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1 Introduction

0
Let p = 1,2,3,5, or 7, T'{ (p) = To(p) U (\/]_9 \6ﬁ> LCo(p) be the Fricke Group of

level p, and H = {z € C | Im(z) > 0} be the complex upper half plane. It is known
that a fundamental domain for 'y (p) is given by
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Figure 1: F*(p) (p =1,2,3)
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Figure 2: F*(p) (p=5,7)

Here, we put g1 = =+ B4, pa = —§+ 4 ;1 = —3+ . poa = —3+ 2.
psg=—2+% pri=—3+ Q\iﬁ, and pro = —3 + \1/75:’;2'_

In 1970, Rankin and Swinnerton-Dyer studied the location of the zeros of the
Eisenstein series Ey(z) :=1— é—]z > 0k—1(n)q" of weight k > 4 for the full mod-
ular group SLy(Z) =Td (1), where ¢ = €™, By, is the kth Bernoulli number, and
Tp-1(1) = 24 d*=1. They showed that all the zeros of Ej on F{ lie on the lower
boundary arc [6]. Their method can be applied other holomorphic modular form.
In recent years the locations of the zeros of certain holomorphic modular forms
have been studied in several cases. In the cases of the Eisenstein series for I'§ (2)
and I'§ (3) have been studied by Miezaki, Nozaki, and Shigezumi [5], for I'¢ (5) and
[y (7) by Shigezumi [7]. Here, the Eisenstein series of weight k& > 4 for ['§ (p) is
defined by

Bju() = - jp’s (Ex(2) + pb Bx(p)).

In 2008, Duke and Jenkins considered weakly holomorphic modular forms for
SLy(Z) [3]. They constructed the natural basis of the space of weakly holomorphic
modular form and proved that the zeros of almost all elements in the natural basis
on F{ lie on the lower boundary arc. By using their method, Choi and Im studied
the zeros of certain weakly holomorphic modular forms for T'j (2) and obtained a
similar result [1].

In this paper, we consider in the cases of 'y (3), T'd (5), and T'y (7).



2 Natural basis

A holomorphic function f on H is a weakly holomorphic modular form of weight
k € 27 for T (p) if f satisfies

b
- f (ij——d) = (cz+d)*f(2) for any z € H, <OCL Z) € TH(p).
- f has a g—expansion of the form f(z) = Z as(n)g"

nez
such that af(n) = 0 for almost all n < 0.

Let ny be the smallest integer such that af(ny) # 0, we define f is a holomorphic
modular form if ny > 0, a cusp form if ny > 0. We denote the space of weakly
holomorphic modular forms of weight & for T'{ (p) by ML(T'¢ (p)), the space of holo-
morphic modular forms by M;,(T'§ (p)), and the space of cusp forms by Si(T'¢ (p)).

For k > 4, let Ex(z) =1 — é—i > 02k—1(n)q™ be the Eisenstein series of weight

k for SLy(Z), n(z) = g [[Z,(1 —¢") be the Dedekind eta function. Put
12 ifp=1,37

=148 if p=2 , we define AY € S5(I'§(p), and ji € My(T'§(p)) as
4 ifp=>5

follows.

- AF(2) = (n(2)n(p=2))’,
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ifp=1

For k € 27, we write

0+2 if k=2 (mod 0)

k= 60y + 1y, where £ € Z and 1, =
r -+ T where £ and 7 {k— [%]6 otherwise

Put m' = m,y = 2166, + dim S, (I§ (p)). Theorem 2.4 of [2] says that there
exists a unique weakly holomorphic modular form fy,,, € M;(T'{(p)) such that

fem(2) =™ +0(q™ ")

for each integer m > —m/’.



Then, {fim }m>—_m form a natural basis of M (T (p)).
Moreover, fj,, can be written explicitly by

fk,m = (A;_)ék Apﬂ"ka,m-Hn’ (];_)

where A, = fr—my., € My, (g (p)) and Fy i is a monic polynomial of degree
m+m'. We can check that Fj, ,,,+,, has rational coefficients, since the g-coefficients
of A¥ and A,,, are rational. Hence, the g-coefficients of f ,, are also rational.
The following is an integral formula of fj ,, which play an important role in inves-
tigating the zeros of f .

Proposition 2.1. [2, p. 756] Let fi, == fr—m = (A))% A, then we have

fk‘ f? k‘ , ml /
Jem( f dq,
g 27” ]3 —]3( )

and C' is the circle centered at 0 in the ¢'-plane with a sufficiently

where ¢ = e*™7

small radius.

Duke and Jenkins proved the above formula in the case of SLy(Z) indepen-
dently [3]. They also showed the following theorem.

Theorem 2.1. [3, Theorem 1] Let { fm }m>—ms be the natural basis for M} (SLy(Z)).
If m > |bg]| — by, then all the zeros of fim in F{ lie on the lower boundary arc.

In the case of T'{ (2), Choi and Im obtained a similar result.

Theorem 2.2. [1, Theorem 1.2] Let { fy.m }m>—ms be the natural basis for M, (T'¢(2)).
If m > 2|0 — ly + 8, then all the zeros of fr.m in Fy lie on the lower boundary
arc.

3 Results

The following theorems are our main results.

Theorem 3.1. [4, Theorem 1.1] Let { fy.m }m>—ms be the natural basis for M, (T'¢(3)).
If m > 18|€y| + 23, then all the zeros of fix.m in Fy lie on the lower boundary arc.

Theorem 3.2. (Kuga) Let p = 5,7 and {frm}m>—ms be the natural basis for
ML (p)).

If m is sufficiently large, then all the zeros of fim in IF; lie on the lower boundary
arcs.



The proof motivates real estimation. For simplicity, we prove only in the case
of p =3 and r, = 0 here.

Lemma 3.1. If f = Zn>nf ang™ € ML(T$(3)) has real Fourier coefficients, then
e f (\/Lge’e> is real for all 0 € [Z,28]. In particular, s fkm (\/Lgew) is real for
all 0 € [5,°F].

Proof. For all z € H, we note that

and
f(z) = Z a(n)e?rinz = Z a(n)e?minz = Z a(n)e*™m=%) = f(-3)
n>ng n>ng n>ng
Put 2z = \/igew (2 <0 <20, then 3+ = —\/ige"e = —Z. Hence

Thus, we obtain

The valence formula for ' (3) is given as follows.

Lemma 3.2. Let f € M (I (3)), which is not identically zero. We have

1 1 k
Vioo (f) + Qvﬁ(f) + gvpa(f) + Z v,(f) = 6’
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where v,(f) is the order of f at p.

The following Lemma can be proved by rearranging the integral formula of

Jiem-
Lemma 3.3. Put h(0) = —2mm g sin g o 12 > frm ( G ‘9> and a(0) = % 277771\[0039
(a) Forallf e (3,2, ifm > 9|0 | — 24y, + 18,
|h(0) — 2cosa(f)| < 1.9674.
(b) Forall § € [3,5 — 2] if m > 18|(,,] + 23,

|h(0) — 2 cosa(f)| < 0.99728.

>



proof of the Theorem 3.1 (for r;, = 0).

Put h(0) = e_%mﬁsmee%fk’m (\/Lgew) and a(f) = % — 27rm\/Lg cosf. Then
Lemma 3.1 implies h(f) is a continuous real valued function. By lemma 3.2, we
suffice to show that h(f) has at least 2¢;, + m zeros in the interval [Z,2Z]. When

206
m > 18|¢x| + 23, we can check that

T 5T 12 1

By lemma 3.3, we can determine the sign of h(f) when a(6) takes the values 3¢y,
(3l + 1)m, Ble + 2)m, ..., (5l +m — 2)m, (50, +m — 1)m, and (5 +m — ).

| a(0) | 2cosa(f) | sgn(h(0)) |
30y 2(—1)% (—1)%
(30 + 1)m 2(—1)5%FL | (—1)%F!
(30, +2)m 2(—1)% (—1)%
(50 +m —2)7 | 2(—1)% (—1)%
(50 +m — ) | 2(=1)%F [ (=1)%F!
(5l +m—2)m | (—1)% (—1)%

By the intermediate value theorem, h(6) has at least 2¢; + m distinct zeros in

the interval [, 2Z].

We complete the proof. O
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