,i. We denote the induced algebra

morphisms V̂DR → U(p5)∧ in the same way.

Definition 3.1. For µ ∈ k×, one setsMµ(k) := {Φ ∈ G(V̂DR)|Φ2,3,4Φ1,23,4Φ1,2,3 = Φ12,3,4Φ1,2,34,

(Φ|e0) = (Φ|e1) = 0 and (Φ|e0e1) = µ2

24 }, where (Φ|e0e1) is the coefficient of e0e1 as an expansion

in words in e0, e1. The set of associators is M(k) := tµ∈k×Mµ(k).

One has ϕKZ ∈M2πi(C).

3.2. Compatibility of the associators with the coproducts.

Theorem 3.2. ([EF1], Theorems 10.9 and 11.13) Let µ ∈ k×, and Φ ∈Mµ(k).
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1) The diagram of k-algebra morphisms

ŴB ∆̂W,B//

Γcomp
W,(1)

(µ,Φ)

��

(WB)⊗2∧

(Γcomp
W,(1)

(µ,Φ)
)⊗2

��
ŴDR

∆̂W,DR

// (WDR)⊗2∧

is commutative.

2) The diagram of k-module morphisms

M̂B ∆̂M,B
//

Γcomp
M,(10)

(µ,Φ)

��

(MB)⊗2∧

(Γcomp
M,(10)

(µ,Φ)
)⊗2

��
M̂DR

∆̂M,DR

// (MDR)⊗2∧

is commutative.

Sketch of proof of 1). In [BN], one introduces the categories PaB and PaCD of parenthesized

braids and parenthesized braid diagrams, whose sets of objects both coincide with the set

of parenthesized words in one letter •, and one attaches to each associator (µ,Φ) a functor

PaB→ PaCD. If P,Q are two parenthesized words in • of length n, and C(X,Y ) is the set of

morphisms X → Y , where X,Y are objects of a category C, ones denotes by compP,Q(µ,Φ) : Bn '
PaB(P,Q) → PaCD(P,Q) ' U(pn+1)∧ o Sn the resulting map; we also denote compP(µ,Φ)

(resp. PaB(P ), PaCD(P )) for compP,P(µ,Φ) (resp. PaB(P, P ), PaCD(P, P )).

Define the element P(µ,Φ) ∈M3((Up5)⊗2∧) by the equality

M3×1(comp
((••)•)•
(µ,Φ) )

x15 − 1
x25 − 1
x35 − 1

 = P(µ,Φ)

e15

e25

e35

 .

and set

P (µ,Φ) := M3(pr12)(P(µ,Φ)) ∈M3((VDR)⊗2∧).

In [EF1], Proposition 9.20 and Corollary 9.21, one gives explicit expressions for P(µ,Φ) and

P (µ,Φ).

Define also the following elements in ((WDR)⊗2∧)× ⊂ ((VDR)⊗2∧)×:

BΦ :=
ΓΦ(−e1)⊗ ΓΦ(−e1)

ΓΦ(−e1 ⊗ 1− 1⊗ e1)
, u(µ,Φ) := µ(1⊗ e−µe1)

eµ(e1⊗1+1⊗e1) − 1

e1 ⊗ 1 + 1⊗ e1

ΓΦ(e1 ⊗ 1 + 1⊗ e1)

ΓΦ(e1)⊗ ΓΦ(e1)

v(µ,Φ) :=
1

µ
(1⊗ eµe1)

ΓΦ(e1)⊗ ΓΦ(e1)

ΓΦ(e1 ⊗ 1 + 1⊗ e1)
, κ(µ,Φ) := Φ(e0, e1)⊗ (e−(µ/2)e1Φ(e∞, e1))

Set also

row1 := ((X1 − 1)⊗ (1−X−1
1 )) · rowB

1 ∈M1×3((VB)⊗2∧),

col1 := colB1 · ((X1 − 1)⊗ (1−X−1
1 ))−1 ∈M3×1((VB)⊗2∧);

row1 := (e1⊗ e1) · rowDR
1 ∈M1×3((VDR)⊗2∧), col1 := colDR

1 · (e1⊗ e1)−1 ∈M3×1((VDR)⊗2∧).
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Define the following morphisms of topological k-algebras:

• ρ̂ := (M3(pr12) ◦ $ ◦ `)∧ : V̂DR → M3((VDR)⊗2), ρ̂ := (M3(pr
12

) ◦ $ ◦ `)∧ : V̂B →
M3((VB)⊗2), where (−)∧ indicates the completion with respect to the underlying fil-

trations,

• compl
Vloc,(1)
(µ,Φ) is the extension of compl

V,(1)
(µ,Φ) to a k-algebra isomorphism V̂B[(X1−1)−1]→

V̂DR[e−1
1 ],

• for A a k-algebra and a ∈ A, ·a is the product on A defined by x ·a y = xay, and

morA,a : (A, ·a)→ A is the algebra morphism given by x 7→ xa.

Consider the diagram

ŴB
+

∆̂W,B //

c
o
m
p
W
,(

1
)

(
µ
,Φ

)

��

m
or
V̂ B
,X

1 −
1

(A2)

(A1)

(WB)⊗2∧

(c
o
m
p
W
,(

1
)

(
µ
,Φ

)
) ⊗

2

��

jJ

ww
V̂B

ρ̂
//

c
o
m
p
V
,(

1
)

(
µ
,Φ

)

��

bb

M3((VB)⊗2∧)

row1·(−)·col1 //

M3((comp
V,(1)
(µ,Φ)

)⊗2)

��

(VB)⊗2∧

Ad((X1 − 1)−1·
·(1− Y−1

1 )−1)//

(comp
V,(1)
(µ,Φ)

)⊗2

��

F0VB[ 1
X1−1

]⊗2∧

(comp
Vloc,(1)

(µ,Φ)
)⊗2

��
(A3) M3((VDR)⊗2∧)

Ad((κ(µ,Φ)·P (µ,Φ))−1)

��

(A4) (VDR)⊗2∧

u
−1
(µ,Φ)

·(−)·v−1
(µ,Φ)

��

(A5) (VDR[ 1
e1

]≥0)
⊗2∧

B−1
Φ · (−) · BΦ·
· e1+f1

eµ(e1+f1)−1��
V̂DR

ρ̂
//

morV̂DR,e1

��

M3((VDR)⊗2∧)
row1·(−)·col1

// (VDR)⊗2∧
Ad

(e1f1)−1

//

(A7)

(VDR[ 1
e1

]≥0)
⊗2∧

(A6)

(WDR)⊗2∧

A
d
(B
−

1
Φ

)

��

ŴDR
+

∆̂W,DR

//

||
(A8)

(WDR)⊗2∧
?�

OO

(−) ·
e
1 +f

1
eµ(e

1 +f
1 )−1

ŴDR
+

∆̂W,DR

//

(−
)·e
µ
e 1
−1

e 1

(WDR)⊗2∧

gg

where we write Ad(a) for Ada. In this diagram, the commutativities of (A1) and (A7) follows

from Proposition 2.1 and 2.3. The commutativities of (A2), (A5) , (A6) and (A8) are immediate.

The commutativity of (A3) follows from the definition of P (µ,Φ), and more precisely from the

relations between P(µ,Φ), comp
((••)•)•
(µ,Φ) and $̂, $̂. The commutativity of (A4) is a consequence

of two equalities, one in M1×3((VDR)⊗2∧) and the other in M3×1((VDR)⊗2∧). Both follow from

explicit computation based on the already mentioned computation of P (µ,Φ). One easily derives

the commutativity of the announced diagram.

Sketch of proof of 2). Set

R(µ,Φ) := ρ̂(Φ)−1P
−1

(µ,Φ)κ
−1
(µ,Φ)(Φ(e0, e1)⊗ Φ(e0, e1)) ∈ GL3((VDR)⊗2∧).

Define the element Q(µ,Φ) ∈M3((Up5)⊗2∧) by the equality

M3×1(comp
(•(••))•
(µ,Φ) )

x15 − 1
x25 − 1
x35 − 1

 = Q(µ,Φ)

e15

e25

e35

 .
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and set

Q(µ,Φ) := M3(pr12)(Q(µ,Φ)) ∈M3((VDR)⊗2∧).

In [EF1], Proposition 9.23 and Corollary 9.24, one gives explicit expressions for Q(µ,Φ) and

Q(µ,Φ).

By the categorical origin of the morphisms compP(µ,P ), the two algebra morphisms corre-

sponding to P = ((••)•)• and (•(••))• are related by an inner conjugation. One derives from

there an expression of Q(µ,Φ) in terms of P(µ,Φ) (see [EF1], Lemma 11.6), which implies the

relation

Q(µ,Φ) = P (µ,Φ)ρ̂(Φ)

([EF1], Lemma 11.7), from which one derives

(3.2.1) R−1
(µ,Φ) = (Φ(e0, e1)⊗ Φ(e0, e1))−1κ(µ,Φ)Q(µ,Φ)

([EF1], Corollary 11.8).

Consider the diagram

M̂B ∆̂M,B
//

c
o
m

p
M
,(

1
0
)

(
µ
,Φ

)

��

(MB)⊗2∧ � � // F−1(MB[ 1
X1−1 ])⊗2∧

(comp
Mloc,(10)

(µ,Φ)
)⊗2

��

V̂B

(M1)

(M3)

(M2)

ρ̂
//

(−)·1B

bb

c
o
m

p
V
,(

1
0
)

(
µ
,Φ

)

��

M3((VB)⊗2∧)

row
B
1
·(-)·colB0

22

M3((comp
V,(10)

(µ,Φ)
)⊗2)

��
(M4)M3((VDR)⊗2∧)

(κ(µ,Φ)P (µ,Φ))
−1·(-)·R−1

(µ,Φ)

��
V̂DR ρ̂ //

||
(M5)

M3((VDR)⊗2∧)row DR
1 ·(-)·col DR

0

((
M̂DR

∆̂M,DR

//

(−
)·1

D
R

(MDR)⊗2∧ � � // (MDR[ 1
e1

]≥−1)⊗2∧
BΦ·(-)

// (MDR[ 1
e1

]≥−1)⊗2∧

where comp
Mloc,(10)
(µ,Φ) : MB[(X1 − 1)−1]∧ → MDR[e−1

1 ]∧ is the k-module isomorphism which

both extends the k-module isomorphism comp
M,(10)
(µ,Φ) : M̂B → M̂DR and is compatible with the

k-algebra isomorphism comp
Vloc,(1)
(µ,Φ) : VB[(X1 − 1)−1]∧ → VDR[e−1

1 ]∧.

In this diagram, the commutativity of (M2) is immediate. The commutativities of (M1) and

(M5) are consequences of Proposition 2.2 and 2.4.

(M3) states the equality of two k-module morphisms M̂B →M3((MDR)⊗2∧), which turn out

to be free rank one module morphisms over the two algebra morphisms V̂B → M3((VDR)⊗2∧)

whose equality is stated by the commutativity of (A3); its equality is then a consequence of the

fact that the images of the generator 1B ∈ M̂B coincide, which is itself a consequence of the

definition of R(µ,Φ).
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The commutativity of (M4) is a consequence of two equalities, one in M1×3((VDR)⊗2∧) and

the other in M3×1(MDR[e−1
1 ]⊗2∧). The first equality is a part of the proof of the commutativity

of (A4). The second equality follows from explicit computation based on (3.2.1) and on the

hexagon identities satisfied by Φ. One easily derives the commutativity of the announced

diagram. �

3.3. Inclusion of the scheme of associators in the double shuffle scheme.

Theorem 3.3. Let µ ∈ k×. Then Mµ(k) ⊂ DMRµ(k).

Proof. Let Φ ∈ Mµ(k). One has (Φ|e0) = (Φ|e1) = 0 and (Φ|e0e1) = µ2/24. Applying the

equality ∆̂M,DR ◦ Γcomp
M,(10)
(µ,Φ) = (Γcomp

M,(10)
(µ,Φ) )⊗2 ◦ ∆̂M,B from Theorem 3.2, 2) to 1B ∈ M̂B,

and using ∆̂M,B(1B) = 1⊗2
B , one obtains the group-likeness of Γcomp

M,(10)
(µ,Φ) (1B) for ∆̂M,DR.

One computes Γcomp
M,(10)
(µ,Φ) (1B) = (ΓΦ(−e1)−1Φ) · 1DR, which implies the result. �

4. Bitorsor structure on the double shuffle torsor

4.1. The torsors DMR0(k)DMRµ(k) and DMRDR(k)DMRDR,B(k).

Definition 4.1. A torsor GX is the data of a group G, of a nonempty set X, and of a free and

transitive action of G on X.

The left regular action of a group G on itself gives rise to the trivial torsor GG.

Definition 4.2. A torsor G′X
′ is called a subtorsor of the torsor GX iff G′ (resp. X ′) is a

subgroup (resp. subset) of G (resp. of X) and if the action of G′ on X ′ is compatible with the

action of G on X.

Theorem 4.3. ([R], §3.2.3) DMR0(k) is a subgroup of (G(V̂DR),~), and for any µ ∈ k×,

DMR0(k)DMRµ(k) is a subtorsor of G(V̂DR)G(V̂DR).

Definition 4.4. One sets DMRDR(k) := k××DMR0(k) ⊂ GDR(k), DMRDR,B(k) := {(µ, g)|µ ∈
k×, g ∈ DMRµ(k)} ⊂ GDR(k).

Lemma 4.5. (see [EF2], Lemma 2.13) DMRDR(k) is a subgroup of (GDR(k),~), and DMRDR(k)DMRDR,B(k)

is a subtorsor of GDR(k)G
DR(k).

4.2. Relation of DMRDR(k)DMRDR,B(k) with a stabilizer subtorsor of GDR(k)G
DR(k).

Lemma 4.6. (see [EF2], Lemma 2.3) If G1
X1 and G2

X2 are subtorsors of the torsor GX such

that X1 ∩ X2 6= ∅, then G1∩G2X1 ∩ X2 is a subtorsor of GX, called the intersection of both

subtorsors.
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Lemma 4.7. (see [EF2], Lemma 2.10) Set GDR
quad(k) := {(µ, g) ∈ GDR(k)|(g|e0) = (g|e1) =

(g|e0e1) = 0} and GDR,B
quad (k) := {(µ,Φ) ∈ GDR(k)|(Φ|e0) = (Φ|e1) = 0, (Φ|e0e1) = µ2/24}, then

GDR
quad(k)G

DR,B
quad (k) is a subtorsor of GDR

quad(k)G
DR
quad(k).

Definition 4.8. An action of a torsor GX on a pair of isomorphic k-modules (V, V ′) is the

data of a group morphism ρ : G → Autk-mod(V ) and of a map ρ′ : X → Isok-mod(V ′, V ), such

that ρ′(g · x) = ρ(g) ◦ ρ′(x) for g ∈ G, x ∈ X.

One proves:

Lemma 4.9. (see [EF2] Lemma 2.6) Let GX be a torsor and (ρ, ρ′) be an action on the pair

(V, V ′) of isomorphic k-modules. Let (v, v′) ∈ V × V ′. Let Stab(v) := {g ∈ G|ρ(g)(v) = v}
and Iso(v′, v) := {x ∈ X|ρ′(x)(v′) = v}. If Iso(v′, v) is nonempty, then Stab(v)Iso(v′, v) is a

subtorsor of GX.

Set GX :=GDR(k) G
DR(k) and V ω := Homk-modtop

(M̂ω, (Mω)⊗2∧) for ω ∈ {DR,B}; here

k-modtop is the category of topological k-modules, i.e., k-modules equipped with a decreasing

Z≥0-filtration, separated and complete for the corresponding topology. An action of GX on

(V DR, V B) is given by ρ : (µ, g) 7→ (V DR 3 fDR 7→ (Γaut
M,DR,(10)
(µ,g) )⊗2◦fDR◦(Γaut

M,DR,(10)
(µ,g) )−1 ∈

V DR) and ρ′ : (µ, g) 7→ (V B 3 fB 7→ (Γcomp
M,(10)
(µ,g) )⊗2 ◦ fB ◦ (Γcomp

M,(10)
(µ,g) )−1 ∈ V DR).

The stabilizer subtorsor relative to the pair of vectors (∆̂M,DR, ∆̂M,B) is denoted Aut(∆̂DR)Iso(∆̂B/DR).

Theorem 4.10. (see [EF2], Theorem 3.1) The subtorsor DMRDR(k)DMRDR,B(k) of GDR(k)G
DR(k)

coincides with the intersection of the subtorsors Aut(∆̂M,DR)Iso(∆̂M,B/DR) and GDR
quad(k)G

DR,B
quad (k).

Sketch of proof. It follows from the proof of Theorem 3.3 that (µ,Φ) ∈ Iso(∆̂M,B/DR) implies

(ΓΦ(−e1)−1Φ) · 1DR ∈ G(M̂DR). Therefore Iso(∆̂M,B/DR) ∩ GDR,B
quad (k) ⊂ DMRB,DR(k). Both

sides of this inclusion are subtorsors of GDR(k)G
DR(k), with underlying groups Aut(∆̂M,DR) ∩

GDR
quad(k) and DMRDR(k). It follows from [EF0] that these subgroups of GDR(k) are equal,

which implies the equality of both torsors. �

4.3. Computation of AutDMRDR(k)(DMRDR,B(k)) and AutDMR0(k)(DMRµ(k)).

4.3.1. Group corresponding to a torsor. For GX a torsor, let AutG(X) be the group of right-

acting permutations of X which commute with the action of G. This group acts simply and

transitively on X. We will call it the group corresponding to GX.

Note that the choice of an element of X induces an isomorphism between G and AutG(X),

which however gets composed with an inner automorphism upon change of the element.

Lemma 4.11. (a) If G′X
′ is a subtorsor of GX, then AutG′(X

′) is canonically a subgroup of

AutG(X).

(b) If G1X1 and G2X2 are subtorsors of GX with X1 ∩X2 6= ∅, then AutG1∩G2(X1 ∩X2) =

AutG1(X1) ∩AutG2(X2) (equality of subgroups of AutG(X)).
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Proof. For E a set, denote by SE the group of permutations of E, and if e ∈ E, let SE,e be the

subgroup of permutations which take e to itself. Then X ′ may be viewed as an element of the

quotient G′\X, and there is a natural group morphism AutG(X)→ SG′\X . Let AutG(X,X ′) be

the preimage of SG′\X,X′ . The natural map AutG(X,X ′)→ AutG′(X
′) is a group isomorphism.

The result follows from the diagram AutG′(X
′) ' AutG(X,X ′) ⊂ AutG(X). This implies (a).

(b) then follows from AutG(X,X1 ∩X2) = AutG(X,X1) ∩AutG(X,X2). �

4.3.2. The group GB(k) and its actions. Let G(V̂B) be the set of group-like of elements of V̂B

for ∆̂V,B. Let GB(k) := k× × G(V̂B). For (µ, g) ∈ GB(k), let aut
V,B,(1)
(µ,g) be the automorphism

of the topological k-algebra V̂B given by X0 7→ gXµ
0 g
−1, X1 7→ Xµ

1 , where a 7→ aµ is the

self-map of G(V̂B) given by aµ := exp(µlog(a)). Let aut
V,B,(10)
(µ,g) be the topological k-module

automorphism of V̂B defined by aut
V,B,(10)
(µ,g) (a) := aut

V,B,(1)
(µ,g) (a) · g for any a ∈ V̂B. As in the

de Rham situation, there is a unique topological k-module automorphism aut
M,B,(10)
(µ,g) of M̂B,

such that aut
M,B,(10)
(µ,g) (a · 1B) = aut

V,B,(10)
(µ,g) (a) · 1B for any a ∈ V̂B.

One checks that (µ, g)~(µ′, g′) := (µµ′, aut
V,B,(10)
(µ,g) (g′)) equips GB(k) with a group structure,

of which G(V̂B) is a subgroup.

Then the map taking (µ, g) to aut
V,B,(10)
(µ,g) (resp. aut

W,B,(1)
(µ,g) , aut

M,B,(10)
(µ,g) ) is a group morphism

from (GB(k),~) to Autk-algtop
(V̂B) (resp. Autk-modtop(V̂B), Autk-modtop(M̂B)).

For g ∈ V̂B, let Γg(t) := exp(
∑
n≥1(−1)n+1(g|(logX0)n−1logX1)tn/n) ∈ k[[t]]×, where w 7→

(g|w) is the map {logX0, logX1}∗ → k such that g =
∑
w∈{logX0,logX1}∗(g|w)w.

As in the de Rham case, the map Γ : GB(k) → (ŴB)×, (µ, g) 7→ Γ−1
g (−logX1) satisfies

a cocycle identity, which implies that the map taking (µ, g) to Γaut
M,B,(10)
(µ,g) := AdΓ(µ,g) ◦

aut
M,B,(10)
(µ,g) is a group morphism.

There is a unique isomorphism iV : V̂B → V̂DR, induced by Xi 7→ exp(ei) for i = 0, 1. It

induces a group isomorphism iG : (GB(k),~)→ (GDR(k),~).

4.3.3. Subgroups of GB(k). One checks thatGB
quad(k) := {(µ, g) ∈ GB(k)|µ2 = 1+24(g|logX0logX1)}

is a subgroup of (GB(k),~) (see [EF3], Lemma 3.2). On the other hand, its follows from the

group morphism property of (µ, g) 7→Γ aut
M,B,(10)
(µ,g) that Aut(∆̂M,B) := {(µ, g) ∈ GB(k)|∆̂M,B ◦

Γaut
M,B,(10)
(µ,g) = (Γaut

M,B,(10)
(µ,g) )⊗2 ◦ ∆̂M,B} is a also a subgroup of (GB(k),~).

We then define DMRB(k) := Aut(∆̂M,B) ∩ GB
quad(k) and DMRB

0 (k) as the intersection of

DMRB(k) with G(V̂B) ⊂ GB(k). These are subgroups of (GB(k),~).

One proves:

Proposition 4.12. ([EF3]) One has DMRB(k) = {(µ, g) ∈ GB(k)|(g|logX0) = (g|logX1) =

0, µ2 = 1 + 24(g|logX0logX1), (Γg(−logX1)−1 · g) · 1B ∈ G(M̂B)} and DMRB
0 (k) = {g ∈

G(V̂B)|(1, g) ∈ DMRB(k)}.
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4.3.4. Computation of groups corresponding to torsors.

Theorem 4.13. There are compatible group isomorphisms of AutDMRDR(k)(DMRDR,B(k)) with

DMRB(k) and for any µ ∈ k×, of AutDMR0(k)(DMRµ(k)) with DMRB
0 (k).

Proof. The group AutGDR(k)(G
DR(k)) corresponding to the trivial torsor GDR(k)G

DR(k) is equal

to GDR(k). According to Lemma 4.11 (a), AutGDR
quad(k)(G

DR,B
quad (k)) is then a subgroup of GDR(k).

One checks that its image under the isomorphism (iG)−1 is the subgroup GB
quad(k). In the same

way, AutAut(∆̂M,DR)Iso(∆̂M,B/DR) is a subgroup of GDR(k), whose image under (iG)−1 is the

subgroup Aut(∆̂M,B). It then follows from Lemma 4.11, (b) that the image under (iG)−1 of

AutDMRDR(k)(DMRDR,B(k)) is equal to DMRB(k). This implies the first statement. The second

statement follows from the fact that the natural map DMRDR,B(k) → k× is compatible with

the group morphisms DMRω(k)→ k×, ω ∈ {B,DR}, and with the left and right actions. �

4.4. Bitorsor structures. A bitorsor GXH is a triple (G,X,H) such that GX is a torsor, and

H is a group equipped with a simple and transitive right action on X, commuting with that of

G. Like torsors, bitorsors from a category, and a category equivalence from torsors to bitorsors

is given by GX 7→G XAutG(X). Theorem 4.13 may therefore be interpreted as an explicitation

of the bitorsors corresponding to the torsors DMRDR(k)DMRDR,B(k) and DMR0(k)DMRµ(k).
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