ON THE p-ADIC BEHAVIORS OF STIRLING NUMBERS OF THE
FIRST AND SECOND KINDS

SHAOFANG HONG

ABSTRACT. Let n and k be positive integers. The Stirling number of the first kind,
denoted by s(n, k), counts the number of permutations of n elements with k disjoint
cycles. The Stirling number of the second kind, denoted by S(n, k), is defined as the
number of ways to partition a set of n elements into exactly k£ nonempty subsets.
We have s(n,k) = (n — 1)!H(n — 1,k — 1) with H(n — 1,k — 1) being the (k — 1)-th
symmetric function of 1, %, ey ﬁ and

S(n, k) = % i(q)i (’;) (k— )"
" i=0

Let p be a prime and vp(n) stand for the p-adic valuation of n, i.e., vp(n) is the
biggest nonnegative integer r with p” dividing n. Divisibility properties of Stirling
numbers of the first and second kinds have been studied from a number of different
perspectives. In this survey paper, we mainly review some old and recent new results
on the p-adic behaviors of Stirling numbers of both kinds. Meanwhile, we also propose
some problems and conjectures to promote the research in this area in the future.

1. INTRODUCTION

The Stirling numbers are common topics in number theory and combinatorics. Let
N denote the set of natural numbers. The Stirling number of the first kind, denoted by
s(n, k) (with a lower-case “s”), counts the number of permutations of n elements with
k disjoint cycles. The Stirling number of the second kind, denoted by S(n, k) (with a
capital “S”), is defined for n € N and positive integer k& < n as the number of ways to
partition a set of n elements into exactly k& non-empty subsets. One can characterize the
Stirling numbers s(n, k) of the first kind and the Stirling numbers S(n, k) of the second

kind by

(2)n = Z s(n, k)z"
k=0
and

2 = 3 (=1)"ES (n, k) (@),
k=0
respectively, where (z),, is the rising factorial (z),, := z(z + 1)...(x +n — 1). The Stirling
numbers of the first and second kinds can be considered to be inverses of one another:
max(j,k) 4
D (=D )S (k1) = b5

=0
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and

max(j,k)
> (D)8, ) sk, 1) = S5
1=0
where 9§, is the Kronecker delta.
The Stirling number S(n, k) of the second kind satisfies the recurrence relation

S(n,k)=Smn—-1,k—1)+kS(n—1,k),

with initial condition: S(0,0) = 1 and S(n,0) = 0 for n > 1. There is also an explicit
formula in terms of binomial coefficients given by

k
S(n, k) = %Z(—l)i@) (k — i)™ (1.1)
1=0

Given a prime p and a nonzero integer m, there exist unique integers a and r with
ptaand r > 0, such that m = ap”. The number r is called the p-adic valuation of

m, and denoted by v,(m) := r. Define v,(0) := co. If z = 7, where m; and m;
are integers and mg # 0, then we define vy,(z) = v,(m1) — vp(m2) (see, for example,

[14]). It is easy to see that the arithmetic function v, is completely additive. That is,
vp(mn) = vp(m) + vp(n) holds for all positive integers m and n. Furthermore, we have

vp(r +y) > min{v,(z), vp(y)},

and if vp(z) # vp(y), then vy(r + y) = min{vy(z), v,(y)}. This property is known as the
isosceles triangle principle [14].

Divisibility properties of Stirling numbers of the second kind have been studied from a
number of different perspectives. It is known that for each fixed k, the sequence {S(n, k) :
n > k} is periodic modulo prime powers. The length of this period has been studied
by Carlitz [3] and Kwong [16]. Chan and Manna [4] characterized S(n, k) modulo prime
powers in terms of binomial coefficients. The numbers min{v,(klS(n,k)) : m < k < n}
are important in algebraic topology. Some work on evaluating v,(k!S(n, k)) has been
published.

This is a survey paper. We mainly review some old and recent new results on the
p-adic behaviors of Stirling numbers of the first and second kinds. Meanwhile, we also
propose some problems and conjectures to promote the research in this area in the future.

This paper is organized as follows. First of all, in Section 2, we reveal some p-adic
properties of Stirling numbers of the second kind. We also recall some problems and
conjectures in this topic. Finally, in Section 3, we review some old and recent new
results on the p-adic valuations of Stirling numbers of the first kind. Several conjectures
are also raised in the last section.

2. p-ADIC VALUATIONS OF STIRLING NUMBERS S(n, k) OF THE SECOND KIND

The study of p-adic valuations of Stirling numbers of the second kind is important in
algebraic topology and full with challenging problems (see, for instance, [1]-[12], [17]-[19],
[21], [27], [28]). Lengyel [17] studied the 2-adic valuations of S(n,k) and conjectured,
proved by Wannemacker [24], that va(S(2", k)) = s2(k) — 1, where s2(k) means the base
2 digital sum of k. Lengyel showed that if 1 < k < 27, then vy(S(c2™,k)) = s2(k) — 1
for any positive integer ¢. Meanwhile, Lengyel proved that ve(S(c2™,k)) > sa(k) — 1 if
¢ > 1is an odd integer and 1 < k < 2"*!. Amdeberhan, Manna and Moll [2] studied
the 2-adic valuations of Stirling numbers of the second kind, and also conjectured that
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v2(S(4n,5)) # v2(S(An+3,5)) if and only if n € {3254 7 : j € N}. In 2012, Hong, Zhao
and Zhao [12] proved that this conjecture is true. Namely, they showed the following
result.

Theorem 2.1. [12] Let n > 1 be an integer. Then va(S(4n,5)) # v2(S(4n+3,5)) if and
only if n € {325 +7:5 € N}.

Furthermore, Hong, Zhao and Zhao [12] confirmed another conjecture of Amdeberhan,
Manna and Moll [2] raised in 2008 by showing the following result.

Theorem 2.2. [12] Let n and k be nonnegative integers with k < 2™. Then
v2(S(2" + 1,k + 1)) = so(k) — 1.

In 2014, Zhao, Hong and Zhao [27] showed that a more general result true. That is,
we have

Theorem 2.3. [27] Let n,a,b,c € N with 0 < a < 2" 2"t 4 g < 2" and ¢ > 1
being odd. Then va(S(c2™, 02"+ +a)) > sa(a) — 1.

If one picks b = Cgl and 1 < a < 27, then the lower bound in Theorem 2.3 above is

arrived as the following result shows.

Theorem 2.4. [27] Let a,c,n € N with ¢ > 1 being odd, n > 2 and 1 < a < 2". Then
v2(5(c2", (¢ — 1)2" 4+ a)) = s2(a) — 1.
In 2009, Lengyel [18] studied the 2-adic valuations of the difference S(c2""! k) —

S(c2™ k) with 1 < k < 2" and ¢ > 1 odd. In the meantime, Lengyel [18] posed the
following conjecture.

Conjecture 2.5. [18] Let n,k,a,b € N, ¢ > 1 being odd and 3 < k < 2"™. Then
v2(S(c2" T k) — S(c2™, k) =n+1— f(k) (2.1)
and
va(S(a2", k) — S(2",k)) =n+1+wve(a—b) — f(k) (2.2)
for some function f(k) which is independent of n.

Note that Lengyel [18] proved in 2009 that (2.1) is true for any integer k with so(k) < 2.
As usual, for any real number z, we let [2] and |z] denote the smallest integer no less
than x and the biggest integer no more than x, respectively. We have the following result.

Theorem 2.6. [27] Let n,k,a,b € N, ¢ > 1 being odd, 3 < k < 2", anda > b. If k is
not a power of 2 minus 1, then
va(S(a2", k) — S(b2",k)) = n+ve(a—b) — [logy k| + sa(k) + d(k),
where 6(4) =2, 6(k) =1 if k > 4 is a power of 2, and §(k) = 0 otherwise. In particular,
v2(S(c2" T k) — S(c2", k) = n — [logy k] + s2(k) + 5 (k).

By Theorem 2.6, we know that Conjecture 2.5 is true except when k is a power of
2 minus 1. In 2014, one cannot prove Conjecture 2.5 for the remaining case that k is
a power of 2 minus 1 because one encountered difficulties in strengthening the Junod’s
congruence about the Bell polynomials. But in 2015, Zhao, Zhao and Hong [28] can treat
with the remaining case by introducing a new method. They proved the following result.
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Theorem 2.7. [28] Let ¢,m,n € N with ¢ > 1 being odd and 2 < m <n. Then
vp(S(e2™, 2™ —1) = S(e2", 2" — 1)) =n + 1
except when n =m =2 and ¢ =1, in which case one has v5(S(8,3) — S(4,3)) = 6.

Remark. From Theorem 2.7, one knows that the first part of Conjecture 2.5 (i.e. (2.1))
holds except for the case that n = m = 2 and ¢ = 1, in which case it is not true. But the
truth of the second part of Conjecture 2.5 (i.e. (2.2)) remains open when a > b and k is
equal to a power of 2 minus 1.

In closing this section, let us describe an interesting and fantastic conjecture of Clark
[5] raised in 1995. Let p be a prime. For any positive integer n and k, one defines

k

Ty(n k) =Y (~1)F (’;>z"

i=0
pti

By formula (3.1) we can see that k!S(n, k) — Tp(n, k) is divisible at least by p™. In
this sense, Tp(n, k) also known as Stirling-like numbers [5]. In 1990, Davis [7] gave a
method for calculating ve(T2(n,5)) and va(T2(n,6)). Then Clarke [5] generalized this
result by applying Hensel’s lemma on the p-adic integers. Furthermore, Clarke suggested
the following conjecture.

Conjecture 2.8. [5] Let n and k be nonnegative integers such that n > k+ 1 and let p
be an odd prime. Then
vp(Tp(n,m —k)) < n.

This is equivalent to the following conjecture.

Conjecture 2.9. [5] Let n and k be nonnegative integers such thatn > k+ 1 and let p
be an odd prime. Then
vp((n —k)S(n,n —k)) < n.

Evidently, the truth of Conjecture 2.10 implies that the truth of the following conjec-
ture also proposed by Clarke in [5].

Conjecture 2.10. [5] Let n and k be nonnegative integers such that n > k + 1 and let
p be an odd prime. Then

vp((n —k)IS(n,n — k) = v,(T(n,n — k)).

Clarke [5] proved the truth of Conjecture 2.9 (hence Conjecture 10) for the cases that
1 <k <4. In [10], Feng and Qiu presented a formula for v,(S(n,n — k)) in terms of n
and k. For the case that 1 < k < 7, they arrived at an explicit formula for v, (S(n,n—k))
in terms of n. Then they used these formulae to show the following result.

Theorem 2.11. [10] Let p be an odd prime. Let k be an integer such that 0 < k < 7.
For any positive integer n with n > k 4+ 1, one has

vp((n —k)IS(n,n —k)) <n.

From Theorem 2.11, one can read that Conjecture 2.9 (hence Conjecture 10) holds
for the case when 0 < k < 7. Although the method of Feng and Qiu [10] can be used
to check Conjectures 2.9 and 2.10 for more smaller integers k > 8, it seems to be hard
to check the truth of Conjectures 2.9 and 2.10 for all positive integers kK < n — 1. One
needs some new ideas and approachs attacking Conjectures 2.9 and 2.10.
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3. p-ADIC VALUATIONS OF STIRLING NUMBERS s(n, k) OF THE FIRST KIND

We note that, unlike for the Stirling number S(n, k) of the second kind, there is no
easy way to use an explicit formula for s(n,k), the Stirling number of the first kind,
and this fact makes it more difficult to deal with certain characteristics of these numbers
from the point of view of congruential and divisibility properties. In fact, the Stirling
numbers of the first kind exhibit very different characteristics from the Stirling numbers
of the the second kind.

On the other hand, H(n, k) is closely related to the Stirling number of the first kind
by the following identity

s(n,k)=(n—-1H(n-1,k—1), (3.1)

where H(n—1,k—1) stands for the (k—1)-th symmetric function of 1, 1, ..., —1=. Actually,

529y 1
since
n

zx+1)---(x+n-1)= Zs(n,k)$k,
k=0
we can easily obtain that

Hence s(n,1) = (n —1)!, and if & > 2, then

s(n k) = (n —1)! > _

J1 Jk—1

1<j1< - <jp_1<n—1
=n-DHn-1,k-1)

as (3.1) desired. So (3.1) is true.
For every fixed integer k > 1, Lengyel proved that, unlike for Stirling numbers of the
second kind, the p-adic order of s(n, k) becomes arbitrarily large for large values of n.

Theorem 3.1. [19] For any prime p and any integer k > 1, we have
nl;rrgo vp(s(n, k)) = cc.
Actually, Lengyel showed conditionally the following result.

Theorem 3.2. [19] For any prime pand integer k > 1, one has

i UlsR) 1

n—00 n p—l'

Also Lengyel proved the following result.
Theorem 3.3. [19] For any integer n > 1, we have va(s(2",3)) = 2™ — 3n + 3.

Based on the theory of Newton polygons, Komatsu and Young showed the following
results.

Theorem 3.4. [15] Let k be a nonnegative integer and p be a prime. Suppose that n is of
the formn = kp”+m, where 0 < m < p". Then vp((s(n+1,k+1)) = vp(n!) —vp(k!) —kr.
FEquivalently, one may write

pr—1

T~ r) + vp(m!).

vp((s(kp™ +m+1,k+1)) = k(
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Theorem 3.5. [15] Let k be a positive integer and p be a prime. Then

vp(s(kp”, k)) = k(p; _11 - 7")

and .
vp(s(kp” + 1,k +1)) = k(pp __11 — 7").
Particularly, one has for 0 < m <n that
op(s0, ) = 22— m)
and n "
op(s(p" + Lp™ +1)) = e = " (0 — ).

Theorem 3.6. [15] Let p be an odd prime and 0 < m < n. Then

pttl opt Al Lep" —p"

w(s(F5= ) =3 (5= " -m)

Theorem 3.7. [15] Let k be a positive integer and p be a prime. Let a positive integer
n >k be given and define r so that kp” <n < (k4 1)p". Then

vp((s(n+ 1,k 4+ 1)) = vp(n!) — vp(k!) — kr.
Theorem 3.8. [15] For any positive integer k and prime p, we have

(s(n, k)) 1

(%
lim inf -2 = .
n—00 n p— 1

As mentioned above, Lengyel conjectured, proved by Wannemacker, the 2-adic valua-
tion of S(2™, k) is da(k) — 1, i.e. v2(S(27,k)) = s2(k) — 1, where so(k) represents the base
2 digital sum of k. In addition, Lengyel and Hong et al further studied the properties
of v3(S(n,k)). In 2019, Qiu and Hong [23] arrived at an explicit formula for the 2-adic
valuation v(s(2", k)) of the Stirling numbers of the first kind s(2", k).

Theorem 3.9. [23] For any integers n,m and k such that2 <m <n, 2 <k <2m7141,
we have

k k
va(s(2",2™ —k)) =2" —2™ — (n — m)(Qm — 2{§J) +m—-2-— Ug(tiJ) + (n —1)ek,
where €, = 0 if k is even, and €, = 1 if k is odd.

For the Stirling numbers of the second kind, Hong, Zhao and Zhao [12] confirmed in
2012 a conjecture of Amdeberhan, Manna and Moll [2] raised in 2008 by showing that

0 (82" + 1,k + 1)) = va(S(2", k).

By using Theorem 3.9, Qiu and Hong [23] established the following analogous result for
the Stirling numbers of the first kind.

Theorem 3.10. [23] For arbitrary positive integers n and k such that k < 2™, we have
va(s(2" + 1,k + 1)) = va(s(2™, k)).
Another consequence of Theorem 3.9 is the following interesting result.

Corollary 3.11. [23] For arbitrary positive integers n and k such that k < 2", we have
va(s(2", k) < w2(s(2",1)).
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From Theorem 3.9, Corollary 3.11 and (3.1), we can derive an upper bound for
va(H (2™, k)) as follows.

Corollary 3.12. [23] For arbitrary positive integers n and k such that k < 2™, we have
va(H (2", k)) < —n.
Clearly, Corollary 3.12 confirms partially a conjecture of Leonetti and Sanna raised in

2017 [20].
Lengyel also proved the following result.

Theorem 3.13. [19] For any integer n > 1, we have

3" +3 — om, s (s(3",3)) = 3"+ 3

v3(s(3™,2)) = —3n,v3(s(2-3",2))=3" —2n— 1.

Recently, Qiu, Feng and Hong [22] arrive at successfully an explicit formula for the
3-adic valuation of the Stirling numbers of the first kind s(a3"™, k) with 2 < k < a3™.
Theorem 3.14. [22] Let a € {1,2}. For any integers n,m and k such that1 < m <n
and 2 < k < 2a3™ ' +1 < a3™, we have

k
va(s(a3™,a3™ — k)) = g(gn 83— (n—m)(a3™ — k) +m—1— vg(bJ) + (m+ v3(k)) e,
where e, = 0 if k is even, and €, =1 if k is odd.

By using Theorem 3.14, Qiu, Feng and Hong [22] prove the following results.

Theorem 3.15. [22] Let a € {1,2}. For any positive integers n and k such that 1 <

k < a3™, we have

= U3(S(a3n7 k))a if 2 | (k - a)a

>wvs(s(a3™ k+1)+n, if 2¢(k—a)

Theorem 3.16. [22] For arbitrary positive integers n and k such that k < 3™, we have
v3(s(3,1)) = 3=2n=L - if >3,

U3(S(3n7 k)) < U3(S(32732 - 3)) =4, if n=2,

v3(s(3,2)) =1, if n=1.

Theorem 3.17. [22] For arbitrary positive integers n and k such that k < 2-3", we

have

v3(s(a3" + 1,k + 1)) {

n v3(s(2-3",1))=3"—-n—-1, if n>2,
”3(5(2'3’k”))<{v2(5(2~3,2-3—3))_27 ifn—1.

From Theorems 3.15 to 3.17, we can derive an upper bound for vs(H(a3", k)) as
follows.

Corollary 3.18. [22] Let a € {1,2}. For arbitrary positive integers n and k such that
n>3, k<a3"™ and 2| (k — a), we have v3(H(a3™, k)) < —n.

Clearly, Corollary 3.18 confirms partially the conjecture of Leonetti and Sanna [20]
raised in 2017. We also observe the following two facts:

Remark 3.19. For arbitrary positive integers n and m such that 2 < m < n, we note
that ve(s(27,2™)) = 2" — 2™ — 2™ (n —m). For any integer k with 2 < k < 2™~ 1 41, we
have

a(s(27, 2™ — k) = va(s(2",2™)) + (2 EJ - 1)(n —m)+n—2— w([gJ) +(n— Deg.
Particularly, we have vy(s(2",2" — k)) =n — 2 —va (| £]) + (n — 1es.
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Remark 3.20. Let a € {1,2}. For any positive integers n and m such that m < n,
we note that vz(s(a3™,a3™)) = $(3" — 3™) — a3™(n — m). For any integer k with
2<k<2a3™ 1 +1 < a3™, we have

v3(s(a3”,a3™ —k))

=v3(s(a3™,ad3™)) + (2 {SJ - 1)(71 -m)+n—1-— Ug([gJ) + (n + vs(k))ek.

Particularly, we have vs(s(a3",a3" — k)) =n —1—v3(|£]) + (n + vs(k))ex.

As usual, for any integer k and prime p, let (k) denote the integer such that 0 < (k) <
p—2and k= (k) (mod p—1). Let ¢, := 0 if k is even and €, := 1 if k is odd. The n-th
Bernoulli number B,, is defined by the Maclaurin series as

T > z"
v —1 Z B"H'
n=0
By the von Staudt-Clausen theorem (see, for instance, [13]), we know that if n is even,

then )
B, + - €7,

<p§n P
where the sum is over all primes p such that (p — 1)|n. The von Staudt-Clausen theorem
tells us that v,(B;) > 0 for all even integers | with 2 < | < p — 3. In particular, if
vp(B;) = 0 for all even integers [ with 2 <1 < p — 3, then p is called a regular prime.
Note that 3 is a regular prime. If p is not regular it is called irregular. The first irregular
primes are 37 and 59. We point that the cardinality and density of regular primes are
largely unknown. Although one can argue heuristically that asymptotically more than
half of primes should be regular, it is not even known that there are infinitely many
regular primes, while infinitely many primes are known to be irregular. The interested
readers are refereed to [13] and [25] for the history and basic facts on the regular and
irregular primes. For the general p-adic valuations of s(n,k), by using Wahsington’s
congruences on the reciprocal power sums [26], Hong and Qiu [11] showed the following
results.

Theorem 3.21. [11] Let p > 5 be a prime and let a and k be integers such that 1 < a <
p—1and2 <k <ap—2. Let ex be defined by €, :== 0 if k is even and e := 1 if k is odd.
(). If k = €, (mod p — 1), then vy(s(ap,ap — k)) = (vp(k) + 1)e.
(ii). If2<k<a(p—1)—1 and k # € (mod p — 1), then
vp(s(ap, ap — k) > (vp(k) + V)ex + 1,

with the equality holding if and only if v, (B2L@J) =0, where (k) means the least positive
integer such that (k) = k (mod p — 1). In particular, if p is regular, then v,(s(ap, ap —
k)) = (vp(k) + L)eg + 1.

(iii). Ifa>4 anda(p—1)+2 <k <ap— 2, then vy(s(ap,ap — k)) > a+k — ap.

Theorem 3.22. [11] Let p > 5 be a prime and let a and n be positive integers such that
(a,p) = 1. Let k be an odd integer with 1 < k < ap™ — 1. Then
vp(s(ap™, ap™ — k))

=vp(s(ap™, ap™ —k+ 1)) +vp(ap™ — k) +n, if vp(s(ap™ ap” —k+1)) <2n—1;
> vp(ap™ — k) +3n, if vp(s(ap™,ap™ —k+1)) > 2n.
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Notice that Lengyel [19] proved the following interesting result.

Theorem 3.23. [19] For any prime p, any integer a > 1 with (a,p) = 1, and any even
number k > 2 with the condition: There exists n1 € ZT :nq > 3log, k +log, a such that
vp(s(ap™,ap™ — k)) <ny, or k=1 with ny =1, one has for n > ny that

vp(s(ap™™, ap™ Tt — k) = vp(s(ap™, ap™ — k)) + 1.

Meanwhile, for any odd k& > 3, Lengyel conjectured in 2015 that for any integer n >
n1(p, k) with some sufficiently large n(p, k), one has

vp(s(ap™™, ap™ Tt — k) = vp(s(ap™, ap™ — k)) + 2. (3.2)

Now by Theorems 3.22 and 3.23, one yields the following analogous result which proves
partially Lengyel’s Conjecture (3.2).

Theorem 3.24. [11] Letp > 5 be a prime and let a be a positive integer such that (a,p) =
1. Let k > 3 be an odd integer with the condition: 3 ny € Z* : ny > 3log, (k —1) +
log, a such thatv,(s(ap™,ap™ — (k —1))) < n1. Then for any positive integer n with
n > ny one has vy(s(ap™ ™, ap™tt — k) = vy(s(ap™, ap™ — k)) + 2. Furthermore, we have
vp(s(ap™, ap™ — k)) = vp(s(ap™, ap™ — k)) +2(n — n1).

In [23], Qiu and Hong gave a formula for vs(s(2", k)) with k being an integer such that
1 <k < 2™ In [22], Qiu, Feng and Hong presented a formula for vs(s(a3™,k)) with &k
being an integer such that 1 < k < a3", where a € {1,2}. In [11], Hong and Qiu arrived
at an exact expression or a lower bound of v, (s(ap, k)) with @ and k being integers such
that 1 <a <p—1and 1 <k < ap. It is natural to consider the p-adic valuation of the
Stirling number s(ap™, k), where a,n and k being integers such that 1 <a <p—1,n > 2
and 1 < k < ap™. For any odd prime p and any positive integer k, recall that €y is
defined by € := 0 if k is even and € := 1 if k is odd, and (k) denotes the integer such
that 0 < (k) <p—2and k = (k) (mod p—1). We propose the following conjecture.

Conjecture 3.25. Let p be an odd prime. Let a,n,m and k be positive integers such
that 1 <a<p—1,1<m<nand2 <k <ap™ —2. Then each of the following is true:
(). If2<k<a(p—1)pm™ !t +1<ap™, then

op(s(ap", ap™ — K)) = = (" = ™) = (n = m)(ap™ = k) k(R + T

where )
T, { —1—v([5]), f k=€ (modp—1);
k= UP(B2L%>J)7 if k#£e (modp—1).
(ii). Ifa>4 and a(p—1)+2 <k < ap— 2, then
a
vp(s(ap™,ap — k)) > m(p” —p)—(n—1)(ap— k) +a+k—ap.

From Theorem 3.21, we can see that for all primes p > 5 part (ii) of Conjecture 3.25
is true when n = 1 and part (i) of Conjecture 3.25 also holds for n = 1 and k = ¢
(mod p — 1). By the main result in [22], we know that Conjecture 3.25 is true when
p = 3. Letting m = n, Conjecture 3.25 becomes the following conjecture.

Conjecture 3.26. Let p be an odd prime. Let a,n and k be positive integers such that
1<a<p—-land2<k<a(p—1)p"'+1. Then

v (s(a”a n_k))_{ n"’(”"’”p(k))ek_l_vp(tgj)v kaEEk (modp—l);
plslap™, ap = n+(n+vp(k))ek+vp(32t<i2”), if kZe, (modp-—1).
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On the other hand, Corollary 4 in [15] gives us that

vp(s(ap™, ap™)) = ﬁ(p" —p™) —a(n —m)p™.

So we suggest the following conjecture as the conclusion of this paper.

C
1

onjecture 3.27. Let p be a prime. Let a,n,m and k be positive integers such that
<a<p-1,1<m<nand2<k<alp-1Dp™!t+1<ap™. Then

o (s(ap" ap™ — k) = vp(s(ap”ap™) + vy (s(ap™ ap" ~ )+ (2[ 5] = 1)(n — m).
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