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ABSTRACT. This is a concise survey of the author’s results concerning relations between cardi-
nal characteristics of the continuum and convergence of sequences of finitely additive measures on
Boolean algebras.

1. INTRODUCTION

Let us start with establishing basic notions from measure theory. Recall that every Boolean
algebra A is isomorphic to the Boolean algebra of clopen subsets of its Stone space St(A) and a totally
disconnected compact Hausdorff space is extremely disconnected if and only if its algebra of clopen
subsets is complete. Every (finitely additive finite signed) measure p on a Boolean algebra A may be
uniquely extended to a (regular Borel o-additive finite signed) measure i on the Stone space St(.A).
A sequence < Un: N E w> of measures on a Boolean algebra A is bounded if sup 4¢ 4 Sup,,c., |,un(A)| <
00, and it is pointwise null if p,(A) — 0 for every A € A. We also say that a sequence <,un: n e w>
of measures on a Boolean algebra A is weakly* null if it is bounded and pointwise null, and that
(pn: m € w) is weakly null if fi,(B) — 0 for every Borel subset B of the space St(A). Naturally,
every weakly null sequence is weakly* null and every weakly* null sequence is pointwise null, but
the converse may not hold in either case—e.g. if the Stone space of a Boolean algebra contains a
non-trivial convergent sequence, then there is a sequence of measures which is weakly* null but not
weakly null as well as there is a sequence which is pointwise null but not weakly* null.

Nikodym [34] however proved that if a Boolean algebra A is o-complete, then every pointwise null
sequence of measures on A is weakly™ null (cf. also [12]). The result turned out to be fundamental
in modern vector measure theory, see e.g. [16] and [15]. Besides o-complete Boolean algebras many
other classes of Boolean algebras were proved to have the same property—we will present several
examples in Section 2. Let us thus introduce the following name.

Definition 1.1. A Boolean algebra A has the Nikodym property if every pointwise null sequence of
measures on A is weakly™® null.

Similarly, Grothendieck [24] proved that if a Boolean algebra A is o-complete, then every weakly™*
null sequence of finitely additive measures on 4 is automatically weakly null. The result have found
many applications and generalizations in the context of Banach spaces and vector measure theory,
see e.g. [14] and [15]. Later, many other classes of Boolean algebras were also recognized as having
the same property, c.f. Section 2. Analogously to the case of the Nikodym property, we introduce
the following name.

Definition 1.2. A Boolean algebra A has the Grothendieck property if every weakly* null sequence
of measures on A is weakly null.

It is not an easy task to find any example of a Boolean algebra having only one of the properties.
Schachermayer [36] proved that the Jordan algebra 7, i.e. the Boolean algebra of Jordan measurable
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subsets of the unit interval [0, 1], has the Nikodym property but lacks the Grothendieck property.
For similar results, see e.g. [23] and [2]. On the other hand, assuming the Continuum Hypothesis,
Talagrand [46] constructed a Boolean algebra with the Grothendieck property but without the
Nikodym property. The existence of such an algebra in ZFC only is an open question.

In this concise survey we present several selected results concerning another problem which ap-
peared also very much set-theoretic in nature. Namely, we will focus on the issue whether there
exists an infinite Boolean algebra with any of the two properties and of cardinality strictly less than
the continuum c¢. It appears that the answer depends strongly on a current set-theoretic setting, in
particular, on values of several classical cardinal characteristics of the continuum. To describe the
situation better we will introduce two new cardinal characteristics nit and gt, show their relations
with the standard ones (e.g. those appearing in Cichori’s diagram or van Douwen’s diagram) and
study their values in various forcing extensions. We finish the paper with the list of open problems.

1.1. Acknowledgment. The author would like to thank Lyubomyr Zdomskyy for the collabo-
ration during which some of the results presented in this survey were obtained.

1.2. Preliminaries. Our notation and terminology is standard and similar to those of the classical
books of Bartoszynski and Judah [4], Halmos [26], Givant and Halmos [22] and Diestel [15]. Regard-
ing Cichon’s and van Douwen’s diagrams, we follow Blass’ survey [7] with one exception: we denote
the o-ideals of meager and Lebesgue null subsets of the Cantor space 2 by M and N/, respectively.
For information on the values of the classical cardinal characteristics of the continuum in various
models of set theory, we refer the reader again to [7, Section 11.9].

Towards the end of the paper we also make the following reasonable assumption:

All the considered Boolean algebras and compact spaces are assumed to be infinite.

2. (NON)-0-COMPLETE BOOLEAN ALGEBRAS

Let A be a Boolean algebra and I a set of indices. A sequence <ai eA: i€ I> is an antichain in
Aifa; Na; =0 for every i # j € I. Recall that a Boolean algebra A is o-complete if every antichain
<an: n € w> in A has supremum \/, ., a, in A. As stated in Introduction, every o-complete
Boolean algebra has both the Nikodym property as well as the Grothendieck property. These two
results have been generalized by many authors who introduced various properties of Boolean algebras
weaker than the o-completeness but still implying both of the properties. Those new properties may
be divided into two main groups, completeness properties and separation properties (also known
as interpolation properties). To the first group belong those properties which give supremas of
some subantichains of given antichains (much like in the case of the o-completeness), and to the
second one—those which give upper bounds (so not necessarily supremas) of subantichains of given
antichains and additionally the upper bounds are disjoint from the rest of the antichains. Usually,
every completeness property has a corresponding weaker interpolation property.

The main completeness properties are the property (E) (Schachermayer [36]), the Up—Down Semi-
Completeness (in short UDSC'; Dashiell [13]), the Subsequential Completeness Property (SCP; Hay-
don [27]), and the Weak Subsequential Completeness Property (WSCP; Aizpuru [1]). To the group of
separation /interpolation properties belong primarily the Interpolation Property (or the property (1),
Seever [37]), the property (f) (Molto [33]), the Subsequential Interpolation Property (SIP; Freniche
[18]), the Weak Subsequential Interpolation Property (WSIP; Freniche [19]), and the Subsequential
Separation Property (SSP; Haydon [28]). It is known that all the listed properties but the WSCP,
WSIP and SSP imply both the Nikodym and Grothendieck properties—regarding the latter three
they yield certainly the Grothendieck property and it is unknown if they give also the Nikodym
property. To give the reader at least a flavour of those all properties let us provide the definitions
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of the SCP and SSP, both due to Haydon—for the definitions and other information concerning the
remaining ones we refer the reader to the proper sources.

Definition 2.1 (Haydon [27]). A Boolean algebra A has the Subsequential Completeness Property
(SCP) if and only if for every infinite countable antichain (a,: n € w) in A there is an infinite set
M C w such that the supremum \/, ., a, is in A.

Haydon constructed a special Boolean algebra with the SCP in order to obtain the first known
example of a non-reflexive Grothendieck Banach space without any embedded copy of the space .

Definition 2.2 (Haydon [28]). A Boolean algebra A has the Subsequential Separation Property
(SSP) if and only if for every infinite countable antichain <an: n e w> in A there are an infinite set
M C w and an element a € A such that as, < a and agp+1 A a =0 for every n € M.

It is immediate that o-completeness = SCP = SSP. Koszmider and Shelah [31] introduced yet
another even weaker separation property of Boolean algebras. Their notion turned out to be crucial
for our further research.

Definition 2.3 (Koszmider and Shelah [31]). A Boolean algebra A has the Weak Subsequential
Separation Property (WSSP) if and only if for every infinite countable antichain <an: n e w> in A
there is an element a € A such that both of the sets

{new: anga} and {new: an/\azo}
are infinite.

The WSSP implies the Grothendieck property for non-negative measures, i.e. if <,un: n e w> is a
weakly™® convergent sequence of non-negative finitely additive measures on a Boolean algebra with
the WSSP, then <,un: n € w> is weakly convergent (|31, Proposition 2.4]). The full Grothendieck
property may not hold—there is a Boolean algebra with the WSSP but without the Grothendieck
property (and without the Nikodym property; see [31, Proposition 2.5]).

Recall that a subset Z of a Boolean algebra A is independent if for every disjoint finite non-empty
sets I, G C 7 we have:

(Aa)n( A -d)#0

acl acG
Koszmider and Shelah proved the following fundamental theorem.

Theorem 2.4 (Koszmider and Shelah [31, Theorem 1.4]). If a Boolean algebra A has the WSSP,
then A contains an independent family of size c.

It follows immediately that every Boolean algebra with the WSSP has cardinality > ¢. All the
properties introduced earlier in this section imply the WSSP, so in particular if a Boolean algebra
A has any of those properties, then |A| > ¢, too. Since no other essentially different algebraic
or structural properties of Boolean algebras forcing the Nikodym or Grothendieck property were
commonly known in the beginning of the 21st century, the following question appeared to be natural.

Question 2.5. Is it consistent that there exists a Boolean algebra A of size strictly less than ¢ and
with the Grothendieck property or the Nikodym property?

Since the Stone space of every countable Boolean algebra has a countable base and thus is metriz-
able, it follows that a Boolean algebra with either the Nikodym property or the Grothendieck
property cannot be countable—otherwise its Stone space would contain a non-trivial convergent
sequence, which is, as we already know from Introduction, impossible.

As we will see in the next section, the question though has a positive answer.
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3. FIRST CONSISTENCY RESULTS

Brech |10] provided the first positive answer to Question 2.5. Namely, she proved that in the
side-by-side Sacks model there is a Boolean algebra with the Grothendieck property and of size w;
whereas the continuum may be arbitrarily large. In fact, her result is a preservation-like result.

Theorem 3.1 (Brech [10]). Let k be a regular cardinal in a model V' of set theory and let S(k)
denote the countable support k-product of Sacks forcing. Let A € V be a Boolean algebra. If A is
o-complete in V', then for every S(k)-generic filter G over V the algebra A has the Grothendieck
property in V[G].

Recall that if S denotes the Sacks forcing, then for a cardinal number  the side-by-side Sacks
forcing S(k) is defined as follows: p € S(x) if and only if p € S* and the set supp(p) = {£ < r: p(&) #
1g} is countable; the ordering on S is defined coordinatewise, i.e. for p,q € S(x) we have p < ¢ if
p(€) < q(€) for every £ < k. S(k) does not collapse w; and if  is a regular cardinal in a ground
model V', then ¢ = & in any S(k)-extension of V. For more details on the side-by-side Sacks forcing,
see e.g. Baumgartner [5].

Corollary 3.2. Let V' be a model of set theory satisfying the Continuum Hypothesis, i.e. V = ¢ = w;.
If K is a regqular cardinal in V such that k > we and V' is an S(k)-generic extension of V , then, in
V', o(w)Y has the Grothendieck property and ‘p(w)v‘ =wp < €= KA.

Brech’s result has an important and weighty meaning. So far, by Theorem 2.4 of Koszmider
and Shelah, every known algebraic property of Boolean algebras, introduced in order to obtain a
characterization of the Grothendieck property or at least to move closer towards obtaining such a
characterization, had implied also that a Boolean algebra having this property must have cardinality
at least ¢. Brech’s result shows that such an approach cannot be effective—every characterization
of the Grothendieck property must be more intricate and sophisticated (than merely dealing with
antichains and its subantichans) in order to work also for Boolean algebras of size strictly less than
.

Theorem 3.1 inspired the author and Zdomskyy to prove a similar result for the Nikodym property.

Theorem 3.3 (Sobota and Zdomskyy [43]). Let k be a regular cardinal in a model V' of set theory
and let S(k) denote the countable support k-product of Sacks forcing. Let A € V be a Boolean
algebra. If A is o-complete in V', then for every S(k)-generic filter G over V' the algebra A has the
Nikodym property in V[G].

In particular, if K > wa is a regular cardinal in V', a model of set theory satisfying the Continuum
Hypothesis, and V' is an S(k)-generic extension of V', then, in V', p(w)v has the Nikodym property
and |g3(w)v| =w; < =K.

Since no countable Boolean algebra has the Grothendieck or Nikodym property and in any model
of set theory there is always a Boolean algebra of size ¢ and having either of the properties, namely
p(w), Theorems 3.1 and 3.3 suggest that it is reasonable to introduce the following two cardinal
characteristics of the continuum.

Definition 3.4. The Nikodym number nit is the smallest cardinality of a Boolean algebra with the
Nikodym property.

Definition 3.5. The Grothendieck number gt is the smallest cardinality of a Boolean algebra with
the Grothendieck property.

It follows that w; < gr,nit < ¢. Theorems 3.1 and 3.3 may be now stated simply as follows.
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Corollary 3.6. If V is a model satisfying the Continuum Hypothesis and k € V is a cardinal, then
nit = gv = wy in any S(k)-generic extension of V.

In the next sections we will study the lower and upper bounds for nit and g as well as we present
consistency results concerning these cardinal characteristics. In particular, we show that consistently
w1 < nit = gr < c.

4. LOWER BOUNDS FOR nit AND gt

We start the section with the following definition. Let I denote the class of all compact totally-
disconnected Hausdorff spaces which do not contain any non-trivial convergent sequences.

Definition 4.1. The convergence number 3 is the smallest possible weight w(K) of a space K € K,
that is, 3 = min {w(K): K € lC}.l

Since p(w) € K and every second countable compact space is metrizable (and hence it contains
non-trivial convergent sequences), we have wy < 3 < ¢.

Recall that if a Boolean algebra 4 has the Nikodym or Grothendieck property, then its Stone space
St(A) does not have any non-trivial convergent sequences, i.e. St(A) € K. It follows immediately
that 3 < nit and 3 < gr, thus if a cardinal characteristics is a lower bound for 3, then it is also one
for nit and gr.

Recall that a family F C [w]* is splitting if for A € [w]* there is B € F such that both AN B and
A\ B are infinite. The splitting number s is the minimal cardinality of a splitting family. Booth [8]
provided the following characterization of s in terms of sequentially compact spaces:

§ = min {w(K ): K is a compact, not sequentially compact space}.

If K is a compact space such that w(K) < s, then it is sequentially compact and hence it contains
a non-trivial convergent sequence. Thus, s < 3 and hence s < nit, gr.

Now, recall that the covering number cov(M) of M denotes the minimal cardinality of a family
of meager subsets of the Cantor space 2* covering the whole space, i.e. cov(M) = min {|}"|: F C
Mand UF = 2‘“}. It is an easy fact that if a compact space K is scattered (i.e. each closed
subset of K has an isolated point in the topology inherited from K), then K contains a non-trivial
convergent sequence. In [20] Geschke proved that if a compact space K is non-scattered and such
that w(K) < cov(M), then there exist a (closed) perfect subset L of K and a point z € L such
that x is a Gs-point in L, i.e. there is a family {Gn: n € w} of open subsets of L such that
{z} = N, Gn- It yields that there is a non-trivial sequence in L convergent to z. It follows that
cov(M) < 3 and hence cov(M) < nit, gr.

Let us note here that the convergence number 3 was studied also by Brian and Dow in [9], where
it was proved, i.a., that if x is a cardinal number satisfying the condition:

max (b, non(N)) < & = cof ([x]”,C),

then 3 < k. Here b denotes the bounding number, i.e., the minimal cardinality of a subfamily of w®
which is unbounded in the sense of the order <* defined as follows: given f,g € w¥, f <* g if and
only if f(n) < g(n) for almost all n € w. The uniformity number of N', denoted by non(N), is the
minimal cardinality of a subset X C 2% such that X & A. Finally, for every cardinal s by ( [k]Y, C )
we denote the family of all countable subsets of k ordered by the inclusion C and by cof ( [k]Y, C )
we mean the smallest cardinality of a subfamily F C [/{]w which is cofinal in the sense of C. Basic
information concerning the number cof ( [k]Y, C ) one can find in [4, Section 1.3.B]—e.g, we always

1The letter 3, i.e. Gothic z, comes from the Polish word zbieznosé meaning convergence.
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have cof ([k]“,C ) > k and there are such numbers  for which we have cof ([x]“,C ) > &, but
cof ([wn]”,C ) = wy for every n € w.

The bounding number b plays here also a special role for the Nikodym number ni¢. Namely, using
the celebrated Josefson—Nissenzweig theorem (see e.g. Diestel [15, Chapter XII]), one can prove
that if a Boolean algebra has cardinality strictly smaller than b, then it does not have the Nikodym
property—see Sobota [41, Proposition 3.2]. Thus, the following corollary holds.

Corollary 4.2. max (b, s, cov(M)) < nit.

However, we do not know whether the inequality b < gt holds in ZFC, cf. Section 8.
Corollary 4.3. max (s, cov(M)) < gr.

Both Corollaries 4.2 and 4.3 imply that under Martin’s axiom nit = gr = c.

5. UPPER BOUNDS FOR nit AND gt

Since p(w) has both the Nikodym and Grothendieck properties, nit < ¢ and gr < ¢. Obtaining
upper bounds for both the characteristics stronger than ¢ is however a much more intricate issue
than that of finding lower bounds, since no simple condition for Boolean algebras implying any of
the properties and possibly satisfied by algebras of cardinality strictly smaller than ¢ is known. For
instance, the o-completeness—or any of the properties introduced in Section 2—of a given Boolean
algebra implies by Theorem 2.4 that the algebra has immediately the cardinality at least ¢. Yet
we present here the author’s results asserting that under some natural conditions concerning the
cofinality cof(N') of Lebesgue null ideal N~ (like, e.g., cof (N') = w,, for some n € w), it is possible to
obtain the inequalities nit < cof(N) and gt < cof(N).

Recall first that the cofinality cof(N') of the Lebesgue null ideal N is the minimal cardinality of
a family 7 C N such that for every A € N there is B € F such that A C B. In Section 4 we
presented the theorem of Brian and Dow stating that if max (b, non(N)) < x = cof ([k]”,C ) for
some k, then 3 < k. A similar theorem was obtained earlier by the author relating ni¢ and cof(N).

Theorem 5.1 (Sobota [41]). If k is such a cardinal number that cof(N') < k = cof ([k]*), then
there exists a Boolean algebra A such that |A| = k and A has the Nikodym property. In particular,
nit < k.

Corollary 5.2. If cof(N) = w1 < ¢, then nit = w1 < ¢, too. More generally, if cof(N) = wy, for
some n € w, then nit < cof(N).

Let us elaborate more on the above results. The main idea of the proof of Theorem 5.1 is similar to
the one presented by Darst [12] who proved that o-complete Boolean algebras do have the Nikodym
property, i.e. to assume that a given o-complete Boolean algebra A does not have the property, so
there is a “bad” sequence (pt,,: n € w) of measures on A (that is, pointwise null but not bounded),
to construct then a special antichain in A related to <,u,n: n € w> and by taking its supremum
to obtain an element in A on which <un: n € w> is not convergent, which ultimately yields a
contradiction. In the proof of Theorem 5.1 we follow a similar way, i.e., we construct inductively
an increasing wi-sequence of Boolean subalgebras of p(x) of size k in such a way that in each step
we “kill” bad sequences of measures on Boolean subalgebras from the previous steps, i.e. those
sequences which could possibly contradict the Nikodym property of the final algebra. To do this,
in each step we construct a special family of antichains of elements from the previous subalgebras
and attach their carefully chosen supremas. Naturally, in each step we have to ensure that the
constructed families of antichains and their supremas are not too big, i.e., they have cardinality
at most k. We do this actually separately from the main proof by introducing and studying two
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new properties of [w]” and Fr(w), the free Boolean algebra on countably many generators, which
would give us such “small” families of antichains and supremas. This two new properties lead us to
two new cardinal characteristics of the continuum, which we call the anti-Nikodym number and the
Nikodym extracting number, denoted by n, and n., respectively. Since the definitions of n, and n,
are rather technical and long, we refer the reader to [41] for more details. It is worth here however
to mention that those two characteristics satisfy the following inequalities: b < n, < cof(N) (|41,
Corollary 6.7]) and cov(M) < n, <0 (|41, Corollary 6.16]). Recall that the dominating number 0 is
the minimal cardinality of a family F of functions f € w® such that for every g € w® there is f € F
such that g <* f. Since d < cof(N) we obtain that max (ng, ne) < cof(N). Since x > cof(N), these
inequalities allow us indeed to attach at most k new elements in each step of the construction which
would kill bad sequences in the final algebra.

Note that it follows from the above discussion that we in fact prove the following stronger version
of Theorem 5.1 which does not mention cof(N).

Theorem 5.3. If k is such a cardinal number that max (na, ne) < k = cof ( (k] ), then there exists
a Boolean algebra A such that |A| = k and A has the Nikodym property. In particular, nit < k.

Recently, the author obtained also a theorem concerning gt and cof(A), very much similar to
Theorem 5.1.

Theorem 5.4 (Sobota [42]). If k is such a cardinal number that cof(N') < k = cof ([k]*), then there
exists a Boolean algebra A such that |A| = k and A has the Grothendieck property. In particular,
gr < kK.

Corollary 5.5. If cof(N) = w1 < ¢, then gt = w1 < ¢, too. More generally, if cof(N) = w,, for
some n € w, then gr < cof(N).

The idea standing behind the proof of Theorem 5.4 is very similar to the one of Theorem 5.1,
that is, we inductively construct an increasing wi-sequence of Boolean subalgebras of o(k) of size x
in such a way that in each step we “kill” “bad” sequences of measures on the Boolean algebras from
the previous steps that would contradict the Grothendieck property of the ultimate algebra. This
time, however, we need three auxiliary properties of [w]* and Fr(w) that are related to the Phillips
lemma, Rosenthal lemma and Dieudonné—Grothendieck characterization of weak compactness of
families of measures on compact Hausdorff spaces. Similarly as before, from those new properties
we derive new cardinal characteristics which we call the Phillips number, the Rosenthal number and
the Dieudonné—Grothendieck number, denoted phil, vos and 0g, respectively. The role of phil and
tos in the proof of Theorem 5.4 is basically the same, they just yield two possible variants of the
proof and hence two possibly different upper bounds of gr. Let us discuss the three characteristics
more carefully, as they are interesting on their own.

The Dieudonné-Grothendieck theorem in its particular form asserts that a bounded sequence
<,un: n e w> of measures on a Boolean algebra A is not weakly convergent if and only if there are
an antichain <ak: k € w> in A, an increasing sequence <nk: k € w> in w and € > 0 such that
’ Ly, (ak)| > ¢ for every k € w. The number dg is defined in the following related to the theorem
way.

Definition 5.6. The Dieudonné—Grothendieck number 0g is the minimal cardinality of a family F
of antichains in Fr(w) such that for every sequence (yn,: n € w) of measures on Fr(w) which is

weakly* null but not weakly null there are an antichain <ak: k € w> € F, an increasing sequence
<nk cw: ke w> and € > 0 such that |unk (ak)| > ¢ for every k € w.
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It was showed in [38] and [42] that b < dg < cof(N). Thus, consistently, to prove that a given
weakly* null sequence of measures on the Cantor space 2 is (not) weakly null, it is enough to check
its values on antichains from a special family F of size strictly less than c.

The next number is related to the Phillips lemma asserting that for every sequence <,un: n €
w) of measures on the Boolean algebra p(w) if limp oo pin(A4) = 0 for every A € p(w), then

limy, 00 D ey |un({k‘})| =0 (i.e., tn, — 0 in the norm on #1(w)).

Definition 5.7. The Phillips number phil is the minimal size of a family F C [w]” such that for
every sequence <,un: n € w> of measures on the Boolean algebra p(w) if lim,— o pn(A) = 0 for

every A € F, then lim, 00 ) pc,, |,un({k:})| =0.

In his PhD thesis [38], the author showed that p < phil < cof(N) and in [39, Proposition 2.5
that p < phil = ¢ consistently holds. We refer the reader to [39] for information concerning possible
analytic applications of those inequalities.

The last number which we want to discuss here is the Rosenthal number related to Rosenthal’s
lemma stating that for every antichain <an: n e w> in a Boolean algebra A, sequence <Mk1 ke w>
of non-negative measures on A of norm 1, and £ > 0, there exists an infinite set A € [w]” such
that for every k € A the inequality > e ,2 Lk (an) < € holds. For analytic and measure-theoretic

n

applications of the lemma, see e.g. [15, Chapter VII| and [16, Section I1.4].
The lemma may be actually also stated in a much simpler form: for every infinite matrix
<mfl: n,k € w> of non-negative real numbers such that mE < 1 and aﬁ = 0 for every

k € w, and every € > 0 there is A € [w]* such that >, ., mF < ¢ for every k € A.

Definition 5.8. The Rosenthal number tos is the minimal cardinality of a family F € [w]” such
that for every infinite matrix <mﬁ: n,k € w> of non-negative real numbers such that > mk <1
and aﬁ = 0 for every k € w, and every € > 0 there is A € F such that ) 4 mF < ¢ for every k € A.

The number tos was studied by the author in [40] where it was proved that cov(M) < vos and that
for every selective ultrafilter (if any exists) its base has cardinality at least tos, so tos < uge, where
Uge; denotes the minimal cardinality of a base of a selective ultrafilter, if any exists, or ¢, otherwise.
It was also showed there that under Martin’s axiom there exists a filter which is not selective but
satisfies the (Rosenthal’s lemma) condition from Definition 5.8. Koszmider and Martinez-Celis [30]
proved in ZFC that actually every ultrafilter on w satisfies this condition and that vos = ¢v. Let us
note that the inequality vos > v was obtained independently by Repicky [35].

After we defined all the necessary additional cardinal characteristics and having in mind that
tos = t, we are in the position to recall the following stronger variant of Theorem 5.4.

Theorem 5.9. If k is such a cardinal number that max (Dg,min(pbi[, tos)) < Kk = cof([n]w),
then there exists a Boolean algebra A such that |A| = k and A has the Grothendieck property. In
particular, gv < K.

Theorems 5.1 and 5.4 yield an important conclusion concerning the characteristics nit and grv and
the almost disjointness number a. Recall that a family F of infinite subsets of w is almost disjoint
if AN B is finite for any two distinct elements of F. The almost disjointness number a is defined
as the minimal cardinality of a maximal almost disjoint family. It is a basic result that a = w; in
the Cohen model, so consistently a < nit and a < gr (as cov(M) = ¢ in this model). On the other
hand, Brendle [11, Proposition 4.7] showed that it consistently holds ws = cof(N) < a = w3 = ¢, so
in this model we also have nit < a and gt < a.

Corollary 5.10. Neither of the characteristics nit and gt is comparable in ZFC with a.
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6. OTHER CONSISTENCY RESULTS

Let us start the section with noticing in which standard models of set theory the characteristics nit
and gt are equal to ¢. This may be easily derived from Corollaries 4.2 and 4.3, having on hand Table
4 in |7, page 92|. Indeed, we have the following equalities in the corresponding models: cov(M) = ¢
in the Cohen model, b = s = ¢ in the Mathias model, and b = cov(M) = ¢ in the Hechler model; so
in these mentioned models it holds nit = gv = ¢. In the Laver model, however, we have b = ¢ only,
so nit = ¢ in this model and we do not know the value of gr therein, see Section 8.

Let us now study a more interesting case, i.e., when nit = gv < ¢. A main set-theoretic tool used
in the proofs of Theorems 3.1 and 3.3 is Axiom (A) of the Sacks forcing, in particular, the existence
of fusions for fusion sequences and the Sacks property—see [21] for definitions. Since many other
notions of forcing satisfy Axiom A or have similar properties, the author and Zdomskyy looked more
carefully on the proofs of the theorems and in [44] generalized the results to much broader class of
forcings. To explain this, let us recall the following two standard definitions.

Definition 6.1. Let V' be a model of set theory. A notion of forcing P € V' has the Laver property
if for every P-generic filter G over V, functions f € w* NV and h € w* N V|G| such that h <* f
there is a function H: w — [w]=¥ in V such that h(n) € H(n) and |H(n)| < n + 1 for every n € w.

Standard notions of forcing having the Laver property are, e.g., Sacks, side-by-side Sacks, Laver,
Mathias, Miller, Silver (-like), and their countable support iterations, see [44] for references.

Definition 6.2. Let V be a model of set theory. A notion of forcing P € V' preserves the ground
model reals non-meager if for every P-generic filter G over V' the set R NV is non-meager in V[G].

Among the notions listed after Definition 6.1, only Sacks, side-by-side Sacks, Miller, Silver (-like),
and their countable support iterations, preserve ground model reals non-meager.
We are in the position to state the main theorem of [44].

Theorem 6.3 (Sobota and Zdomskyy [44]). Let V' be a model of set theory and A a o-complete
Boolean algebra in V. If a notion of forcing P € V is proper, preserves the ground model reals
non-meager and has the Laver property, then in any P-generic extension V|G| the algebra A has the
Nikodym and Grothendieck properties.

We immediately get the corollary analogous to Corollary 3.6.

Corollary 6.4. Let V' be a model of set theory satisfying the Continuum Hypothesis. If a notion of
forcing P € V' is proper, preserves the ground model reals non-meager and has the Laver property,
then in any P-generic extension V[G] we have wi = nit = gr.

Since in the side-by-side Sacks forcing all the standard characteristics are equal to wy, so far, the
only strict inequalities we have had between nit, gv and these characteristics followed from Corollaries
4.2 and 4.3 together with the well-known fact that there is no ZFC inequality between b, s and
cov(M). Theorem 6.3 and Corollary 6.4 yield us some new situations where w; = nit = gr < ¢ = wo
and ¢ is equal to some other standard cardinal characteristics of the continuum. Let us thus look
at two particularly interesting situations, namely, those of the Miller and Silver models, and check
what new inequalities between the characteristics we obtain therein. Note that by Corollary 6.4
both in the Miller model as well as in the Silver (-like) model we obtain that w; = nit = gt < wy = ¢.

Two important cardinal characteristics of the continuum which have value ¢ in the Miller model
are the dominating number 0 and the groupwise density number g. It is well known that ? >
max (b,ﬁ,cov(/\/l))7 so, in the context of Corollaries 4.2 and 4.3, 0 was another natural candidate
for a cardinal characteristic ¢ such that ¢ < ni¢ and ¢ < gv in ZFC, however, as we see, this is not
the case.
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Corollary 6.5. [t is consistent that w; = nit = gr < 0 = ¢ = ws.

The definition of the groupwise density number g is a bit complicated and would take too much
space, therefore we refer the reader to [7, Definition 2.26] and [6]. Let us note here that g = wy
in the Cohen model, therefore both gr and nit are independent of g in the sense that there is no
provable in ZFC inequality between either of the former characteristics and g.

Among cardinal characteristics which have value ¢ in the Silver model are the reaping number t
and the ultrafilter number u, see |25, Page 379|. The reaping number v is the smallest cardinality
of a family F C [w]“ for which there is no A € [w]*” such that for every B € F the sets BN A and
B\ A are infinite. The ultrafilter number u is the minimal size of a base of a non-principal ultrafilter
in p(w).

Note that it is consistent that wy =t =u < s = ¢, cf. |7, Section 11.11], therefore we consistently
get that w; =t = u < nit = gr = ¢ and hence the following corollary is true (cf. Corollary 5.10).

Corollary 6.6. Ifr € {v,u,g} and vy € {nit, gt}, then there is no inequality between ¢ and vy provable
in ZFC.

The independence number i is the minimal size of a maximal family Z C [w] such that for every
finite disjoint subsets F, G C T the intersection () cp AN [\ yeq(w \ A) is infinite. The value of i in
the Silver model is also ¢, so consistently nit < i and gv < i. However, we do not now if any of the
inequalities i < nit and i < gt holds in some model of set theory.

Corollary 6.7. It is consistent that nit < i and gt < i.

6.1. Adding one new real. In the previous section we studied several forcing notions in the
context of preserving the Nikodym and Grothendieck properties of o-complete Boolean algebras. In
this section we study the converse, i.e., when adding one new real to the ground model destroys the
properties of all ground model (not necessarily) o-complete Boolean algebras.

In Section 4 we recalled the result of Geschke asserting that if a non-scattered compact space K
has weight strictly less than cov(M), then there is a perfect subset L C K and a point « € L which
is a Gg-point in L, hence K contains a non-trivial convergent sequence. It appears that the proof of
the result may be actually rewritten in terms of the Cohen forcing as follows (see [45]).

Proposition 6.8. Let A be a Boolean algebra in the ground model V. If ¢ is a Cohen real over V,
then, in Vc], the Stone space St(A) has a non-trivial convergent sequence.

The above fact was first observed by Dow and Fremlin [17, Introduction| as being implied by
the results of Koszmider [29]. Since a Boolean algebra with neither the Nikodym property nor the
Grothendieck property may have a non-trivial convergent sequence in its Stone spaces, Proposition
6.8 yields that adding a Cohen real to the ground model kills either of the properties of ground
model Boolean algebras.

Note that adding a Hechler real to the ground model adds also a Cohen real, so the Hechler forcing
adds non-trivial convergent sequences to the Stone spaces of ground model Boolean algebras, too.

Adapting the result of Booth mentioned in Section 4 and stating that if a compact Hausdorff
space K has weight strictly less than the splitting number s, then K is sequentially compact, one
can obtain an analogon of Proposition 6.8 for unsplit reals. Recall that z € [w]* is an unsplit real
over the ground model V if for no A € [w]” NV both sets BN A and B\ A are infinite. Every
Mathias real is an example of an unsplit real.

Proposition 6.9 (|45]). Let A be a Boolean algebra in the ground model V. If w is an unsplit real
over V, then, in V[u], the Stone space St(A) has a non-trivial convergent sequence.
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Thus, similarly as before, adding an unsplit real to the ground model kills the Nikodym and
Grothendieck properties of ground model Boolean algebras.

Also the fact that if a Boolean algebra has cardinality strictly less than the bounding number
b, then it does not have the Nikodym property, may be adapted to the forcing setting concerning
adding a dominating real and thus killing the Nikodym property of ground model Boolean algebras.

Proposition 6.10 ([45]). Let A be a Boolean algebra in the ground model V. If d is a dominating
real over V', then, in V[d], the Boolean algebra A does not have the Nikodym property.

We do not know if Proposition 6.10 holds true with the Grothendieck property instead of the
Nikodym property. A natural forcing to check this seems to be the Laver forcing (as it has the Laver
property, see the previous section).

We left the most interesting case of a notion of forcing to the very end of the section, namely, the
case of the random forcing. Dow and Fremlin [17] proved the following preservation result. Recall
that a compact Hausdorff space K is an F-space if every two disjoint open Fs-subsets of K have
disjoint closures; in particular, every extremely disconnected space (or, equivalently, the Stone space
of every complete Boolean algebra) is an F-space.

Theorem 6.11 (Dow and Fremlin [17]). Let A be a Boolean algebra in the ground model V' such
that the Stone space St(A) is an F-space. If r is a random real over V', then, in V[r], the Stone
space St(A) does not have any non-trivial convergent sequences.

Theorem 6.11 cannot be generalized in any way to the case of the Nikodym or Grothendieck
property. Namely, the author and Zdomskyy proved that adding a random real to the ground model
kills either of the properties of ground model Boolean algebras.

Theorem 6.12 ([45]). Let A be a Boolean algebra in the ground model V. If r is a random real
over V', then, in V[r], the Boolean algebra A has neither the Nikodym property nor the Grothendieck

property.

As a corollary we obtain that in the model obtained by forcing with the Boolean algebra Bor(2%) /N (k),
i.e. the algebra of Borel subsets of 2% modulo the ideal of null sets of the standard product measure
on 2% the characteristics nit and gr are equal to ¢ while the dominating number 0 is w;.

Corollary 6.13. It is consistent that w; =0 < nit = gv = ¢ = ws.
Together with Corollary 6.5 we get the following result.

Corollary 6.14. There is no provable in ZFC inequality between 0 and either of the characteristics
nit and gr.

Another corollary is related to the result of Dow and Fremlin and the convergence number j
defined in Section 4.

Corollary 6.15. [t is consistent that w; = 3 < nit = gt = ¢ = wy.

7. THE COFINALITIES OF nit AND gt

Schachermayer [36, Proposition 4.6] proved that if a Boolean algebra A can be written as a
countable increasing union of its proper subalgebras, i.e. A = Unew A, where A, is a proper
subalgebra of A and A,, C A, for each n € w, then A does not have the Nikodym property or the
Grothendieck property. It follows immediately that the cofinality of ni¢ and gr is uncountable.

Corollary 7.1. cf(nit) > w; and cf(ge) > w;.
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Under the Continuum Hypothesis cf(¢) = ¢ = nit = gr, so both nit and gv may be consistently
regular. On the other hand, in a model obtained by adding, e.g., R, many Cohen reals to a model
of the Generalized Continuum Hypothesis we have nit = gr = ¢ = Ry, > w1 = cf (Ry,) (see [32,
Lemma 5.14]), so cf(nit) < nit and cf(gr) < gr in this model and hence neither ni¢ nor gr is regular.
Note that in this way we may obtain actually any uncountable cofinality of nit and gv with both
characteristics being still equal to c.

Corollary 7.2. The regularity of neither nit nor gv is decidable in ZFC.

8. OPEN PROBLEMS

In this final section of the survey we present several most important open questions concerning the
Nikodym and Grothendieck properties and their set-theoretic aspects. We start with the following
one concerning Talagrand’s result mentioned in the introductory section and stating that under
the assumption of the Continuum Hypothesis there exists a Boolean algebra with the Grothendieck
property but without the Nikodym property.

Question 8.1. Does there exist in ZFC a Boolean algebra with the Grothendieck property but without
the Nikodym property?

A weaker variant of Question 8.1 could be the following: assuming Martin’s axiom (or the Proper
Forcing Axiom, etc.), does every Boolean algebra with the Grothendieck property have the Nikodym
property?

In Section 2 we discussed several properties of Boolean algebras that are weaker than the o-
completeness but still imply at least one of the properties. We presented there the result of Koszmider
and Shelah yielding that all those properties imply also that every Boolean algebra having any of
them must be of size at least ¢. In view of the results presented in Sections 3, 5 and 6 we ask the
following question.

Question 8.2. Is there any (algebraic or structural) property of Boolean algebras that imply either
the Nikodym property or the Grothendieck property and is satisfied also by algebras of size strictly
less than ¢?

The following question appears to be the most important one concerning the relation between nit
and gr.

Question 8.3. May any of the inequalities nit < gv and nit > gv consistently hold?

In Section 4 we stated that the inequality b < nit holds in ZFC and it is unknown to us whether
b < gt holds, too.

Question 8.4. Does the inequality b < gv hold in ZFC?

A natural model to check whether the inequality gr < b may consistently hold (and thus gt < nit)
is the Laver model (in which b = nit = wy = ¢).

Question 8.5. What is the value of gt in the Laver model?

Recall that the Laver forcing adds dominating reals and thus “kills” the Nikodym property of
ground model Boolean algebras (Proposition 6.10). Since we do not know if adding dominating
reals automatically kills the Grothendieck property, a question related to Questions 8.3-8.5 and
being in the spirit of Theorem 6.3 and Proposition 6.10 could be thus stated as follows.

Question 8.6. Does there exists a notion of forcing adding dominating reals and preserving the
Grothendieck property of ground model o-complete Boolean algebras?
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Two strict inequalities between nit or gr and a characteristic from van Douwen’s diagram about
which we do not know whether can be consistently true are nit > i and gr > i—note that the reverse
strict inequalities hold in the Silver model (Corollary 6.7).

Question 8.7. Does any of the inequalities nit > i and gt > i consistently hold?

Concerning Cichoit’s diagram the only strict inequalities that are unknown to hold consistently
are listed in the following question.

Question 8.8. Letr € {nit,gt}. Does any of the following inequalities consistently hold:
e 1 < cov(N),
e r < non(M),
e r < non(N),
e cof(M) < r?

Having analyzed the proof of Theorem 6.3, it seems that the theorem holds not only for ground
model o-complete Boolean algebras but also for algebras with the SCP (Definition 2.1). However,
we do not know whether a similar theorem could be proved for algebras with some weaker property
mentioned in Section 2.

Question 8.9. In Theorem 6.3, can we exchange the o-completeness with some weaker property and
still preserve either the Nikodym property or the Grothendieck property?

The last question concerns weakening the assumptions of Theorems 5.1 and 5.4.

Question 8.10. In Theorems 5.1 and 5.4, can we drop the assumption that k = cof ( [k]Y, C ) ¢
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