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1 Introduction

A ribbon 2-knot is a knotted 2-sphere in R* that bounds a ribbon 3-disk, which is an
immersed 3-disk with only ribbon singularities. The ribbon crossing number of a ribbon
2-knot is the minimal number of the ribbon singularities of any ribbon 3-disk bounding
the knot [14]. Yasuda has classified ribbon 2-knots with ribbon crossing number up to
three in [13] and has enumerated those with ribbon crossing number four in [15]. In this
paper we classify these ribbon 2-knots.

Theorem 1. The number of mutually non-isotopic ribbon 2-knots with ribbon crossing
number four is either 111 or 112. Amongst them 9 or 10 knots are positive-amphicheiral.
So, if each chiral pair is counted as one knot, the number of ribbon 2-knots with ribbon
crossing number four is either 60 or 61; see Table 1.

Table 1: Numbers of the ribbon 2-knots with ribbon crossing number up to four.
Ribbon crossing number 0 1 2 3 4
(i) Number of ribbon 2-knots, each chiral pair is counted separetely 1 0 3 13 111/112
(ii) Number of ribbon 2-knots, each chiral pair is counted as one knot 1 0 2 7 60/61

The ribbon 2-knots with ribbon crossing number with up to three are completely
classified by the Alexander polynomial. However, those with ribbon crossing number four
listed in [15] have not been classified. Theorem 1 means that there is an indistinguishable
pair of ribbon 2-knots, Y43 and Y46 in Table 3, which are positive-amphicheiral; they
have isomorphic knot group. Also, there is one knot, Y112 (the ribbon handlebody is
shown in Fig. 1), which had been missed in [15].

Satoh [8] introduced a virtual arc presentation for a ribbon 2-knot. If a ribbon 2-
knot K is presented by a virtual arc with n classical crossings, then the ribbon crossing
number of K is at most n. In [2] ribbon 2-knots presented by a virtual arc with up to
four crossings are enumerated, and in [6] those ribbon 2-knots are classified. There are
24 ribbon 2-knots with ribbon crossing number up to four, which are not presented by a
virtual arc with up to four crossings. So, we have only to consider these knots. We have
27 sets of ribbon 2-knots A; (i =1, 2,...,17) and A;! (j =2, 3,4, 7, 8, 10, 11, 12, 14, 16),
which consist of knots sharing the same Alexander polynomial; A,! is the set consisting



of the mirror images of the knots in .4;. The knots in the sets A; with ¢ < 13 (and so A;!
with j < 12) have been classified in [6]. Thus, we classify the knots in A; with i = 14,
15, 16, 17 (Sec. 5). The knots in these sets are ribbon 2-knots of 1-fusion. In order to
classify the knots in these sets we use the trace set, or the twisted Alexander polynomial
associated to the representations to SL(2,C). The trace set is an invariant defined for
a ribbon 2-knot of 1-fusion from the representations of the knot group to SL(2,C); see
Sec. 4 in [7]. For the twisted Alexander polynomial of a ribbon 2-knot, see [4].

This paper is organized as follows: In Secs. 2 and 3, we review a ribbon handlebody
presentation of a ribbon 2-knot and the stable transformations for a ribbon handlebody
presentation, which were introduced in [3]. In Sec. 4 we give Yasuda’s table of the ribbon
2-knots with ribbon crossing number up to four (Tables 2 and 3), which contain the 1-
fusion notation of the knots. In Sec. 5 we classify the knots in A;, i = 14, 15, 16, 17,
which completes the proof of Theorem 1.

Acknowledgments

The author was partially supported by JSPS KAKENHI, Grant Number JS17K05259.
This work was partially supported by Osaka City University Advanced Mathematical
Institute (MEXT Joint Usage/Research Center on Mathematics and Theoretical Physics).

2 Ribbon handlebody presentation of a ribbon 2-knot

In this section we review a ribbon handlebody presentation of a ribbon 2-knot introduced
in [3]. A ribbon handlebody H is a ribbon 2-disk, which is a 2-dimensional handlebody
in R? consisting of (m + 1) 0-handles Dy, Dy, ..., D,, and m 1-handles By, Bs,..., B,
such that the preimage of each ribbon singularity consists of an arc in the interior of a
0-handle and a cocore of a 1-handle. We set H = DU B, where D = DyuU D,y U---U D,,
and B= B;UByU---UB,,. We associate to a ribbon handlebody H an immersed 3-disk
Vi in R* defined by
Ve =D x [-2,2]UB x [-1,1]. (1)

Then Vj is a ribbon 3-disk for the ribbon 2-knot Ky = 0V in R*. Conversely, for
any ribbon 2-knot K in R*, there exists a ribbon handlebody #H such that K is ambient
isotopic to the associated 2-knot K3; see [1, 10, 12].

We suppose that each 1-handle B, is the image of an embedding b, : [ x [ — R3
q=1,2,...,m. Let 8, : I — R? be the center line of the 1-handle B, defined by
B4(t) = by(1/2,t), which is an oriented path such that

611(]) ND= {Bq(o)vﬁq(tq,l)v ﬁq(ttﬂ)? S :Bq(tqlq)a 611(1)} )

0 <tgn <tgo<- - <tge <1l

(2)

Let ¢y, 74, Mq,7) (1 =1, 2,...,¢,) be integers in {0, 1,...,m} determined by
ﬁq(O) € anq, ﬁq(l) € 8DTq, 5q(tq7j) € IntD)\(qJ), j=12... ,fq. (3)



Thus, 3 is an oriented path joining D, and D, . At the intersection 3,(t,;) if 3, passes
from the negative side of Dy, ) through to the positive side we define ¢(q, j) = +1, and
if it passes in the opposite direction we define €(q,j) = —1.

Then for a ribbon handlebody H we define a ribbon handlebody presentation [ X | R |
consisting of:

o X = {xg,21,...,2,}, where each letter z, corresponds to the 0-handle D,,

e R={p1,p2,....pm}, where each relation p, : z,." = T, (or z,, = 7,,") corresponds
to the 1-handle B, that joins D, to D, passing through 0-handles according to the
word wy:

_ .c(g1)  e(q,2) e(g.tq)
Wo = Txa1)Pr@2) " b (4)

In particular, if 8,(I) "D = {3,(0), B4(1)}, then p, : z,, = -,

-

For a ribbon handlebody presentation P = [X | R], X = {zo,21,...,2,} and R =
{p1,02, ..., pm} With pg : )" =z, , w, € F[X], we can associate an oriented labelled tree
P = (X, E,\), where X is a set of vertices, F is a set of oriented edges:

E={z, 7, |q=1,...,m}, (5)

and A : E — F[X] is a labeling function defined by X\(z, @) = w,.

Conversely, for an oriented labeled tree (X, E, \) as above, we obtain a unique ribbon
handlebody presentation P = [ X | R] and also the associated ribbon 2-knot of m-fusion,
which we denote by Kp; cf. Proposition 3.3 in [3]. Note that the knot group of Kp,
7 (R* — Kp), is presented by ( X | R ), where R is a set of relations {py, 2, .. ., pm} with
g 1wy T, Wy = x5 see [11].

Therefore, any ribbon 2-knot with ribbon crossing number r is obtained from an ori-
ented labeled tree (X, E, \) as above such that ) /" | £, = r, where £, is the word length

of the word w, as in Eq. (4).

3 Stable transformations of a ribbon handlebody presentation

Let P =[X | R] be a ribbon handlebody presentation, where X = {x,z1,...,2,} and
R={p1,...,pm} with

L g _ cla1) e(g,2) e(g.lq) _
Pq Tt = Try, W= TN NI Ty, €(q,s) = L (6)

We call the following transformations of a ribbon handlebody presentation stable trans-
formations:

—1
S1. Replace p, : z,," = x,, by x,, = x%”q )

€

. 5 Wwq WqT
S2. Replace p, : 2., = x,, by either z,,* " =2, orx, " =wx,,€e==%l

S3. Add a generator y and a relation y = x or x, = y*, where w is a word in z,
T1y-eoy Ty



S3’. Inverse transformation of S3.

WpWq

S4. (i) Suppose 7, = 1. Replace either p, : x,,) =z, or p, : z.," = z,, by x,”"" =z, .

.. w we ™ tw
(ii) Suppose ¢, = t4. Replace pp : x,) = -, by x7! " =z,

wpwg ™

(iii) Suppose 7, = 7,. Replace p,, : z,,” = ., by ., =1,

S5. (i) Suppose A(p, s) = 74. Replace x5, (= ©7,) in w, in p, by w, 'z, w,.
(ii) Suppose A(p,s) = tq. Replace 20 (= 2,,) in w, in p, by wez-,w, ™"
Then we have the following (Proposition 4.1 in [3]):

Proposition 2. Suppose that ribbon handlebody presentations P and P’ are related by a
finite sequence of stable transformations S1-S5. Then, the associated ribbon 2-knots Kp
and Kp: are ambient isotopic.

We denote by

R(p1,qi, - Pns@n)s P11 -3 Doy G € L, (7)
a ribbon 2-knot of 1-fusion, which is presented by the ribbon handlebody presentation
[,y o =y" (w=aPy" - zy")]. (8)
cf. [5, Sect. 2]. Then, by the transformation S1 we have:
R(p1,q1, - Pns @n) = R(=Gpn, —Pn, - —q1, —P1) (9)
R(p1,q1, 3P0y @) = R(=pP1, —q1, -+ s —Pns —Gn) = R(Gns Prs - - q1, P1), (10)

where K ~ K’ denotes that the two 2-knots K and K’ are ambient isotopic and K! the
mirror image of K.

Example 3. The ribbon 2-knot Y43 presented by

P(Y43) = [x1, x2, x3 | p1 : 212" = 29, po @ 213" = x3]. (11)
is isotopic to the ribbon 2-knot of 1-fusion R(1,1,—1,—1,—1,—1,1,1). Thus, by Egs. (9)
and (10) Y43 is positive-amphicheiral.

Proof By the transformation S5(ii), we replace x; in the power of p; with xswoxsry 'zy"
coming from ps. Then P(Y43) is deformed into

—1 -1
P(Y43), = |:.’,C1,LU2,LU3 ‘ A i e B N M L x3] : (12)
z3w0) lwozzromszy togt
By the transformation S4(ii), we replace p| by p/ : z\" 2 warararaty T3t _ 00 Then
P(Y43); is deformed into

—-1_-1 —-1_-1
T, To TOT3T2T3T, T 2379
2 73 2 73 32 — xg] ) (13)

P(Y43)y = |:.fl§'1,l'2,[2§'3 ’ Pl a, = X9, po: I

By the transformation S3'; P(Y43), is deformed into

-1, -1 -1, -1
Ty Ty T2TIT2TIT, Ty
X

P(Y43)3 = |:.CC2,I3

— 2] (14)
which presents R(—1,—-1,1,1,1,1, -1, -1)(= R(1,1,—-1,—-1,—1,—1,1,1)). O



4 Yasuda’s Table

Yasuda enumerated ribbon 2-knots with ribbon crossing number up to three in [13] and
ribbon 2-knots with ribbon crossing four in [15]. He claims that any ribbon 2-knots with
ribbon crossing number up to four is presented by one of the following ribbon handlebody
presentations:

Pi(w) = [21, 2| 2} = 22 ]; (15)

Py(wy, wa) = [, B9, w3 | 27" = 29, 272 = 23]; (16)
Py(wy, wy, w3) = [@1, &9, x5, T4 | 21" = 29, 52 = 13, 25° = 14]; (17)
Py(wy, we, w3) = [@1, &9, x5, T4 | 2} = @9, 12 = 13, 27* = 14]; (18)
Ps(wy, wo, w3, wy) = |21, Ta, T3, Ty, T5 | 1" = 29, 212 = w3, 1% = x4, 25* = x5]; (19)
Ps(wy, wa, ws, wy) = [ &1, T2, T3, Ty, T | 27" = @2, )? = 13, 21° = 34, 27" = 25]. (20)

Remark 4. A ribbon 2-knot with ribbon crossing number up to four presented by the
ribbon handlebody presentation

[x17x27'r37'r47x5|x§u1 = T2, 'rg)2 = I3, xéUS = Xy, ZCZM = x5]7 (21)

w; € Flxy,x9,23,14,25], is transformed into a ribbon 2-knot presented by one of the
ribbon handlebody presentations (15)—(18).

In a similar way to Example 3, we can deform a ribbon 2-knot with up to four ribbon
crossing by a finite sequence of stable transformations S1-S5 (Proposition 2) into one of
the following two types:

e Type 1: a ribbon 2-knot of 1-fusion.
e Type 2: a composition of two ribbon 2-knots of 1-fusion.

In order to determine the type of a ribbon 2-knot we use the following proposition (Propo-
sition 3.1 in [6]). Indeed, the fundamental group of a Type 2 ribbon 2-knot with ribbon
crossing number up to four is isomorphic to the free product Zsz x Zs (Proposition 3.2 in

[6])-

Proposition 5. The fundamental group of the 2-fold cover of S* branched over a ribbon
2-knot of 1-fusion K is the finite cyclic group whose order is the determinant of K,

[Ax(=1)].

Table 2 lists the ribbon 2-knots with ribbon crossing number up to three given by [13],
and Table 3 lists the ribbon 2-knots with ribbon crossing four given by Yasuda [15]. Each
column in Tables 2 and 3 shows as follows:

e The first column, Name, shows the names of the ribbon 2-knots:

(i) The names Ym-n, Ym-n* (m = 2, 3) in Table 2 denote the knots m,,, m! with

n
ribbon crossing number m in [13]; Ym_n* is the mirror image of Ym.n.

(ii) The name Yn (1 < n < 111) in Table 3 denotes the ribbon 2-knot K? with
ribbon crossing number four in [15].



e The column, C, shows the chirality of the ribbon 2-knots:

(i) The symbol “a” means that the ribbon 2-knot is positive-amphicheiral.

(ii) In Table 3 the mirror image knot is listed.

e The column, Presentation, shows a ribbon handlebody presentation of the ribbon
2-knot: P; is one of the ribbon handlebody presentations (15)—(20), and the symbols
jand j (j =1, 2, 3, 4, 5) denote the letters z; and ZL‘j_l, respectively. For example,
P,(21,32) for the knot Y43 in Table 3 means the presentation Eq. (11) in Example 3.

e The column, Type, shows the type of the ribbon 2-knot:

(i) A Type 1 ribbon 2-knot is presented by a 1-fusion notation R(p1, 1, - - -, Pms @m)-

(ii) A Type 2 ribbon 2-knot is presented by a composition R(eq, €2)# R(€3, €4), €; =
+1.

e The column, A(t), shows the normalized Alexander polynomial of the ribbon 2-knot
in the abbreviated form: (¢_,, ¢ i1 ... co1colC1 ... Coo1 ) =D et ¢ € L.
We normalize the Alexander polynomial of a ribbon 2-knot A(t) € Z[t*], so that

A(1) =1 and (d/dt)A(1) = 0; cf. [1].

e The column, Det, shows the determinant of the ribbon 2-knot, which is given by

[A(=D)]

e The column, Set, shows the name of the set of the ribbon 2-knots sharing the same
Alexander polynomial; A;! denotes the set of the mirror images of the knots in A,.
For example, Ay = {Y3_.1*, Y27}, Ay! = {Y3_1, Y34}, and the knots in the sets A4,
1=1,5,6,9, 13, 15, 17, have reciprocal Alexander polynomials, and so we do not
consider the set of mirror images. The sets A; with i < 13 are the same sets as in
6].

The knot Y112 is missed in [15], which has the same Alexander polynomial as Y109;
the ribbon handlebodies are shown as in Fig. 1.



Figure 1: Ribbon handlebodies presenting Y109 and Y112.

Table 2: Ribbon 2-knots with up to three crossings.
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Table 3: Ribbon 2-knots with four crossings.
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Table 3: Ribbon 2-knots with four crossings (cont’d).
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6 (1—zce—lgl1-) (TT-T1-T1-1T-717T1D4  (@'I'eh)8d 88A  S8A

6 (¢v—[e]) I-T-T7-T77-14  (@T€h)ed 68K  ¥8A

% 6 (Te—legle—1) (T'1=1=1-111704 _ (@'1°¢h)d 06X  €8A

jog  1ea O\ odA], UOIIRJUSSAIJ o eweN

‘(p,100) SBUISSOID IMOJ YIIM S)OUN-g UOqUTY :€ O[R],
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5 Classification of the knots

The ribbon 2-knots in the sets A;, i = 1, 2,...,13, have been classified in [6] except for
the pair Y43 and Y46 in 4g, which have isomorphic knot group; see Sect. 7 in [6], where
Y43 = R§ ¢ and Y46 = RS . In this section we classify the ribbon 2-knots in each of the
sets A;, i = 14, 15, 16, 17.

5.1 Classification of the knots in A,

The set Ay, consists of the two knots Y91 and Y100, which share the same Alexander
polynomial —t~3+4¢t=2—5t~1 4+ 3. Since they have different trace sets as shown in Table 4,
we obtain Y91 % Y100.

Table 4: Trace sets of the knots in A4, A6, and A;7.

Set  Knot Trace set
A YOl {0,0,0,0,0,0,(5 +ev5)/2|6,e = £1}
Y100 {0,0,0,0,0,0,5\/5(3+e\/§)/6 5,6_11}
A Y94  {0,0,0,0,0,0}
Y96  {0,0,0,0,0,0, 40, £as, +as}
C - {+V3}, £v2, 0,0,0,0,0,0,0,
C - {i\/g}u C - {:l:\/g}a =1,

A Y1099 5 13)/2, (54 ev/13)/2 (6, € = +1),
iﬁlv :I:/627 :I:635 :l:ﬁ4
Y112 { C - {:t\/g}a i\/§7 07070707070707 }
Y1, V25 V35 V4

e The numbers ay, k = 1,2,3, are the roots of the cubic equation 1 — z — 222 4+ 2% = 0 with
1< <li<ar<l,2<a3<3.

e The complex numbers Si, k = 1,2, 3,4, are the roots of the quartic equation
5—2x —4x? + 23 4 2% =0; By, B2 = 1.25 £ 0.274, 33,84 = —1.75 £ 0.17i.

e The complex numbers v, k = 1,2, 3,4, are the roots of the quartic equation 5 — 4z + 2% = 0;
v, = £1.46 £ 0.344.

5.2 Classification of the knots in A5

The set A5 consists of the four knots Y93, Y95, Y102(= Y95!), and Y104(= Y93!), which
share the same Alexander polynomial t=2 — 3t~! 4+ 5 — 3t + 2. Table 5 lists the trace sets
of the irreducible representations to SL(2,C) of the knot groups of Y93 and Y95, and
the associated twisted Alexander polynomials, which show these four knots are mutually
non-isotopic. In fact, since the twisted Alexander polynomials are not reciprocal, the
knots Y93 and Y95 are not positive-amhicheiral.
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Table 5: Twisted Alexander polynomials of Y93 and Y95 in A;s.

Set Knot (s+s 1 u) Twisted Alexander polynomial
A Y93 )(HZiD 1—ev2t+ 57 — e 55t% + §t* — e/2t° +1°
1+ Bit? + yott + 16

1+ Bst? +ytt +t°

1+ Bat? + yptt + 18

1+ Bot? + 3t + 6

1+ B3t? + yott + 16

1+ Bet? + y3tt + 16

1+ B1t% + Batt + 6

1+ Bot? + Bytt + 18

1+ Bst? + Batt + t°

1+ Bet? + Bot* 4 16

1+ Bet? + Bytt + 6

1+ Bst? + Batt + 6

o
L)
59

n

w

N

=)
o D w

Y95

N =

QQQ@EQQQ@

w

~
=
N

ot

NN AN N N N N N N S S
OO DD DODODDODDOD OO O OO

2 Q
[=2)

e The numbers ay, k =1,...,6, are the roots of the 6th order equation
13 — 91z + 18222 — 15623 + 652* — 1325 + 26 = 0 with
O0<a; <0b<am<l<az<2<ay<3d3<as<3b<ag<d4.

e The numbers G, k = 1,...,6, are the roots of the 6th order equation
—1 — 81z 4 20122 — 17823 4+ 732* — 142 + 25 =0 with —1 < 31 <0 < B2 < 1,
2<B3<24<P4<28<P5<3,5< fg<6.

e The numbers v, k = 1,2, 3, are the roots of the cubic equation —5 + 12z — 722 + 2% = 0 with
D<M <l<ym<2,4<y3<5b.

5.3 Classification of the knots in A4

The set Ajg consists of the two knots Y94 and Y96, which share the same Alexander
polynomial —t~1 + 4 — 4t + 3t* — ¢3. Since they have different trace sets as shown in
Table 4, we obtain Y94 % Y96.

5.4 Classification of the knots in A,

The set A;7 consists of the two knots Y109 and Y112, which share the same Alexander
polynomial —t=2 + 4t=1 — 5 4+ 4t — 2. Since they have different trace sets as shown in
Table 4, we obtain Y109 2 Y112.

Remark 6. According to Toshio Sumi [9], we can also distinguish the knots Y109 and
Y112 in the following ways:

(i) They have distinct twisted Alexander polynomials associated to the nonabelian
representations to SL(2,2) as listed in Table 6.

(ii) They have distinct numbers of the irreducible representations to SL(2, 7).
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Table 6: Twisted Alexander polynomials of the knots in A;7. .

Set  Knot p: K — SL(2,2) Ak,
0 1 10 .
Az Y109 z+— 10 , Y= 11 1+t
0 1 10 s
Y112 z+— 1 0)Y~ 1 1+t +t"+¢
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