THE BETTI SIDE OF THE DOUBLE SHUFFLE THEORY: A SURVEY

BENJAMIN ENRIQUEZ

ABSTRACT. This is a survey of [EF1, EF2, EF3]. The purpose of this series of papers is: (1)
to give a proof that associator relations imply double shuffle relations, alternative to [F3]; (2)
to make explicit the bitorsor structure on Racinet’s torsor of double shuffle relations. The
main tool is the interpretation of the harmonic coproduct in terms of the topology of the
moduli space My 4 and My 5, introduced in [DeT], and its extension to the Betti setup.
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INTRODUCTION

The multizeta values (MZVs) are the real numbers defined by the series

1
Clheyookm) = Y

n1>>ng, >0 M1 hm
for k1,..., km € Zso and k1 > 1. These numbers have recently garnered much interest due
to their appearance in various fields of physics and mathematics ([BrKr]). They appear to be

examples of periods ([KoZ]) and are, as such, related with motive theory ([De]). Using this
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theory, upper bounds for dimensions of spaces of MZVs have been obtained ([DeG, T]). A
related problem is the identification of the algebraic and linear relations among MZVs.

A recent review of the available systems of relations can be found in [B]. Among them, we
will focus of the interrelations between: (a) the associator system of relations ([Dr, LM]); (b)
the regularized double shuffle relations ([IKaZ, R]).

Each system of relations gives rise to a Q-scheme, defined as the spectrum of the free com-
mutative Q-algebra over formal variables ¢/ (ky,--- , kpy) for (ki,...,kn) € Zs1 X (Zso)™ ! by
the corresponding ideal. These schemes are called the scheme of associators in case (a) and the
double shuffle scheme in case (b); for k a Q-algebra, the sets of k-points of these schemes are
denoted M (k) in case (a) and DMRP®B (k) in case (b). The definition of M (k) can be found
in [Dr], p. 848, and DMRP®® (k) = U,c.x DMR,,(k), where DMR,, (k) is as in [R], Déf. 3.2.1.

The structures of these schemes is elucidated by the following results.

Theorem 0.1. ([Dr]) (1) There are explicit Q-group schemes {Q-algebras} > k — GT(k),
GRT(k) € {groups}, and for any Q-algebra k, commuting left and right free and transitive
actions of GT (k) and GRT (k) on M (k).

(2) These Q-group schemes are extensions of the multiplicative group G, by prounipotent

group schemes. Their Lie algebras gt and gt are filtered, moreover get is complete graded.

Note that the group Autgrra (M (k)) of permutations of M (k) which commute with the
action of GRT (k) naturally acts on M (k). (1) says that there is an isomorphism between this
group and the explicit group GT(k), which is compatible with their actions on M (k).

Theorem 0.2. ([R]) (1) There is an explicit Q-group scheme {Q-algebras} > k — DMRPR (k) €
{groups}, and for any Q-algebra k, a free and transitive left action of DMRP® (k) on DMRP®-B (k).
(2) This Q-group scheme is an extension of the multiplicative group G,, by a prounipotent

group scheme. Its Lie algebra dmtPR is complete graded.

This formulation is obtained in [EF2] using the main result of [R]. The best available result

on the comparison of the associator and double shuffle schemes is as follows.

Theorem 0.3. ([F3]) For any Q-algebra k, there are compatible inclusions of sets M (k) C
DMRPRB(k) and of groups GRT (k)°P ¢ DMRPR (k) (where op denotes the opposite group).

The proof in [F3] relies on the construction, out of the family of multiple polylogarithm
functions, of elements in the bar-complex of the moduli space My 5, which are then viewed as
linear forms on the enveloping algebra U(ps) (see §2.1), and on the study of the combinatorics
of these linear forms. This result was also announced in the unfinished preprint [DeT], which
contains in particular a description of one of the main actors of double shuffle theory, the

‘harmonic coproduct’, in terms of topology of the moduli spaces My 4 and N 5.
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The main objectives of the series of papers [EF1, EF2, EF3] are: (a) giving a new proof of
Theorem 0.3, based on the ideas of [DeT] ([EF2]); (b) making the group Autpyror (k) (DMRPR-B (k)
explicit, together with its action on DMRP®B (k) ([EF3]). In order to reach them, we perform
an intermediate task: (c) constructing a ‘Betti’ version of the algebraic apparatus of double
shuffle theory and showing how it is related to the original one by an associator ([EF1]). The

material relative to objective (c) (resp., (a), (b)) is reviewed in §1 (resp. §2,83).

1. THE ALGEBRAIC FRAMEWORK OF THE DOUBLE SHUFFLE THEORY

1.1. The de Rham side of double shuffle theory. Let VPR be the free associative k-algebra
over generators e, eq; it is Z>g-graded, with eg, e; being of degree 1. Let WPR .— k1@ VPRe;;
this is a Zso-graded subalgebra of VPR, Set MPR .= VPR /YDRe . this is a Zso-graded left
VYPR_module, therefore by restriction a left YWWPR-module, which is free of rank one, generated
by the class 1pgr € MPR of the element 1 € VPR,

Let AV:PR . YDR o (PPRY®2 16 the k-algebra morphism such that e; = ¢; @ 1 + 1 ® e; for
i = 0,1. One shows that WPR is freely generated, as an associative algebra, by its elements
Yn = —ej ter, where n > 1. We denote by AWPR . WPR _ (WPR)®2 the k-algebra
morphism such that y,, — > ¥; @ Yn—; for n > 1, where yo := 1, and by AMDR . AqDR _y
(MPR)®2 the k-module morphism such that AMPR(q-1pg) = AWPR(a)- 132 where - denotes
the action of VPR on MPR. The maps AY'PR X € {V, W, M} are all compatible with the
Z>o-gradings.

Then (VPR AV:PR) and (WPE AW-PR) are cocommutative Hopf algebras, but the inclu-
sion WPR ¢ YPR 5 not compatible with the coproducts; (MPR AMDPR) is a cocommutative
coalgebra, and is a coalgebra-module over (WPE AW-DR),

We will denote by X (or X™) the completion of a Z>(-graded k-module X, and use the same
notation for the completion of a morphism between such objects.

For g € VPR let T'y(t) := exp(ZnZl(—l)"“‘l(g|egflel)t”/n) € k[[t]]*, where w — (g|w) is
the map {eg,e1}" — k such that g =3 (. . y-(glw)w.

Let w — wyeg be the composed map eoVPRey — YPR _, YDR ®g Qlag, a1] — VPR where
the second map is the k-algebra morphism induced by e; — ¢; ® 1 — 1 ® a; for ¢ = 0,1 and
the third map is the k-module map induced by v ® aga? + ebved for a,b > 0, v € VPR, For
w € ep{eg, e1}*er, let m(w) be the number of occurences of ey in w.

Let ¢ : ep{eo,e1}*er — R be the map defined by ((efre;---efmer) = ((ki,. .., k) for
m>1, (ki,...,km) € Zo1 X (Zsg)™ L. Set!

przi= Y (D)™ w)weg € VO

weeg{eo,e1}*er

IThe notation f)gR, MER stands for the specializations of VPR, MPR for k = C.
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this is a generating series for the MZVs, usually called the Knizhnik-Zamolodchikov associator
(see [Dr, LM, F1]).
The system of regularization and double shuffle relations ([IKaZ, R]) between MZVs can be

formulated as follows:

(1.1.1) ¢kz € GVER),  (Tyuy(—e1)"ekz) - Ipr € GIMBR),

(1.1.2) (vkzleo) = (vxzler) = 0, (pxzleoer) = (2mi)* /24,
where G denotes the set of group-like elements of VP® (resp. MPR) for AV'PR (resp. AMPR),

This formulation leads to the following definition:

Definition 1.1. For p € k, one defines DMR, (k) to be the set of elements ® € VDR gatisfying
relations (1.1.1), (1.1.2), with ¢kz, 2mi, C replaced by @, u, k.

One has therefore pkz € DMRo,;(C).

Remark 1.2. The ‘double shuffle’ system of relations is the conjunction of the systems of
harmonic and shuffle relations, which follow from the expressions of the MZVs respectively as

iterated sums and as iterated integrals. An example of a harmonic relation is
Va,b>1, ((a)¢(b) = ((a+b)+ ((a,b) +((b,a),

which follows from ((a)(b) = >, =0 n=m T = (3, 0t onema0 T Somenso)t Gm Tl =
¢(a,b) + ¢(a,b) + ¢(b,a). An example of a shuffle relation is

Vab> 1, Cla)C(b)= 3. ((?_II)JrG_D)C(M),

i+j=a+b

. _ d d ds, N d
which follows from ((c) = [y, o . i T2 ANCENA A= C(0,5) = f0<sl<...<si+j<1 o A
% Ao A dﬁ A flfji“ A m Ao A % and the shuffle identity for products of iterated

2 Sj Sj+1 Sj+2 Sitj
integrals.

Remark 1.3. The relation between the formalism of [EF1] and [R] is as follows: the ele-
ments e, e; correspond to g, —z1; the pair (VPR, AVPR) corresponds to (k((X)), A); the pairs
(WPR_ AW-DR) and (MPR AMDR) hoth correspond to (k((Y)), A,); the map VPR — MPR,

a — a - 1lpr corresponds to my.

1.2. The Betti side of double shuffle theory. Let VB be the k-algebra with generators
XOﬂ,XljEl and relations XiXi_1 = Xi_lXi =1 for ¢ = 0,1. It is equipped with the filtration
VB = FOYB 5 FIYB 5 ... where FFVB := (VB)* for k > 0, where VB is the kernel of the
k-algebra morphism VB — k given by Xiil — 1 for:=0,1.

Define a k-subalgebra W® of VB by WB := k1@ VB(X; —1). It is equipped with the induced
filtration F*WB := WB N FFYB for k > 0. One can show that W¥ is presented by generators
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X and VF o= (XF - )" XEH (1 - XTY) for no> 0, and relations X; X' = X71X; =1
(see [EF1], §2.2).

Set MB = VB/VB(X, — 1). This is a left VB-module, hence by restriction a left WE-
module; we denote by 1z € MP the class of 1 € VB and by - the action of VB on MPB. Then
MB is free of rank one as a WE-module, generated by 1g. One equips MP® with the filtration
FFMB .= FFVYB . 1 for k > 0.

The filtrations of VB, WB and MPB are compatible with the algebra inclusion VB ¢ WP and
the algebra actions of VB and WP on ME.

There is a unique k-algebra morphism AY-B : VB — (VB)®2) such that X! s (XF1)®2
for i = 0,1. There is a unique k-algebra morphism AY:B : WB — (W8B)®2 guch that XljEl —
(led)®2 and Yki — E?:o Yii ® Yk{i, where Yoi = 1. There is a unique k-module morphism
AMB  MB 5 (MPB)®2 such that AMB(a- 1) = AWB(a) - 152 for any a € WE.

As before, (VB, AV'B) and (WEB, AYW'B) are cocommutative Hopf algebras, and the inclusion
WE C VB is not compatible with the coproducts; (MB, AM:B) is a cocommutative coalgebra,
and is a coalgebra-module over (W8, AW:B),

The coproducts AYB with X € {V,W, M} are all compatible with the filtrations. We
denote by X (or X") the completion of a filtered k-module, and use the same notation for the

completion of a morphism between such objects.

1.3. Filtrations and gradings. As (VB,AV'B), (WB AW:B) and (MB, AMB) are Hopf al-
gebras and a coalgebra in the category of filtered k-modules, the associated graded objects
have the same status in the category of Z>o-modules; these objects are respectively isomorphic
to (VPR AV:DR) - (WDR AW.DR) and (MPR AMDR) " The isomorphism gr(VB) ~ VPR is
induced by gr;(VB) o (class of X; — 1) = ¢; € VPR for i = 0,1; it induces the isomorphism
gr(W8B) ~ WPR_ The isomorphism gr(MB) ~ MPR is based on the fact that the isomorphism
WEB & MB_ a s a-1p, induces an isomorphism FWB — FiMPB for any i > 0, which induces
the first map in the sequence of isomorphisms gr;(MB) ~ gr,(WB) ~ WPE — MDPR the last

map being a — a - Ipg.-
1.4. Comparison isomorphisms and geometric interpretations.

1.4.1. Automorphisms of the de Rham side. Set GPR(k) := k* x G(VPR). For (u, g) € GPR(k),

let autz;?){’(l) be the topological k-algebra automorphism of VPPR defined by eqg — g-peg-g 1,

V,DR,(10)

) be the topological k-module automorphism of VPR defined by

V,DR,(1)

e1 — pep. Let aut

VDR, (10) V’DR’(l)(a) . g for any a € VPR, One checks that aut;

(1>9) (,9)
topological k-algebra automorphism of WPR, denoted autz//\:’gR’(l), and that there is a unique

aut (a) := aut restricts to a

topological k-module automorphism autf\:’g]?R’(lo) of MPR | such that auté\:f)R’(lO)(a -1pr) =
VDR, (10) PDR

aut(mg)

(a) - 1pg for any a €
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One checks that (u, ) ® (¢, ¢") := (u/, autz} Dl;” »(10) (¢')) equips GPR (k) with a group struc-

ture, of which g(f/DR) is a subgroup. For A an algebra and M an A-module, denote by
Aut(A, M) the set of pairs («, 8), where « is an algebra automorphism of A, and 6 is an auto-
morphism of M, such that 8(am) = «a(a)f(m) for a € A, m € M; this is naturally a group. Then

the map taking (u,g) to (autz/v )R (1) aut(\;’gp”’(l

Aut(WPR, MPR),
The map ' : GPR(k) — WPR)* (1, g) — Fg_l(—el) satisfies the cocycle identity I'((y, g) ®

(1, q")) =T (1, )autz/v D)R (1)(I‘(u’,g')). It follows that the map taking (u, ) to (% aut,’ )

is a group morphism from (GPR(k), ®) to Aut(WPE, MPR) where? utzlv DR = Adp(y,q) ©

9)
autV PR (D) 4 Ty ¢ MPR(10) MDR,(10)
(1,9) (k,9) (1,9)

0)) is a group morphism from (GPR(k),®) to

= lr(u,g) © aut

Remark 1.4. For g € g(f)DR) the automorphisms Sy, Se(q), S;/, Sg(g) from [R] correspond

V,DR,(10) T tv,DR,(lo) MDR(lO) r, tMDR (10)

to aut(l 9) u (1.9) aut(1 9) (1,9)

1.4.2. Isomorphisms between the Betti and de Rham sides. There is a topological k-algebra
isomorphism iV : VB — VPR defined by X; — exp(e;) for i = 0,1. It restricts to a topological
k-algebra isomorphism "V : WB — WPR and it induces a k-module isomorphism M : MB
MPR defined by iM(a - 1pr) = i¥(a) - 1pg for a € VPR,

One then defines the topological k-algebra isomorphisms comp ( . B — PPR and compz/l\j
2} 10 pB VDR and comp(u g) cMB

MPR by comp,, - X (o ) = aut’ D)R (@) 6 4% for X € {V, W, M} and «a € {1, 10}.

(1
W() w,(1) M, (10) w,(1)

One then deﬁnes comp,,’; Adp(ug)ocomp( 9) and T compy,, "y :Ep(mg)ocomp(#g)

WB — WPR and the k-module isomorphisms comp

1.4.3. Geometric interpretations. In [De], prounipotent Q-group schemes 7P® (X, x) (§12.4) and
7B(X, z) (§10.5, denoted there 728" (X, z)) are attached to particular schemes X with (tan-
gential) base point z; torsors 7PR(X;y, x) and 7P (X;y, ) are also attached to the datum of
an additional (tangential) base point y. One has compatible algebra and module identifications
ULien¥ (Mo, 1) ~ V& and O(7¢ (Mo 4, 1,0))Y ~ V¥ for w € {B, DR}; here My 4 is the moduli
space of genus zero curves with four marked points and 0 and T are its tangential base points
corresponding to (0, gz) and (1, 7%) under the identification My 4 ~ P! with coordinate z;
ULie(—) is the cocommutative topological Hopf algebra attached to a Q-group scheme and

O(—) be the ring of regular functions over a scheme. When (p, g) = (274, pkz), then compa’(;))

and compz;(gl;) ) can respectively be identified with the Betti-de Rham comparison algebra
and module isomorphisms ULienP (Mo 4, 1) = ULierPR(M 4, 1) and O(xB (Mo 4,1,0))Y =

O(mPR (M 4,1,0))V given by [De], §12.16.

2If A is an algebra and u € A%, then Ad, is the automorphism of A given by a — uau~1!; if moreover M is
a left A-module, then ¢, is the automorphism of M given by m +— um.

WDR(l) Tyt PR (10)

(k,9)

(1) .
g)

)



THE BETTI SIDE OF THE DOUBLE SHUFFLE THEORY: A SURVEY

2. GEOMETRIC INTERPRETATION OF THE HARMONIC COPRODUCTS

2.1. The topology of the moduli spaces 9,4 and My 5. For n > 4, let My, be the
moduli space of complex curves of genus 0 with n marked points. A contractible subspace
of My, is the space b, of marked curves given by P!(C) with marked points (z1,...,2,)
distributed on the subset P!(R) in counterclockwise order. The corresponding fundamental
group P := 71 (M », by,) is the pure modular group of the sphere with n marked points; one has
Pr~ K, 1/Z(K,-1), where K, is the Artin pure braid group of n — 1 strands on the plane,
and Z(K,_1) is its center, isomorphic to Z. Recall K,, is the kernel of the natural morphism
B, — S,, where B,, is the Artin braid group with n strands; let o;,...,0,-1 be the Artin
generators of B, satisfying the relations 004105 = 04410041 for i <n —1 and 0505 = 004
for |¢ — j| > 2. Define the family of elements z;; = o;_1 - "0i+10i20¢_+11 . --ajlll € B, for
1 <4 < j < n; one shows that z;; € K,,, and that this family generates K. The center Z(K,)
is generated by 12 - 1323 Tin - Tp—1n-

For i € [1,5], let pr, : Mo,5 — My 4 be the map corresponding to the erasing of the point
labeled 4, and denote in the same way the induced morphism P¥ — Pj. The operation of
replacing the point labeled 4 with two nearby points labeled 4 and 5 induces a morphism
{: Pf — PZ. We also denote by pr,, £ the morphisms between group algebras induced by these
group morphisms.

When n = 4, then P; ~ K3/Z(K3) is freely generated by x15 and xo3; we identify it with
the group Fy = G(VB) of group-like elements of (VB AYV'B) via X ~ x93, X1 ~ 21o.

To any group I', one functorially associates the Zx>o-graded Z-Lie algebra gr(I") attached
to its lower central series, and therefore the Zso-graded k-Lie algebra gr(I') @ k. We set
pn = gr(P}) ® k. The Lie algebra p,, is presented by generators e;;, 1 < i # j < n subject
to relations e;; = e;;, (€5, er] = 0 for 4, j, k, 1 distinct, Zje[l,n]i{i} ei; = 05 if i < j, then e;;
is the image of x;; — 1 in gr; (Py) ® k C p,. The graded Lie algebra morphisms induced by ¢
and pr, will be denoted ¢ : p4 — ps and pr; : p5 — ps4. The corresponding bialgebra morphisms
between universal enveloping algebras will be denoted in the same way.

When n = 4, then py is freely generated by ejs and ess; it can be identified with the
Lie algebra fo = P(VPR) of primitive elements of (VPR APR) via eq ~ eg3, €1 =~ e12. The

isomorphism gr(F5) ® k ~ f, takes the image of X; — 1 in gry(F3) @ k < f2 to e; for i =0, 1.
2.2. Geometric interpretation of the Betti harmonic coproducts AYB, x ¢ {W, M}.

2.2.1. Interpretation of AY'B. Let J(pr,) be the kernel of the algebra morphism pr_ : kPy —
kP; ~ VB, Then J(pr,) is a two-sided ideal of k ], freely generated by the family (z;5—1)1<i<3
both as a left and as a right kP-module. These properties imply that for any a € kFP;, thereis a
unique element w(a) = (@w(a)ij)1<i,j<3 € M3(kPy), such that (z;5—1)a = 25’:1 w(a)ij(z;5—1)
for any ¢ € [1, 3], and that the map w : kPF — M3(kP;) is an algebra morphism.
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Let VB[(X; — 1)71] be the localization of VB with respect to X; — 1. It admits an algebra
Z-filtration given F"VB[(X; —1)71] = D k50,10, |m0- L1k — = FroyB(X, —1)71 - (X -
1)~1Fm= VB for n € Z. Define the elements row? := (1® (1 - X7 )™ (1-X))"'®1 0)¢€

(X1 -1 @ (X -1)
My (VB[(X1 — 1)7182), col? == | (X1 — 1) @ (X7 ' = 1) | € My ((VP)%2).
0

Proposition 2.1. (see [EF1], Proposition 8.6) The diagram

B 3 w ]\/fs(ﬂlz) Br&2 row?.(—)-col? B 1102
4 kPy M3 (kPy) —= Ms((V?)??) —————=VP[(X1 — )71
(—>‘(X1—1>l~
We (WB)e2

AW’B

is commutative, where pr ., : kP — (VB)®2 s the morphism induced by the group morphism
iz pr_Xpr

P diag (P)2 =257 (P})?, where diag is the diagonal morphism, where row - (=) - col? is

the map a — row? - a - col?, where WE is the subalgebra without unit V®(X; — 1) — W®, and

the left vertical map is a — a(X; — 1). In this diagram, all the maps are compatible with the

filtrations, except for the left vertical and the rightmost top horizontal maps, which increase the

filtration degree by one.

Idea of proof. The proof is based on: (1) the fact that p := Mg(E12) ow o { is an algebra
morphism such that X; —1 — col? - rowP; (2) the fact that (1) implies that (row? - (=) -col?)o
po((=)- (X1 —1)) is an algebra morphism Wi — VB[(X; —1)71]®%; (3) the identification of a
generating family of Wg; (4) the identification of the images by (row? - (=) - col?) o po((—=)-
(X7 — 1)) and AW'B of each element of the generating family of (3). O

2.2.2. Interpretation of AMB. Set MB[(X; —1)71] := VB[(X; — 1)1/ VB[(X1 - 1)1 (X0 —1).
This is a left VB[(X; — 1)7!]-module. There is a natural morphism ME — MB[(X; — 1)7}]
compatible with the algebra morphism VB — VB[(X; — 1)~!], and which can be shown to be
injective. We denote by 1 € ME[(X; — 1)7}] the image of 1z € ME. The module MB[(X; —
1)~1] is equipped with a Z-filtration given by F" MB[(X;—-1)71] := F"VB[(X;—1)"!]-1g forn €

0
Z and is then a filtered module over VB[(X; —1)~']. Let colg := [ ((1 - X))@ X;1)-1§% | €
(1-XrHex ). 1g°

M1 (MP)®2).

Proposition 2.2. (see [EF1], Proposition 8.14) The diagram

Ms(pr, ) rowl?(—)‘col(lj3
_—

4 w 12
VB — > kP —— M3(kPy) —— M3((VB)®?)

MPB[(X; —1)71)®2
(=)1s

M (MP)e2

AM’B
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is commutative, where row? - (—) '001(1)3 is the map a +— row? - a - Colg’. In this diagram, all the

maps are compatible with the filtrations.

Idea of proof. The proof is based on: (1) the fact that p(Xo—1) -col§ = 0, which implies that
there exists a map § : MP — MPB[(X; —1)71]%2, such that 5o ((=)- 1) = (row? - (=) - colg) o p
(p being as in the proof of Proposition (2.1)); (2) Proposition (2.1), which implies that ¢ is
compatible with the module structures on both sides and with the morphism AYW:B : WB —
(WB)®2; (3) the fact that row} - colf = 152, which implies that §(1g) = 152 by (1), and
therefore § = A™'B by (2). O

2.3. Geometric interpretation of the de Rham harmonic coproducts AY-PR X ¢

W, M1

2.3.1. Interpretation of AYPR. The morphism w : kP; — M;3(kPy) is compatible with the
filtrations. Let us denote by w : U(ps) — M5(U(ps)) the associated graded morphism. One can
show that w may be constructed as follows. Let J(prs) be the kernel of the algebra morphism
prs : U(ps) — U(pa); this is two-sided ideal of U(ps), free and generated by (e;5)1<i<3 both as
a left and right U(ps)-module. For ¢ € U(ps), the matrix w(a) = (w(a)ij)i<i j<3 is uniquely
determined by the identity e;sa = Z?:l w(a)ijejs for 1 <i < 3.

Let VPR[e '] be the localization of VPR with respect to e;. This is a Z-graded algebra, which
can be identified with gr(VB[(X1—1)7!]). Define the elements row?® := (1®e;! —e7'®1 0) €

e1e;

Myys(VPR[e1'1%2) and col?™ := [ —e1 @ €1 | € Myya(VPR[er']®2).
0

Proposition 2.3. (see [DeT| and [EF1], Proposition 6.3) The diagram

DR DR
wy (=) coly
S —

YbR L Ups) —== M?,(U(pS))%Z)]W?,((VDR)@ © VDR[€;1]®2

(=)er|~

WER (WDR)®2

AW,DR

is commutative, where pryy : U(ps) — (VPR)®2 is the morphism induced by the group morphism
Ps diog (ps5)? Pr1XRr2 (ps)?, where diag is the diagonal morphism, where rowPR . (=) - col?® is
the map a — rowPR - q - COI?R, where WER is the subalgebra without unit VPRe; — WPR and
the left vertical map is a — aey. In this diagram, all the maps are of degree zero, except for the

left vertical and the rightmost top horizontal maps, which are of degree one.

Idea of proof. This can be proved either by repeating the steps of the proof of Proposition
2.1, which is what is being done in [EF1], or by applying the associated graded functor to the

diagram of this proposition. O
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2.3.2. Interpretation of AMPR. Set MPR[e; '] := VPR[e ]/ VPR[e;  |eo. Thisis aleft VPR [e ]
module. There is a natural morphism MPR — MPR[e!] compatible with the algebra mor-
phism VPR — VDR[el_l], and which can be shown to be injective. We denote by lpr €
MPReT Y the image of 1pg € MPR. The module MPR[e;!] is equipped with a Z-grading

defined by the condition that 1pr has degree 0 and that MPR[e!] is graded as a VPR[e]!]-
0
module. Let colp™ := | —(e; ® 1) - 182 | € Mayq ((MPR)®2),
(e1®1)- 1%%{

Proposition 2.4. (see [EF1], Proposition 6.9) The diagram

3(prys owlDR~ — -COIER _
VPR L 17(p5) — = My (U (ps)) 2202 by (wPRy@2f 0 ompecpe

(=)-1pr

MDR (MDR)@)Q

AM,DR

is commutative, where rowP® . (—) - col(])DR is a +— rowPR - a - col(])DR. In this diagram, all the

maps have degree zero.

Idea of proof. This can be proved either by repeating the steps of the proof of Proposition
2.2, which is what is being done in [EF1], or by applying the associated graded functor to the
diagram of that proposition. O

3. ASSOCIATORS AND DOUBLE SHUFFLE RELATIONS

3.1. Associators. The notion of associator was defined in [Dr]; it was then shown in [F2] that
this definition can be formulated as follows. For (I,.J, K) one of the triples (2,3,4), (12,3,4),
(1,23,4), (1,2, 34), (1,2,3), define a Lie algebra morphism fy — ps, x + z1/ ¥ by eé’J’K =er.J
and e{’J’K ‘= ej i, where e;; 1= €;; + e;i and e; ji = ejr;. We denote the induced algebra

morphisms VPR — U(ps)” in the same way.

Definition 3.1. For yu € k*, one sets M, (k) := {® € G(VPR)[@234p123.4p1.23 = §123.4p12,34,
(®leg) = (Pler) = 0 and (Pleger) = g—z}, where (®|egey) is the coefficient of ege; as an expansion

in words in eg, e1. The set of associators is M (k) := U, cix M, (k).

One has pkz € Mari(C).

3.2. Compatibility of the associators with the coproducts.

Theorem 3.2. ([EF1], Theorems 10.9 and 11.13) Let p € k*, and ® € M, (k).
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1) The diagram of k-algebra morphisms
WwB A2 (WB)&2A
comp(u é,l)> l(rcomp( (1))®2

WDR &WDR ®2/\
AW ,D

1s commutative.

2) The diagram of k-module morphisms
B AN (MB)E2A
rcomp{\;t él)O)l l(rcompg\: él)())) ®2

MD IQMDR ®2/\

AMD

1s commutative.

Sketch of proof of 1). In [BN], one introduces the categories PaB and PaCD of parenthesized
braids and parenthesized braid diagrams, whose sets of objects both coincide with the set
of parenthesized words in one letter e, and one attaches to each associator (u,®) a functor
PaB — PaCD. If P, @ are two parenthesized words in e of length n, and C(X,Y) is the set of
morphisms X — Y, where XY are objects of a category C, ones denotes by comp(u ®) ¢ : B ~
PaB(P,Q) — PaCD(P,Q) ~ U(p,i1)" X S, the resulting map; we also denote comp(wb)
(resp. PaB(P), PaCD(P)) for compg’bf;) (resp. PaB(P, P), PaCD(P, P)).

Define the element P, ) € M3((Ups)®*") by the equality

x5 — 1 €15
ngl(compgi',;))')') 295 — 1| =P | €25
T35 — 1 €35

and set
P0) = Ms(pri5)(P,e)) € Ms((VPR)P21).

In [EF1], Proposition 9.20 and Corollary 9.21, one gives explicit expressions for P, ¢y and

Plua).
Define also the following elements in ((WPR)®2A)x < ((YPR)®2A)x,
Ta(— e (— nle1®14+1®e1) _ T 141
By = o(—e1) ®p(—e1) W) = (1@ ey o(e1 @1+ 1®e)

Fq;(—€1®1—1®€1)’ e1®1I+1®e; F¢(€1)®F¢.(61)

Io(er1) ®Ta(er)
Tpler @1 +1®ep)’

1
U(p,@) = ﬁ(l ® ) K(u,e) = Pleo, €1) @ (WD D(ex, €1))

Set also
row; = (X1 = 1) ® (1 = X771)) - rowy € Mixa((VP)®),

col; ==col} - (X1 — 1) @ (1 — X7 1) 7 € May1 (VB)®22);

row; == (e; ®ep) - row?® € My, 5(VPR)®2N) | coly := colPR - (e; @ 1) ™t € My (VPR)E21),



BENJAMIN ENRIQUEZ

Define the following morphisms of topological k-algebras:

o 5= (My(prys) 0w o ) : PPR = My((VPR)2), j = (Ma(pr,,) oo ) : VB —
M3((VB)®?), where (—)” indicates the completion with respect to the underlying fil-

trations,
. complzlfg)(l) is the extension of compla’%)) to a k-algebra isomorphism VB[(X;—1)"'] —
VPRl ],

e for A a k-algebra and a € A, -, is the product on A defined by x -, y = zay, and
moryq ¢ (A,-,) = A is the algebra morphism given by x — za.

Consider the diagram

R AW.B
wh - (WE)®2A
O»j
o (A1) i
& Ad(Gx — 1)
\JB P rowy -(—)-coly baa (=Y >_01)B .
VB ——— My (VB B2 —————— (VBY®2A ——— Oy [X1171]® A
comp 7 (1) )®2 V,(1) @2 C Vige (D) —
\LMg((wmp(M@))@’ ) J/(Colnp(uwé))@} <°°mp(;i,§>) )®2 s
e}
3 T
§ O ayPRB (A (VPR)®2A  (a5) (VPRI L], )®20 5%
o< = B
o B - B;l-(—)<Bq}- =
S (A2) i Ad((5 () P( q)))—l) u—l(Is _(_)_1]71(]) eyt %
E l o ®) (%) (1, %) A ®
=3 .
e POR —> My (VPR)®2N) ————————— (PPR)@2A = (PDRL )®21 (WPR)®2A
—C 2 rowy-(—)-coly Ay -1 1
MOrGDR (A7) (a0)
N VDR (WD\f{>®2A(\ >
\ywm + AW,DR ). I
/\ﬁ‘ e/{(ee Y QFU‘
U (A8) 1,\4) "L
7
WER (WDR,)®2/\

AW,DR

where we write Ad(a) for Ad,. In this diagram, the commutativities of (A1) and (A7) follows
from Proposition 2.1 and 2.3. The commutativities of (A2), (A5) , (A6) and (A8) are immediate.
The commutativity of (A3) follows from the definition of P, ¢), and more precisely from the
relations between P, ), comp&";))')' and @, @w. The commutativity of (A4) is a consequence
of two equalities, one in My 3((VPR)®2") and the other in M3y ((VPR)®21). Both follow from
explicit computation based on the already mentioned computation of F(uﬁb)' One easily derives
the commutativity of the announced diagram.
Sketch of proof of 2). Set

=1
Ry = p(®) " P(.0)K (|, q) (B0, e1) @ ®(en, e1)) € GLy((VPH)F21).
Define the element Q(, ¢y € M3((Ups)®?") by the equality
z15 — 1 €15

M3x1(C0mp§;§:p.))).) Tos — 1 = Q) | €25
T35 — €35
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and set
@(/L,{)) = M3(pri2)(Qua)) € M ((VPR)®2M),
In [EF1], Proposition 9.23 and Corollary 9.24, one gives explicit expressions for @, ¢) and
Qu.a)-
By the categorical origin of the morphisms comp@ Py’ the two algebra morphisms corre-
sponding to P = ((ee)e)e and (e(ee))e are related by an inner conjugation. One derives from

there an expression of Q(, ¢) in terms of P, ¢) (see [EF1], Lemma 11.6), which implies the

relation

Qo) = F(M#b)[’(q’)
([EF1], Lemma 11.7), from which one derives

(3.2.1) R(_Hl@) = (D(eg,e1) ® D(eo, 61))_1/€(M’q>)@(“7¢)
([EF1], Corollary 11.8).

Consider the diagram

AMB

MB (MB)®2/\( F_l(MB[%])(@zA

X1—
()1 B
\ (fm) o} (1

VB My (V)22

(M3) J{MS((COIHP&%?))(@%
Q Q
] e}
;53 ;§< MB((VDR)®2/\) (M4) (Comp?:}gc)’(lo) )®2
o5 e . -
-2 (M2) —e \L(K(,L@)P(,l,@)) l'(')'R(“l,@)

VDR p M3((vDR)®2/\)

N owbr
3 e,
(M3) P

MDR (MDR)®2A( (MDR[L]>_1)®2/\ (MDR[L}>_1)®2A

AM,DR €11= Ba-(-) €1-=

where comp(\:gﬁ’(m) s MB[(X; — )7 — MPR[e[ " is the k-module isomorphism which

both extends the k-module isomorphism comp?:,’g)o) : MB — MPR and is compatible with the
k-algebra isomorphism compzﬁfg)(l) CVB[(X) — 1) — VPR A,

In this diagram, the commutativity of (M2) is immediate. The commutativities of (M1) and
(M5) are consequences of Proposition 2.2 and 2.4.

(M3) states the equality of two k-module morphisms MB — Ms((MPR)®24) which turn out
to be free rank one module morphisms over the two algebra morphisms VB — Ms((VPR)®27)
whose equality is stated by the commutativity of (A3); its equality is then a consequence of the
fact that the images of the generator 1g € M® coincide, which is itself a consequence of the

definition of R, &)
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The commutativity of (M4) is a consequence of two equalities, one in M 3((VPR)®2M) and
the other in M3y (MPR[e;1]®2"). The first equality is a part of the proof of the commutativity
of (A4). The second equality follows from explicit computation based on (3.2.1) and on the
hexagon identities satisfied by ®. One easily derives the commutativity of the announced

diagram. O

3.3. Inclusion of the scheme of associators in the double shuffle scheme.
Theorem 3.3. Let u € k*. Then M, (k) C DMR, (k).

Proof. Let ® € M,(k). One has (®|eg) = (Ple;) = 0 and (Pleger) = pu?/24. Applying the
equality AMPR o Fcomp{\:’g)o) = (Fcorrlpz\:’g)o))®2 o AMB from Theorem 3.2, 2) to 1p € MB,

and using AM’B(lB) = 1%2, one obtains the group-likeness of Fcomp?:’g)o)(lg) for AMDR,

One computes Fcomp?:’g)o)(l]g) = (T'p(—e1)"1®) - 1pr, which implies the result. d
4. BITORSOR STRUCTURE ON THE DOUBLE SHUFFLE TORSOR
4.1. The torsors pugr,(x)DMR, (k) and pygor i DMRP™P (k).

Definition 4.1. A torsor ¢ X is the data of a group G, of a nonempty set X, and of a free and

transitive action of G on X.
The left regular action of a group G on itself gives rise to the trivial torsor ¢G.

Definition 4.2. A torsor ¢ X’ is called a subtorsor of the torsor ¢X iff G’ (resp. X’) is a
subgroup (resp. subset) of G (resp. of X) and if the action of G’ on X’ is compatible with the

action of G on X.

Theorem 4.3. ([R], §3.2.3) DMRy(k) is a subgroup of (G(VPR),®), and for any p € k*,

DMR, (k)DMR (k) is a subtorsor ofg(ijR)g(f)DR)'

Definition 4.4. One sets DMRP® (k) := k* x DMRy(k) ¢ GPR(k), DMRP®B (k) := {(11, g) | €
k*,g € DMR,(k)} C GPR(k).

Lemma 4.5. (see [EF2], Lemma 2.13) DMRP® (k) is a subgroup of (GPR(k), ®), and DMRPE (k) DM RPRB (k)

is a subtorsor of gor )G R(k).
4.2. Relation of DMRDR(k)DMRDR’B(k) with a stabilizer subtorsor of gor o GPR (k).

Lemma 4.6. (see [EF2|, Lemma 2.3) If ¢, X1 and ¢, X2 are subtorsors of the torsor ¢ X such
that X1 N Xo # 0, then g,ng, X1 N Xa is a subtorsor of ¢X, called the intersection of both

subtorsors.
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Lemma 4.7. (see [EF2], Lemma 2.10) Set Gpity(k) == {(1,9) € GPR(k)|(gleo) = (gler) =
(glecer) = 0} and GEXB(K) := {(1, ®) € GPR(K)|(®leg) = (Bley) = 0, (®leger) = p2/24}, then

quad
GDRad(k)unad (k) is a subtorsor of Gon 1(k)Gqu( ).

Definition 4.8. An action of a torsor ¢X on a pair of isomorphic k-modules (V,V’) is the
data of a group morphism p : G — Autk moa(V) and of a map p’ : X — IS0k.moa(V’, V), such
that p'(g-x) = p(g) o p'(z) for g € G, x € X.

One proves:

Lemma 4.9. (see [EF2] Lemma 2.6) Let ¢ X be a torsor and (p,p') be an action on the pair
(V, V') of isomorphic k-modules. Let (v,v") € V x V'. Let Stab(v) := {g € G|p(g)(v) = v}
and Iso(v',v) = {z € X|p'(x)(v') = v}. If Iso(v',v) is nonempty, then genyIso(v',v) is a
subtorsor of ¢ X.

Set ¢ X :=gpra GPR(k) and V¥ := Homy mod,,, (M, (M=%)®27) for w € {DR,B}; here
k-modiop is the category of topological k-modules, i.e., k-modules equipped with a decreasing
Z>o-filtration, separated and complete for the corresponding topology. An action of ¢X on
(VPR VB)isgiven by p : (1, g) = (VPR 5 fPR 1y (Faut?:’]gR’(lo))m o fPRo (Faut?:;g]:)’Rv(lo))—l c

VPR) and o' : (p,9) — (VB 3 fB s (X compy,, ()10))®2 o fBo (ki compy, ()10)) € VPR,

The stabilizer subtorsor relative to the pair of vectors (AMPRAMBY is denoted Aut(ADR)Iso(AB/DR).
Theorem 4.10. (see [EF2], Theorem 3.1) The subtorsor pygor ic)DM RPR-B (k) of gor a0 GPR (k)

coincides with the intersection of the subtorsors Aut(AM,DR)ISO(AM’B/DR) and gor (i) GPRB(K).
qua

quad

Sketch of proof. Tt follows from the proof of Theorem 3.3 that (y, ) € Iso(AMB/PR) implies
(Pp(—e1)"1®) - Ipr € G(MPR). Therefore Iso(AMP/PR) 0 GDP (k) ¢ DMR®P® (k). Both
sides of this inclusion are subtorsors of gor)GPR(k), with underlying groups Aut(AMDR) 0
unad( ) and DMRPR(k). Tt follows from [EF0] that these subgroups of GPR(k) are equal,

which implies the equality of both torsors. O

4.3. Computation of Autpygor ) (DMRP™(k)) and Autpyr, i) (DMR,, (k).

4.3.1. Group corresponding to a torsor. For ¢X a torsor, let Autg(X) be the group of right-
acting permutations of X which commute with the action of G. This group acts simply and
transitively on X. We will call it the group corresponding to ¢ X.

Note that the choice of an element of X induces an isomorphism between G and Autg(X),

which however gets composed with an inner automorphism upon change of the element.

Lemma 4.11. (a) If ¢+ X' is a subtorsor of ¢ X, then Autg/ (X') is canonically a subgroup of
Autg(X).

(b) If ¢, X1 and ¢, X are subtorsors of X with X1 N Xa # 0, then Autg,ng, (X1 N Xa) =
Autg, (X1) N Autg, (X2) (equality of subgroups of Autg(X)).
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Proof. For E a set, denote by Sg the group of permutations of E, and if e € E, let Sg . be the
subgroup of permutations which take e to itself. Then X’ may be viewed as an element of the
quotient G'\ X, and there is a natural group morphism Autg(X) — Sgn x. Let Autg(X, X') be
the preimage of Sgn\ x x/. The natural map Autg (X, X') — Autgr (X') is a group isomorphism.
The result follows from the diagram Autgs (X') =~ Autg(X, X’) C Autg(X). This implies (a).
(b) then follows from Autg (X, X1 N X2) = Autg(X, X1) N Autg (X, X2). O

4.3.2. The group GB(K) and its actions. Let G(VB) be the set of group-like of elements of VB

for AVB. Let GB(k) := k* x G(VB). For (u,g) € GB(k), let autzl_g’)(l) be the automorphism

of the topological k-algebra VB given by Xy — gXtg~', X; — X" where a — a* is the
self-map of g(f)B) given by a* := exp(ulog(a)). Let autzju’Bg’)(lo) be the topological k-module

V’B’(lo)(a) . (a) - g for any a € VB. As in the

(1,9)
de Rham situation, there is a unique topological k-module automorphism aut?:’gB)’(w) of MB,

M,B,(10) V,B,(10)
(1,9) (k,9)

One checks that (u, g)® (¢/, ¢') := (up’, aut
of which G(V®) is a subgroup.
Then the map taking (u, g) to aut

automorphism of VB defined by aut

(a) - 1p for any a € VB.
V,B,(10)
(1:9)

such that aut (a-1p) = aut

(¢")) equips G®B(k) with a group structure,

V,B,(10) M,B,(10)
T mg) ) (1,9) N
from (GB(k),®) to Autk_algmp(VB) (resp. Autkmod,o, (V2), Attk-mod,,, (MP)).

For g € VB, let Ty(t) := exp(ZnZl(71)"“(g|(logX0)”*1logX1)t”/n) € k[[t]]*, where w —
(glw) is the map {logXo,logX1}* — k such that g =}, c 106 x4 10g.x, 1 (9] W)W

As in the de Rham case, the map I' : GB(k) — (WB)*, (u,g) — I, (—logX,) satisfies

M,B,(10)
(1,9) 1= Adr

1)

(resp. autmgB)’ , aut ) is a group morphism

a cocycle identity, which implies that the map taking (u,g) to Taut o
M,B,(10)
(r,9)

There is a unique isomorphism ¥ : VB ]}DR, induced by X; — exp(e;) for i = 0,1. Tt
induces a group isomorphism i¢ : (GB(k),®) — (GPR(k), ®).

H,9)

aut is a group morphism.

4.3.3. Subgroups of GP (k). One checks that G4 (k) == {(1, 9) € GP(k)|u? = 1+24(g[log Xolog X1)}
is a subgroup of (GB(k),®) (see [EF3], Lemma 3.2). On the other hand, its follows from the
group morphism property of (i, g) —% auté\:’gB)’(w) that Aut(AMB) := {(1,g) € GB(k)|AMBo
Fauté\:j"(lo) = (Fautf\;’f)’(lo))@z o AM:BY is a also a subgroup of (GB(k), ®).

We then define DMR” (k) := Aut(AMB) 0GB (k) and DMR{ (k) as the intersection of
DMRE (k) with G(VB) ¢ GB(k). These are subgroups of (GB(k), ®).

One proves:
Proposition 4.12. ([EF3]) One has DMR®(k) = {(1,9) € GB(k)|(g|logXo) = (gllogX;) =
0,42 = 1+ 24(gllogXologX,), (Ty(~logX1)™' - g) - 1z € G(MP)} and DMRE(k) = {g €
G(7®)|(1,9) € DMRP (k)}.
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4.3.4. Computation of groups corresponding to torsors.

Theorem 4.13. There are compatible group isomorphisms of Autpyrer i) (DM RPRB(Kk)) with
DMRP(k) and for any p € k*, of Autpmr,x)(DMR,(k)) with DMRg (k).

Proof. The group Autgor o) (GPR(k)) corresponding to the trivial torsor gor ) GPR (k) is equal

to GPR(k). According to Lemma 4.11 (a), Autqul}Kad(k) (GqD‘if (k)) is then a subgroup of GPR (k).

One checks that its image under the isomorphism (i%)~! is the subgroup GB__ (k). In the same

quad
AM,B/DR) GDR

way, AutyAnm.orylso( is a subgroup of (k), whose image under (i¢)~! is the

subgroup Aut(AM-B). Tt then follows from Lemma 4.11, (b) that the image under (i%)~1 of
Autpmrrr (i) (DMRPR-B(k)) is equal to DMR® (k). This implies the first statement. The second
statement follows from the fact that the natural map DMRP®B (k) — k* is compatible with
the group morphisms DMR* (k) — k>, w € {B,DR}, and with the left and right actions. O

4.4. Bitorsor structures. A bitorsor ¢ Xy is a triple (G, X, H) such that ¢ X is a torsor, and
H is a group equipped with a simple and transitive right action on X, commuting with that of
G. Like torsors, bitorsors from a category, and a category equivalence from torsors to bitorsors
is given by ¢ X g Xause(x)- Theorem 4.13 may therefore be interpreted as an explicitation

of the bitorsors corresponding to the torsors pygrpr )DM RPR®-B (k) and DMR, (k) DMR, (k).
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