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1 Introduction

The triplet W-algebra (= type A; logarithmic W-algebra) ([AM1]-[AM3], [FGST1]-[FGST3], [NT],
[TW], ...) is one of the most famous examples of Cy-cofinite but irrational vertex operator algebra,
and it relates to many interesting objects such as the tails of colored Jones polynomials and false theta
functions [BM1, CCFGH, MN], quantum groups at root of unity [CGR, FGR, NTJ, and the quantum
geometric Langlands program [CG, Crl]. We can immediately generalize the definition of the triplet -
algebra to type ADE cases, and we call them the type ADE logarithmic W-algebras W (p)g. However,
very little is known about the properties and the representation theory of the higher rank generalizations
of the triplet W-algebra.

In [FT], without detailed proofs, they claimed that W (p)o and its irreducible modules are constructed
as the spaces of global sections of some homogeneous vector bundles over the flag variety, and we call it
Feigin-Tipunin conjecture. In [S1, S2], the author proved it partially and obtained some of new results
on the type ADFE logarithmic W-algebras.

In this paper, with some comments and remarks, we gather results that will given in [S1, S2]. We give
the geometric construction of the type ADE logarithmic W-algebra W (p)q that claimed in [FT]. This
construction reveals us the G-module structure and the character formula of W (p)g. Moreover, under the
assumption of simpleness of W (p)q, we also completely determine the WP (g)-module structure of W(p)g-
Finally, applying this result to the cases of type As with small p € Z>2, we prove the Cs-cofiniteness of

W (p)g in these cases under the assumption of simpleness.

1.1 Setting

Let g be a simply-laced simple Lie algebra of rank [, and g = n_ ®hESn the triangular decomposition, h
the Cartan subalgebra, b = n_ @ the Borel subalgebra, G, H, and B the semisimple, simply-connected,
complex algebraic groups corresponding to g, h, b, respectively. We adopt the standard numbering for
the simple roots {av,..., o} of g as in [B] and denote by {ws,...,w;} the corresponding fundamental
weights, and denote by IT denotes the set of simple roots. Let @ be the root lattice of g, P the weight
lattice of g, Py the set of dominant integral weights of g. Denote by (-, -) the normalized invariant form

of g, W the Weyl group of g generated by the simple reflections {o;}!_,, (¢;;) the Cartan matrix of g
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and (c7) the inverse matrix to (c;;), p the half sum of positive roots, h the Coxeter number of g, 2 the
abelian group P/Q. We choose the representatives of generators of © in P in the following way: for Ay,
Dy, Eg, E7, Eg, we choose {0,w1,...,w}, {0,w1,w;—1,wi}, {0,wr, w3}, {0,ws}, {0}, respectively. We fix
an integer p € Z>».

Let V5@ = @acq Fypa Pe the lattice vertex operator algebra associated to the rescaled root lattice
VPQ, where F 5o = U(6<0) ® |/pa) is the Fock module of the Heisenberg vertex operator algebra
Fo=U®b) o).

We choose the shifted conformal vector w of V. /BQ as

1 ii
w=g Z (i) 1y + Qo(p)(~2)|0) € Fo €V 5qs (1)
1<i,j<l
where Qo = /D — \/Lﬁ. The central charge c of w is given by
1 . 1
c:l—|—12(p,p)(2—p—}—j):l—|—hd1mg(2—p—2—?). (2)

For n € Z, we use the traditional notation L, for the Virasoro operator w(, 1)
Irreducible modules over V 5¢ are classified by elements of the abelian group A = \/iﬁP/ VPQ ([D]).

For each equivalence class (A) € A, we choose the unique representative \ € \/LﬁP of (\) € A as

Wis (3)

where 0 < s5; <p—1, A € Q and the representatives of generators of 2 are given in above: for Ay, Dy,
Eg, By, Eg, we have {0,w1,...,w}, {0,wi,wi—1,w }, {0,wi,ws}, {0,ws}, {0}, respectively. For X € \/LﬁP,
denote by V 5q+a the irreducible V, 5o-module

Vysair = D Fupata (4)
acQ
corresponding to (A\) € A, where F vba+ 1s the Fock module over Fy with the highest weight vector

|/po+ A). For p € \/LI)P, the conformal weight A, of |u) is

c—1

24

1 1
Ap=35ln - Qopl” + = §|M|2 — Qo(u, p).- (5)

1.2 Screening and narrow screening
For 1 <i<l, a €@ and A € A, we consider the screening operators
fi = [v/pai) 0y € Hom(F_ Jpa+x, F— /p(atai)+r)- (6)

For c € W and p € \/LﬁP, set

1 1
0*u=0(u+%p)——pp~ (7)

Then we have the following W-action on A:

ox A= —\/PA+ 0o * A (8)



In order to define the narrow screening operators F; y € Hom(]—'_\/pﬁaw\, ]-"_\/@4_01.*)\) for 1 <i <1, we
+:
) ® C[l+*]

D

consider the following element in Hom(V_ 50,V o

oy ()0

Fi(z):e VP z VP exp(z %mi_\/)l_()”))exp(zg(a\z}%n))c
n<0 n>0

(9)

g
VP

Here the element e~ V7 € Hom(V /g, VﬁQ_%) is defined by

VPR = | = S5 + /B,
[h(n)a 6_%] = 5n,0(h7 —%)G_W,

for p € Q and h(,y € U(h), and the element 2y € Hom(V zq, V\/ﬁQ—%—,) is defined by

e_ 2 sI\/pi) = € (~as, w)sl/B). (11)

Here s € U(Hh<%) and € : Q x Q — C* is the 2-cocycle defined by

e(ai, o) = (1)) i < j, (12)
1 i>J.

For a € @, the narrow screening operator is given by the z~! coefficient of Fj(z)

Fio= / Fi(2)dz € Hom(F_ g, - 23 ). (13)

Denote by F{ the rank 1 Heisenberg vertex algebra generated by «;, and ]—"é’L the rank [ — 1 Heisenberg
vertex algebra generated by {w;}1<jzi<i, respectively. Then for a € fé’J‘ and n € Z, we have F; ga(,) =
amyFio. By applying the multiplication of narrow screening operators in the case of type A; (see
[CRW, NTJ) to Fi,0|fé, for « € Q and A € A such that 0 < s; < p — 2, we have the non-trivial map

Fz'y)\ = /[ | Fi(Zl) Ce E(25i+1)d2’1 R dzsi+1 € Hom(f_\/zga_,_)\,f_\/};a_,_gi*)\),
s, 41

where the cycle [[',4+1] such that F; » to be non-trivial is uniquely determined up to normalization. For
convenience, we set F; 5 =0 for A € A such that s; =p — 1.
Clearly, the screening and narrow screening operators are differential operators on V, 5q because they

are zero modes. In other words, they satisfy the Leibniz rule

fiumyv = (fiu) (nyv + ey fiv, (14)
Fi0amyb = (F;,0a)(n)b + am) Fiob (15)

(_1)—n—m—1 -
= Z — T b(n+m)Fi,0a + a(n)Fi,0b7

m!
m>0

where n € Z, u,v € V 5g+x and a,b € V 5q. Moreover, a straightforward calculation shows that
[fiaLn] = [Fi’MLn] =0 (16)

and
[fi, Finl =0 (17)

for 1 <i,j <land n € Z. In particular, (16) means that f; and F; x preserve the conformal grading.



1.3 Logarithmic W-algebra

Since every Fj o satisfies (15), we have the vertex operator subalgebra

l

W(plg = m ker Fiolv o € Vipg- (18)
i=1

By (16), w is a conformal vector of W(p)g. This vertex operator algebra is called the logarithmic W -
algebra associated to @ and p. In particular, in the case of type Ay, W(p)q is the triplet W-algebra
([AM1]-[AM3], [FGST1]-[FGST3], [NT], [TW], ...).

For 1 <i <, we consider the following operator h; \ acting on V 5o+

hix = —%(ai)(o) + %(ai,ﬂ) id. (19)

Theorem 1 ([FT, Theorem 4.1]).

1. The operators { fi, hix}Yiey give rise to an action of b on V. soix.
2. The action of b in (1) is integrable.

For A € A, we consider the homogeneous vector bundle
& =G xBV 5o+ (20)

over the flag variety G/B, where the action of B on G is given by the right multiplication and that on
V. /5q.x 1s given by Theorem 1. We can easily show that the space of global sections H (&) inherits the

vertex operator algebra structure from V, 5, and each H 0(&y) is a H2(&)-module as in the same way.

1.4 Results

Definition 1. For A € A and 0 € W, set
(0) = —(ox A— 75N (21)
ex(oc) = —(cx\—o0 )
VP

Let J be a subset of nodes of the Dynkin diagram of G and A € A. The pairing (J,A) is good if

ex(0;) = —ay for any j € J or (ex(0;),y) = =0, ; for any 4,5 € J. In particular, when J =II, we call A
is good if (II, \) is good.

Remark 1. If |J| =1, (J, ) is good.
The following three theorems will be given in [S1].

Theorem 2. 1. For p € Z>3, we have the vertex operator algebra isomorphism
H%(&) = W (p)q-
In particular, the group G acts on W(p)g as an automorphism group.
2. More generally, if A is good, we have the W (p)g-module and G-module isomorphism

l
Ho(f,\) ~ ﬂkerE;_ﬂvﬁQM.

=1

4



3.

If X is not good, H(&)) is properly embedded into ﬂé:l ker Fi AV g -

Theorem 3. We have the vertex operator algebra isomorphism

l
WH(g) = [ ker fil 5,

i=1

where W¥(g) is the affine W-algebra [FF] of level k =p — h

Theorem 4.

1.

Let R,, be the irreducible g-module with the highest weight p € P.. Then we have the W(p)qg-

module and G-module isomorphism

H )~ P Rops @W- spatr € Vypoa (22)
acPLNQ

where W o 1x = ﬂlizl(ker filzo| = /P + X)) and ker fi| 7| — \/pa + A) is the ker f;| 7 -module
generated by the highest weight vector | — /pa+ X). In particular, we have

W(p)q ~ @ Ra® W—\/ﬁa;
acPNQ

and WF(g) ~ Ro ® Wy is the vertex operator full subalgebra of W (p)g.

Let us fix X € A, and a minimal expression of wo = 04y ...04 . If (ex(04, ... 04, ), i) = 0 for
1 <k <N —1, then we have H*(£\) = 0 for k > 1. In particular, if X\ = 0, then H*(£\) = 0 for
k > 1. Moreover, we have the character formula

q%\\/ﬁo(a+p+ﬁ\)ff\fﬁp\2

1n(q)! )

—< h h
Trmogey (g™ F21 o2 = 3 4, (a)(D0 (1))

acPLNQ oceW
= E X2 (2) Tryo v, o(gom3)
a+A Ds,u+i( pvFR) ’
acPLNQ

where X%(z) be the Weyl character of Rg, l(c) the length of 0 € W, 11(q) the Dedekind eta function,

and H%S,QJFJ\(VP-,\/W\) is the WF(g)-module defined in [ArF].

Remark 2. The author believe that the assumption (ex(oy, ...03,),04,,,) =0for 1 <k < N —1in

Theorem 4.2 is not necessary: i.e. he expect that H*(£)) = 0 and the character formula above hold for

all A € A and k > 1. However, because of some technical difficulty in the proof of vanishing of higher

cohomologies, he proved them on the restricted cases.

The following three theorems will be given in [S2].

Theorem 5. If H(y) is an irreducible W (p)q-module, then W_ paqx ~ W¥(g)| — /pa+N). In other

words, ﬂézl(ker fil7l = P+ X)) = (ﬂézl ker fi| 7, )| — /Do + A). Moreover, when A\ = 0, W__q is
the irreducible W¥(g)-module.

Definition 2. 1. For a € Py NQ, let H, be a nonzero element of Ry 0 ® C| — \/pa), where Rq o is

2.

the space of zero-weight vectors of R,,.

Let {Wl}iié be strong generators of W¥(g) such that Ay, = i. We use the notation

(Wil = W) (nti-1) (23)



for n € Z. However, we often use the notation not (Ws),, but L,, for traditional reason. Moreover,

for a fixed @ € Py N @, we can assume that
(Wi)ol = v/por) = 0 (24)
for 3 <i <[+ 1 by considering the new strong generators
{whU{W; = Vol (25)

of W¥(g), where V,; € C is defined by (W;)o| — \/pet) = Vai| — \/pa).
3. For a € W(p)g ~ Dpep, ng Ra ® W- pa, denote by a € W¥(g) be the W*(g)-component of a.

Theorem 6. 1. For the projection to the Cz-algebra m : W(p)g — Rw o = W(p)q/C2(W(p)q),
we have dim (W (p)o \W*(g)) < co. In other words, if a € W(p)g \W¥(g), then m(a) is nilpotent.
In particular, for « € P, NQ, a # 0, n(H,,) is nilpotent.

2. If W(p)q is simple, then W (p)q is strongly generated by {W;}.13 and finitely many elements in
W(p)o \ W¥(g). In particular, if W(p)q is simple and all m(W;) are nilpotent, then W (p)q is
Cs-cofinite.

8. For o € Py NQ, {(Hoj(\]\_;)/Ha/}NeZ satisfy the following conditions:

(a) For m > 0, we have

e~

Lm(Ha)(N)Ho/
(m + 1)(A_\/;5(,( - 1) — N+ 6m,0A_\/§a.

(Ha)(N+m)Ha/ =

(b) Moreover, for3<i<l+1,n>i—1 and N € Z, we have

—~—

i1 i—1 (Wi)n—rLi(Ha) (nyHar -

—~—

4. In the cases of types Ay or Ay, the conditions (26) and (27) determines {(Ha)(nyHo }Nez
uniquely up to scalar. Moreover, if W (p)g is simple, then the conditions (26) and (27) determines

{(Ha)(nyHo } Nez uniquely up to nonzero scalar.

Remark 3. Theorem 6 claims that if W (p)q is simple, the conditions (26) and (27) give an algorithm that
enables us to calculate the nilpotent ideal in 7(W¥(g)) much easier than direct calculation. Applying it

to the cases of type A with small p, we obtain the following:

Theorem 7. Let us consider the cases when g = sl3 and p = 2,3,4. If W(p)q is simple, then W(p)q is
Cs-cofinite.
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